3 PT V

Development of 3-D Particle Tracking Velocimetry using Genetic Algorithm

2001年 2月

2000年 12月 23日

•

List of	T ables		• • • • • • • • •	• • • • • • •	• • • • • • •	•••••			Ι
List of	Figures	• • • • • • • • • • • • •	• • • • • • • • •	•••••	• • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •	II
Abstra	ct				• • • • • •	• • • • • • • •		,	IV
Nomen	clature				••••		• • • • • • • •		V
1					•••••			• • • • • • •	1
2	3								
2.1					• • • • • • •			•••••	5
2.2	3		•••••	•••••	• • • • • • •			• • • • • • •	6
3		(GA)							
3.1			•••••	••••	•••••		• • • • • • • •	• • • • • • •	12
3.2	PTV		• • • •	•••••					12
4	가		가						
4.1	가	•••••		•••••	••••				20
4.2		가		•••••				• • • • • • • •	30
4.3		••		•••••		•••••			39
5									
5.1		•••		•••••		• • • • • • • •			41
5.2		•							44
6						•••••		•••••	61
	• • • • • •				•••••	•••••			63

List of Tables

3.1	Definition of chromosome 13
4.1	Absolute coordinate of calibrator
4.2	Result of virtual calibration 28
4.3	Result of real calibration 29
4.4	Errors of three-dimensional geometrical measurement 40

List of Figures

2.1	Rotation by X, Y and Z axis
2.2	Relations between absolute and camera's coordinate system ···· 10
2.3	Definition of 3-D particle position 11
3.1	Definition of GA's Calculator in PTV 18
3.2	Flowchart of GA in PTV 19
4.1	Picture of Calibrator 22
4.2	Camera arrangement for the generation of virtual images 24
4.3a	Virtual image of calibrator viewed camera 1 25
4.3b	Virtual image of calibrator viewed camera 2 26
4.3c	Virtual image of calibrator viewed camera 3 27
4.4	Random velocity profile of jet flow
4.5	Generated virtual image 33
4.6a	Recovered vector by GA(IHIK) 34
4.6b	Recovered vector by GA(RHRK) 35
4.7	Recovery ratio in channel flow
4.8	Recovery ratio in jet flow
4.9	Overlapped particle in virtual images
5.1	System of Particle tracking velocimetry in GA 43
5.2	Measurement area of backward facing step flow 47
5.3	Inlet flow condition at $y/H = -1$
5.4	Instantaneous 3-D velocity vectors obtained by GA 49
5.5	Instantaneous 3-D velocity vectors interpolated
	by Gaussian window method 51

5.6	Mean 3-D velocity vectors interpolated
	by Gaussian Window method 52
5.7	Mean velocity profile of Y-Z plane 53
5.8	Turbulence kinetic energy distribution.($TKE = \frac{1}{2}q^2 / U_0^2$) 54
5.9	Turbulence intensity distribution.($T_u = \sqrt{u'^2} / U_0$)
5.10	Turbulence intensity distribution.($T_v = \sqrt{v'^2} / U_0$)
5.11	Turbulence intensity distribution.($T_w = \sqrt{w'^2} / U_0$)
5.12	Reynolds shear stress distribution ($R_{UV} = -\overline{u'v'} / U_0^2$)
5.13	Reynolds shear stress distribution $(R_{VW} = -\overline{v'w'} / U_0^2)$ 59
5.14	Reynolds shear stress distribution ($R_{UW} = -\overline{u'w'} / U_0^2$)

Development of 3-D PTV using GA

by

Cho Gyeong-Rae

Department of Refrigeration and Air Conditioning Engineering Graduate School Korea Maritime University

Abstract

A new 3-D PTV(Particle Tracking Velocimetry) using a Genetic Algorithm is introduced. The measurement system consists of 3 CCD Camera, an Image grabber and an Ar-ion Laser. The fundamental of the developed technique is based on that one-to-one correspondence is found between two tracer particles selected at two different image frames taking advantage of combinatorial optimization of the Genetic Algorithm. The fitness function controlling reproductive success in the Genetic Algorithm is expressed by a kind of continuum theory on the sparsely distributed particles in space. The number of identified particles as 3-Dimensional vectors was about 1000 which corresponded to about 65 percent of the whole particles in the flow field. In the experiment, turbulent characteristics of a backward-facing step flow are probed. The capability of the developed Genetic Algorithm is verified through the Standard the web site VSJ test of Images on of а (http://www.vsj.or.jp.piv)

Nomenclature

3DE	: Fitness for 3-D position of particle
A _i	: Coefficient of area moment
B , B_{ii}	: Inverse matrix of M
С	: Fitness for continuous fluid of vector
c, c_x, c_y	: Plane distance from lens center
D, D_s, D_e	: Error of calculated 3-D position of particles
D _i	: Divergence of velocity
dis	: Distance of projection
D_M	: Thresholding value of D_i
d_p	: Diameter of particle
F	: Equation of observation for x-direction
G	: Equation of observation for y-direction
Ι	: Intensity of particle
I_0	: Maximum intensity of particle
k_{1}, k_{2}	: Lens coefficient
M_M, M_X, M_Y, M_Z	: Rotation matrix
m_x, m_y	: Movement value of principle pointMovement value of
	principle point
Re _H	: Reynolds number of a half of depth
RES	: Reynolds shear stress
R _R	: Recovery ratio
<i>R</i> _{<i>uv</i>}	: Reynolds shear stress $(-\overline{u'v'} / U_0^2)$

<i>R</i> _{<i>uw</i>}	: Reynolds shear stress(- $\overline{u'w'} / U_0^2$)
<i>R</i> _{<i>vw</i>}	: Reynolds shear stress (- $v'w' / U_0^2$)
0	: Original point of photographic coordinate system
0	: Original point of absolute coordinate system
p	: Particle on images
Р	: Particle in space
S_X , S_Y , S_Z	: Standard deviation of 3-D position
TKE	: Turbulence kinetic energy $(\frac{1}{2}q^2 / U_0^2)$
T _u	: Turbulence intensity $(\sqrt{u'^2} / U_0)$
T_{v}	: Turbulence intensity $(\sqrt{v'^2} / U_0)$
T_w	: Turbulence intensity $(\sqrt{w'^2} / U_0)$
V _G	: Generated vector by random
V _R	: Recovered vector less than 0.1mm in error
U_{RSS}	: Uncertainty in measuring of velocity
Δx , Δy	: Lens distortion value
$\overline{x}, \overline{y}$: Center point of particle
<i>x</i> ₀ , <i>y</i> ₀	: Deviation of the principal point from the center of image
<i>x</i> _{<i>i</i>} , <i>y</i> _{<i>i</i>}	: Value of the photographic position of particle
x, y, Z	: Photographic coordinate system
X, Y, Z	: Absolute coordinate system
X_0, Y_0, Z_0	: Center of projection

X_i, Y_i, Z_i	: Value of the 3-D position of particle
X_m, Y_m, Z_m	: Rotated absolute coordinate system

Greek characters

α, ω	: Tilted angle for X axis
$eta, \ \psi$: Tilted angle for Y axis
x	: Tilted angle for Z axis
σ_l	: Radius of cylindrical light
_	: Time averaged value

1

LDV(Laser Doppler Velocimetry)7

가

.

가 PIV (Particle Imaging . Velocimetry) 가 3 (u, v, w)3 , . 가 PTV (Particle Tracking Velocimetry) . Chang Tatterson Change et al.(1984) (1983) 3 , 가 3 . Yamakawa Iwashige(1986), Racca Dewey(1988), Adamczyk Rimai (1988), Kobayashi et al.(1989) • 가 Kobayashi et al.(1991) AOM (Acousto Optical Modulator) 4-Frame PTV 가 2 Baek Lee(1996) , , 2-Frame PTV , Multi-frame PTV . 가 3 가 Doh et al.(1999) .

- 1 -

1-Frame 3-D PTV

•

,

,

 1970
 John Holland
 ,

 Rosenberg, De Jong
 ア
 2
 , 2
 2

 , 1985
 De Jong
 ,
 10
 7
 7

•

. 1990 Koza (Genetic Programming) 7

.

(EP : Evolution Program)

- 2 -

(1995). Kimura et al.(1998) 2 Kimura et al.(1993) Sugii et al. • (1996, 1998) Dho et al.(1998, 1999) 2 • 3 PT V , . Kobayasi et al.(1991) 4-Frame 가 Frame 가 -, Doh et al.(1999), Ohyama et al.(1993), Okamoto et al.(1995) 가 3 100% PTV , 3 • 2 3 11 가 10 10 3 . 3 PTV , 3 , 가 가 4 , 3

フト . 5 , , ,

3 PT V가

, 6 .

2 3 2.1 3 2 가 . 가. Kobayasi et al.(1989, 1990, 1991) Dho et al.(1991, 1995, 1997, 1998, 1999) $(X_0, Y_0, Z_0, \omega, \psi, \chi)$ (c, x_0, y_0, k_1, k_2) 11 가 가 , , Multi-frame PTV 2 . , 3 , 1-Frame 3-D PTV 3 3 , 가 • $(dis, \alpha, \beta, \varkappa, m_x, m_y)$ $(c_x, c_y,$ k_1, k_2) 10 (2.2), Fig. 2.1 (X, Y, Z) (x, y, z) O(0, 0, 0). d is 0 . . X, Y, Z α, β, χ , $M_{M} = M_{Z}M_{Y}M_{X} 7$; X, Y(α , β) Ζ Z(x)z , , Χ, Υ х,у, . (X_m, Y_m, Z_m) Ζ .

- 5 -

Z
$$m_x, m_y$$
., Fig. 2.2xyX, Y, Z7 \cdot ..

$$x = c_{x} \frac{X_{m} - m_{x}}{\sqrt{dis^{2} - m_{x}^{2} - m_{y}^{2} - Z_{m}}} + \Delta x$$

$$y = c_{y} \frac{Y_{m} - m_{y}}{\sqrt{dis^{2} - m_{x}^{2} - m_{y}^{2} - Z_{m}}} + \Delta y$$

$$, c_{x}, c_{y} :$$

$$\Delta x, \Delta y :$$

$$\left(\Delta x = \frac{x}{r} (k_{1}r^{2} + k_{2}r^{4}), \Delta y = \frac{y}{r} (k_{1}r^{2} + k_{2}r^{4}), r = \sqrt{x^{2} + y^{2}} \right)$$
(2.1)

(2.1)

$$(X_i, Y_i, Z_i)$$
 (x_i, y_i) F, G 2.2

$$F = c_x \frac{X_m - m_x}{\sqrt{dis^2 - m_x^2 - m_y^2 - Z_m}} - (x - \Delta x) = 0$$

$$G = c_y \frac{Y_m - m_y}{\sqrt{dis^2 - m_x^2 - m_y^2 - Z_m}} - (y - \Delta y) = 0$$
(2.2)

Gauss-Newton

•

2.2

가 (x, y)(X, Y, Z) (2.2)

$$F = > \frac{c_x (X_m - m_x)}{d - Z_m} - (x - \Delta x) = 0$$

= > $X_m = \frac{(x - \Delta x)}{c_x} (d - Z_m) + m_x$
$$G = > \frac{c_y (Y_m - m_y)}{d - Z_m} - (y - \Delta y) = 0$$

= > $Y_m = \frac{(y - \Delta y)}{c_y} (d - Z_m) + m_y$
, $d = \sqrt{dis^2 - m_x^2 - m_y^2}$
$$d - Z_m = t$$
 (2.3)

.

$$X_{m} = \frac{x - \Delta x}{c_{x}} t + m_{x}$$

$$Y_{m} = \frac{y - \Delta y}{c_{y}} t + m_{y}$$

$$Z_{m} = d - t$$

$$M_{M} , B$$

$$(2.4)$$

$$\begin{bmatrix} X_m \\ Y_m \\ Z_m \end{bmatrix} = M_M \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \implies \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = M_M^{-1} \begin{bmatrix} X_m \\ Y_m \\ Z_m \end{bmatrix} = B \begin{bmatrix} X_m \\ Y_m \\ Z_m \end{bmatrix}$$
(2.5)

,

X, Y, Z

$$X = B_{11}X_{m} + B_{12}Y_{m} + B_{13}Z_{m}$$

$$= \left(B_{11}\frac{s_{x}}{c_{x}} + B_{12}\frac{s_{y}}{c_{y}} - B_{13}\right) + \left(B_{11}m_{x} + B_{12}m_{y} + B_{13}d\right)$$

$$Y = B_{21}X_{m} + B_{22}Y_{m} + B_{23}Z_{m}$$

$$= \left(B_{21}\frac{s_{x}}{c_{x}} + B_{22}\frac{s_{y}}{c_{y}} - B_{23}\right) + \left(B_{21}m_{x} + B_{22}m_{y} + B_{23}d\right)$$

$$Z = B_{31}X_{m} + B_{32}Y_{m} + B_{33}Z_{m}$$

$$= \left(B_{31}\frac{s_{x}}{c_{x}} + B_{32}\frac{s_{y}}{c_{y}} - B_{33}\right) + \left(B_{31}m_{x} + B_{32}m_{y} + B_{33}d\right)$$

$$, s_{x} = x - \Delta x, s_{y} = y - \Delta y$$

(2.6)

- 7 -

$$(X_0, Y_0, Z_0)$$
 .

 $X_{0} = B_{11}mx + B_{12}my + B_{13}d$ $Y_{0} = B_{21}mx + B_{22}my + B_{23}d$ $Z_{0} = B_{31}mx + B_{32}my + B_{33}d$ (2.7)

$$(X_0, Y_0, Z_0)$$

•

.

,

.

$$P(X, Y, Z) = P(a_1t + X_0, a_2t + Y_0, a_3t + Z_0)$$
(2.8)

Р

$$A (X, Y, Z) = A (a_{11}t + b_{11}, a_{12}t + b_{12}, a_{13}t + b_{13})$$

$$B (X, Y, Z) = B (a_{21}s + b_{21}, a_{22}s + b_{22}, a_{23}s + b_{23})$$
(2.9)

$$t = \frac{\chi - \alpha \beta}{1 - \alpha^2}, \quad s = \frac{\chi \alpha - \beta}{1 - \alpha^2}$$

$$(2,10)$$

$$, \quad \alpha = a_{11}a_{21} + a_{12}a_{22} + a_{13}a_{23}$$

$$\beta = a_{11}(b_{11} - b_{21}) + a_{12}(b_{12} - b_{22}) + a_{13}(b_{13} - b_{23})$$

$$\chi = a_{21}(b_{11} - b_{21}) + a_{22}(b_{12} - b_{22}) + a_{23}(b_{13} - b_{23})$$

$$(2,10) \quad t, \quad s7 \dagger \qquad A(X, Y, Z), \quad B(X, Y, Z)7 \dagger$$

$$. \qquad , \quad P(X, Y, Z) \qquad .$$

$$\begin{bmatrix} X_{P} \\ Y_{P} \\ Z_{P} \end{bmatrix} = \frac{1}{2} \left\{ \begin{bmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{bmatrix} + \begin{bmatrix} X_{B} \\ Y_{B} \\ Z_{B} \end{bmatrix} \right\}$$
(2.11)

•

3

Fig. 2.1 Rotation by X, Y and Z axis.

Fig. 2.2 Relations between absolute and camera's coordinate system.

Fig. 2.3 Definition of 3-D particle position.

	(GA)
	· · ·

3

3.1 GA 가 (gene) (chromosome) , , (generation) (population), (individual) . GA . 가 (object function) (fitness function) 가 . 가 , , , GA 5가 • 가 가 1. 가 가 2. " 가 3. " 4.

5. 7ł (,)

3.2 PTV

3

Table 3.1 Definition of chromosome with respect to camera.

Cam	era 1	Cam	era 2	Fitness		
Start point	End point	Start point	End point	3D Error	Continuity	

, 3D Error 3

(3.2)

(3.1) , 3

.

$$D = \sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}$$
(3.1)

- 13 -

$$3DE = \left[\overline{D_s + D_e} \right]$$

$$, \quad D_s : 3$$

$$D_e : 3$$

$$(3.2)$$

(Continuity) 3.2.3

3.2.2

.

.

3.2.3

가

•

PIV

•

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix}_{i}^{j} = \frac{-3u(i,j) + 4u(i+1,j) - u(i+2,j)}{2\Delta x}$$

$$\begin{bmatrix} \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial y} \end{bmatrix}_{i}^{j} = \frac{-3v(i,j) + 4v(i,j+1) - v(i,j+2)}{2\Delta y}$$

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix}_{i}^{j} = \frac{u(i-2,j) - 4u(i-1,j) + 3u(i,j)}{2\Delta x}$$

$$\begin{bmatrix} \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial y} \end{bmatrix}_{i}^{j} = \frac{v(i,j-2) - 4v(i,j-1) + 3v(i,j)}{2\Delta y}$$
(3.3)

- 14 -

$$D_{1} = \left| \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{f} + \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{f} \right| \qquad D_{2} = \left| \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{f} + \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{b} \right| \qquad (3.4)$$

$$D_{3} = \left| \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{b} + \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{b} \right| \qquad D_{4} = \left| \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{b} + \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{f} \right| \qquad (3.4)$$

$$2 \qquad (D_{1}, D_{2}), \qquad (D_{2}, D_{4}) \qquad D_{M}$$

•

가

,

4

•

가

가

.

(3.5)

$$D(i,j) = \left\| \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{\min} + \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{\min} \right\|$$

$$, \quad \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{\min} = Min \left\{ \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{f}, \quad \begin{bmatrix} \frac{\partial u}{\partial x} \end{bmatrix}_{b} \right\}$$

$$\begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{\min} = Min \left\{ \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{f}, \quad \begin{bmatrix} \frac{\partial v}{\partial y} \end{bmatrix}_{b} \right\}$$

$$D(i,j)7 \downarrow \qquad D_{M} \qquad (3.5)$$

3 (3.6)

 $D(i,j,k) = \left\| \left[\frac{\partial u}{\partial x} \right]_{\min} + \left[\frac{\partial v}{\partial y} \right]_{\min} + \left[\frac{\partial w}{\partial z} \right]_{\min} \right\|$ (3.6)

.

PIV

PTV 1 • $C = \left| \frac{\partial u}{\partial x} \right|_{\min} + \left| \frac{\partial v}{\partial y} \right|_{\min} + \left| \frac{\partial w}{\partial z} \right|_{\min}$ (3.7) 가 가 С 가 가 С Cフト 가 3DE . , 가

10

가

.

,

3.2.4

(isolation), (migration), (crossover) (reproduction) . Fig. 3.1 , Fig. 3.2 . . $1 \qquad 4 \qquad 7^{1}$ $3DE \qquad 7^{1}$. 3DE(isolation) . - 16 - C . C (reproduction) .

(crossover) . 2 3DE . 3DE⁷

•

(migration)

•

	3DE		0.5,	10%	,
10	15	()		

가

•

•

,

- 17 -

Fig. 3.1 Definition of GA Calculator in PTV.

Fig. 3.2 Flowchart of GA in PTV.

4 가 가

4.1 가 Willert and Gharib(1991)DPIV(Digital PIV)7PIV 7 11 가 $(32 \times 32 \text{ pixel})$ 8 가 0.8 pixel) pixel , Okamoto et al.(1999) PIV 3 PIV (PIV-STD3D) . 가 LES (Large Eddy Simulation) Okamoto et al.(1999) 3 가 가 . 가

 (512×512) pixel , pixel

.

256(gray level, 8bit) .

.

$$I(X, Y) = I_0 \operatorname{Exp}\left(\frac{(X - X_p)^2 + (Y - Y_p)^2}{-(d_p/2)^2}\right)$$

$$, I_0 = 240 \operatorname{Exp}\left(-\frac{z_p^2 + x_p^2}{\sigma_l^2}\right)$$
(4.1)

 $(d_p) 0.3 \text{mm}(3 \text{ pixels})$, (σ_l) 600 pixel , Doh et al.(1999) 50 2000 .

	Fig. 4.1	(-50	50mm, - 5	50 50mm, 0) 50mm)	
가			. Table	2.1		
		Fig. 4.2				
Fig. 4.2	가					
			,		가 가	
		. Fig. 4.3				가
3						
		Doh et al.(19	99)			2
		(IH)				
	(RH)	. Ta	able 4.2	11		IH,
RH 10		IH, RH	י⊦		3	
2	3					,
Table 4.3						
Table 4.2	x 7 h π	가				с
가		. 11		- c		10
	С					
					. RH	
	가 11			가		•
		Р	ΤV		11	,
10						
Table 4.3						1 38
. 2	40	. 3	42			
, 가		, -			가	
가				2	. 3	
10	가 Z		가	, X. Y		
-	. –		•	, , –		

Fig. 4.1 Picture of Calibrator.

No.	X	Y	Z	No.	Х	Y	Z
1	0.2000	- 7.7516	6.5188	22	33.3205	0.5987	4.9782
2	7.3386	- 3.8389	13.0829	23	28.9298	16.9216	46.4743
3	7.1826	4.8918	17.0283	24	16.8530	28.6673	17.4736
4	0.5809	8.7543	39.7021	25	1.0476	33.2205	34.1831
5	- 6.5406	4.1629	15.9084	26	- 16.4029	28.8808	6.6368
6	- 6.3076	- 3.2634	24.5248	27	- 28.1422	16.8719	20.8206
7	0.8383	- 17.7463	29.0704	28	- 32.6023	0.2917	50.4479
8	10.2142	- 15.4834	21.4611	29	- 28.1175	- 16.3255	10.1926
9	16.9448	- 8.9227	43.1246	30	- 15.1312	- 28.3268	33.2271
10	19.4009	0.6626	27.9001	31	0.2715	- 50.0334	38.2043
11	16.5258	9.0808	32.3592	32	26.4238	- 42.7926	30.1636
12	9.5821	16.4280	12.0234	33	43.8331	- 24.4106	8.3207
13	1.5498	18.9168	51.5761	34	49.4580	0.0109	49.4652
14	- 8.4680	16.7006	22.9841	35	43.6475	25.3076	36.0622
15	- 15.4715	9.6417	40.2301	36	25.5517	44.0473	3.8494
16	- 18.1874	0.4146	8.9176	37	- 0.3152	49.9450	24.9162
17	- 15.0978	- 8.5400	31.5309	38	- 23.8146	43.8323	45.7507
18	- 8.5938	- 15.6116	13.8650	39	- 42.7111	25.3380	42.0268
19	0.6080	- 32.7680	43.4187	40	- 49.5878	0.0228	47.8234
20	17.1421	- 26.7340	52.5382	41	- 42.0264	- 24.9213	25.8710
21	28.1973	- 15.8846	37.8964	42	- 24.1197	- 43.0299	19.1620

Table 4.1 Absolute coordinate of calibrator(mm)

Fig. 4.2 Camera arrangement for the generation of virtual images.

Fig. 4.3a Virtual image of calibrator viewed by camera 1.

Fig. 4.3b Virtual image of calibrator viewed by camera 2.

Fig. 4.3c Virtual image of calibrator viewed by camera 3.

Parameter		IH	RH	IH	RH
		(11 parameter)	(11 parameter)	(10 parameter)	(10 parameter)
$X_{0} (mm)$ $Y_{0} (mm)$ $Z_{0} (mm)$ $\alpha(\circ)$ $\beta(\circ)$ $\chi(\circ)$ $c (pixel)$		0.0000	0.0105	0.0000	0.0001
		0.0000	0.0073	0.0000	0.0000
		499.9997	500.0433	500.0000	500.0002
		0.0000	- 0.0082	- 0.0000	- 0.0000
		- 0.0000	0.0095	0.0000	- 0.0000
		0.0000	- 0.0001	- 180.0000	- 180.0000
		- 2199.9992	- 2200.2813	2200.0000	2200.7257
Average Error	X Y Z	0.00 0.00 0.00	0.00 0.02 0.01	0.00 0.00 0.00	0.00 0.00 0.00
Standard X deviation Z		0.00 0.00 0.00	0.00 0.03 0.01	0.00 0.00 0.00	0.00 0.00 0.00

Table 4.2 Result of virtual calibration.

Pa	ra		r)	(10 parameter)						
- meter		Camera 1 Cam		era 2	Camera 3	Camera 1	Cam	era 2	Camera 3	
X_0		298.2380	- 294	.3097	21.2176	312.0200	- 300	.3900) 21.3160	
Y ₀		590.6079	- 636.8735		1.7067	617.0300	- 650.7100		0.7413	
z	0	19.6709	28.7552		715.6505	19.0050	28.7400		730.6800	
α		83.8680	- 98.9806		9.4330	- 93.4833	92.8993		- 1.9217	
β		- 0.5757	0.1542		- 1.3937	62.9341	- 65.2117		- 0.0985	
х		27.6702	24.3260		- 784.2893	- 87.4470	92.5015		- 64.3059	
c		- 2922.2584	3310.1608		2989.1971	3129.8967	3451.7704		3138.2377	
				i						
		Camera 1, 3		Camera 2, 3		Camera 1, 3		Camera 2, 3		
	X	0.05			0.05	0.09		0.04		
	Y	0.09		0.07		0.03		0.02		
	Ζ	0.34		0.04		0.13			0.07	
	X	0.07		0.06		0.20		0.05		
Y		0.12		0.11		0.05		0.03		
Z		1.27		0.05		0.16			0.09	
	1									

Table 4.3 Result of real calibration.

가 4.2 가 CFD $R e_{H} = 3300$ LES , 가 Okamoto (-50 50, -50 50, - 30 50 70)mm 2000 • AOM(Acousto Optical Modulator) , 10pixel . PTV 3 Doh et al.(1999) 2 (IK) , Table 4.2 (RK) IH, RH IHIK, IHRK, RHIK, RHRK 4가 . Fig. 4.4 CFD 3 가 . Fig. 4.5 7 1-Frame 3-D PTV , PT V . Fig. 4.6 IHIK RHRK IHIK 가 , 가 RHRK . $R_R = \frac{V_R}{V_G} \times 100$ (4.2) $, R_R$: (%) V_R : 가 0.1mm V_G :

Fig. 4.7Doh et al.(1999)111-

- 30 -

Frame 3D PTV		(11)	10	1- I		1-Frame 3D	Frame 3D PTV	
(10)		(GA)		3D	PT V		IHIK,	
RHRK				IHIK		가 2000)	
1-Frame	3-D PTV	/ 99%						
	97	7.1%				RHRK		
	フト 2000				15.3%	, 10		
		35.6%		,			56.4%	
		. Fig. 4.8	3			:	가	
	,	GA	3	PT V				
	IK	RK				3		
2		가		. Fig. 4.9			_1	
2000		15%, 300	•	가		. 3	가	
	2			가			2	
		, Fi	ig. 4	.7 4.8				
	1000	1500						

Fig. 4.4 Random velocity profile of jet flow.

Fig. 4.5 Generated virtual image.

Fig. 4.6a Recovered vector by GA(IHIK).

Fig. 4.6b Recovered vector by GA(RHRK).

Fig. 4.7 Recovery ratio in channel flow.

Fig. 4.8 Recovery ratio in jet flow.

Fig. 4.9 Overlapped particle in virtual images.

4.3 가 3 , 3 , 3가 • 3 가 , 3 40 7 . , Table 4.4 (KjnX, KjnY, KjnZ) (CalcX, CalcY, CalcZ) , S_X , S_Y , S_Z X, Y, Z 3 3 ,

, 3 . , 0.21mm .

,

 $U_{RSS} = \sqrt{(2S_X)^2 + (2S_Y)^2 + (2S_Z)^2}$ (4.3)

 $X(-40 \ 40$ mm), $Y(-50 \ 50$ mm), $Z(0 \ 70$ mm) 1%

•

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy	dz
1	-7.747.75	0.21 - 0.20	6.63 - 6.52	0.01	0.01	0.11
2	- 3.81 3.84	7.36 - 7.34	13.11 - 13.08	0.03	0.02	0.03
3	4.89 - 4.89	7.19 - 7.18	17.14 - 17.03	0.00	0.01	0.11
4	8.76 - 8.75	0.57 - 0.58	39.68 - 39.70	0.00	0.01	0.02
5	4.16 - 4.16	-6.566.54	16.07 - 15.91	0.00	0.02	0.16
6	- 3.26 3.26	-6.316.31	24.54 - 24.52	0.01	0.00	0.02
7	- 17.72 17.75	0.83 - 0.84	29.10 - 29.07	0.02	0.01	0.03
8	- 8.91 8.92	16.99 - 16.94	43.25 - 43.12	0.02	0.04	0.13
9	0.67 - 0.66	19.43 - 19.40	27.94 - 27.90	0.01	0.03	0.04
10	9.07 - 9.08	16.54 - 16.53	32.37 - 32.36	0.01	0.01	0.01
11	16.43 - 16.43	9.59 - 9.58	12.14 - 12.02	0.00	0.01	0.12
12	18.88 - 18.92	1.60 - 1.55	51.59 - 51.58	0.03	0.05	0.01
13	16.66 - 16.70	-8.508.47	23.02 - 22.98	0.04	0.03	0.04
14	9.63 - 9.64	- 15.48 15.47	40.29 - 40.23	0.02	0.01	0.06
15	0.42 - 0.41	- 18.17 18.19	8.99 - 8.92	0.01	0.02	0.07
16	- 8.51 8.54	- 15.11 15.10	31.51 - 31.53	0.03	0.02	0.02
17	- 15.62 15.61	-8.598.59	14.01 - 13.87	0.01	0.00	0.15
18	-32.6932.77	0.61 - 0.61	43.40 - 43.42	0.08	0.00	0.02
19	- 26.63 26.73	17.14 - 17.14	52.47 - 52.54	0.10	0.00	0.07
20	- 15.83 15.89	28.22 - 28.20	37.86 - 37.90	0.06	0.03	0.04
21	0.66 - 0.60	33.35 - 33.32	5.09 - 4.98	0.06	0.03	0.11
22	16.89 - 16.92	28.96 - 28.93	46.54 - 46.47	0.03	0.03	0.06
23	28.52 - 28.67	16.86 - 16.85	17.58 - 17.47	0.15	0.01	0.10
24	33.14 - 33.22	1.02 - 1.05	34.22 - 34.18	0.08	0.03	0.04
25	28.86 - 28.88	- 16.41 16.40	6.77 - 6.64	0.02	0.01	0.14
26	16.83 - 16.87	- 28.17 28.14	20.97 - 20.82	0.05	0.03	0.15
27	0.26 - 0.29	- 32.61 32.60	50.45 - 50.45	0.03	0.01	0.00
28	- 16.31 16.33	- 28.09 28.12	10.37 - 10.19	0.02	0.03	0.18
29	- 28.29 28.33	- 15.09 15.13	33.28 - 33.23	0.03	0.04	0.05
30	-49.9450.03	0.20 - 0.27	38.23 - 38.20	0.09	0.07	0.02
31	-42.7342.79	26.29 - 26.42	30.31 - 30.16	0.06	0.13	0.15
32	- 24.30 24.41	43.83 - 43.83	8.52 - 8.32	0.05	0.00	0.20
24	0.04 - 0.01	49.48 - 49.46	49.37 - 49.47	0.03	0.02	0.10
25	25.25 - 25.31	43.04 - 43.05	30.00 - 30.00	0.06	0.01	0.00
20	49.84 - 49.95	-0.540.52	24.98 - 24.92	0.11	0.02	0.00
30	43./5 - 43.83	-23.8223.81	45.80 - 45.75	0.09	0.00	0.05
3/	25.28 - 25.34	-42.0842./1	42.07 - 42.03	0.06	0.05	0.04
20	-0.02 - 0.02	-49.3849.39	4/./0 - 4/.82	0.04	0.01	0.12
39	-24.9324.92	-42.0542.05	25.88 - 25.87 10.20 10.16	0.01	0.02	0.01
40	-42.9743.03	- 24.00 24.12	19.29 - 19.10	0.00	0.04	0.12
			Average error	0.04	0.02	0.07
			Standard deviation	0.05	0.03	0.09

Table 4.4 Errors of three-dimensional geometrical measurement

5

5.1

.

,

,

AOM . AOM CCD , 1 1/30 (1/60) (1/60)

, 3 CCD AOM

.

. AOM . . 3 3 (Panasonic AG-7350, Sony SLV-RS1, SLV-595HF) 7[†] , (Ditect 64) 256gray levels(512 × 512) . .

64 Mega bytes RAM

,

- 41 -

R, G, B

,

•

,

.

64

,

(boundary trace)

, (5.1)

 $\overline{x} = \frac{\sum_{i=1}^{n} A_{i} x_{i}}{\sum_{i=1}^{n} A_{i}} , \quad \overline{y} = \frac{\sum_{i=0}^{n} A_{i} y_{i}}{\sum_{i=0}^{n} A_{i}}$ (5.1)

3 10

•

80

Fig. 5.1 System of Particle tracking velocimetry in GA.

5.2

Fig. 5.2 (Model : HW13, HONGIK FLUIDS Co.) $250 \times 75 \times 2400 \text{ mm}^3$ 1820mm , , • 3 Y , (Fig. A5.1, Table A5.1) , (-35 35mm, -50 50mm, 0 70mm) . 12, (1.02) (0.5W) Ar-ion 0.055 ^m/s, $Re_H = 1100$ H 0.02 m, . Fig. 5.3 - 1H , . . Fig. 5.4 3 (a) . (b) 3, 2 3 3 1 3 (c) (a) (b) . *C*, (3.7) , (d) С . GA (1800) 가 Frame 700 1100 가 ,

가 .

- 44 -

,

Jimenez(1987) Gaussian Window 3 X, Y, Z 5mm . 15, 21, 15 2 Grid • 10mm, , 1/60 . Fig. 5.5 Fig. 5.6 80 • Fig. 5.7 X7├ - 35mm, 0mm 35mm Y-Z Y = 40mm(5H), Y = 20X=-35mm , 35mm mm(4H)• . Fig. 5.8 Fig. 5.14 (a) Z = 20mm. , X-Y Y-Z X = 0mm(c) Y = 0mm(b) X-Z . Fig. 5.8 . 가 가 . Fig. 5.9, Fig. 5.10, Fig. , T_u , T_v , T_w 5.11 *T* _vフト , *T* "가 T_w • 가 $T_v T_w$, T_u v, w *, u* - 45 -

Agui

40mm(5H)

•

7 Fig. 5.12, Fig. 5.13, Fig. 5.14 .

.

•

, R_{uv}, R_{vw}, R_{uw}

•

v w , R_{uv} R_{uw} フト , , 3

Fig. 5.2 Measurement area of backward facing step flow.

(a) Mean velocity profile

(b) Turbulent Intencity ($T_{u} = \sqrt{u'^2} / U_0$, $T_v = \sqrt{v'^2} / U_0$)

(c) Turbulence kinetic energy and reynolds shear stress

$$(TKE = \frac{1}{2}q^2/U_0^2, RES = -\overline{u'v'}/U_0^2)$$

Fig 5.3 Inlet flow condition at y/H = -1.

(a) Camera 1 and camera 3 (N = 908)

(b) Camera 2 and camera 3(N = 910)

Fig. 5.4 Instantaneous 3-D velocity vectors obtained by GA.

(c) Total velocity vectors of (a) and (b) (N= 1818)

(d) Velocity vectors removed error by gaussian window.

Fig. 5.4 (Continued)

Fig. 5.5 Instantaneous 3-D velocity vectors interpolated by Gaussian window method.

Fig 5.6 Mean 3-D velocity vectors interpolated by Gaussian Window method.

Fig. 5.7 Mean velocity profile of Y-Z plane.

Fig. 5.8 Turbulent kinetic energy distribution. ($TKE = \frac{1}{2}q^2 / U_0^2$) - 54 -

Fig. 5.9 Turbulence intensity distribution. ($T_u = \sqrt{u'^2} / U_0$)

Fig. 5.10 Turbulence intensity distribution ($T_v = \sqrt{v'^2} / U_0$)

Fig. 5.11 Turbulence intensity distribution ($T_w = \sqrt{w'^2} / U_0$) - 57 -

Fig. 5.12 Reynolds shear stress distribution (- $\overline{u'v'}$ / U_0^2) - 58 -

Fig. 5.13 Reynolds shear stress distribution (- $\overline{v'w'}$ / U_0^2)

Fig. 5.14 Reynolds shear stress distribution (- w'u' / U_0^2)

- 3 PTV(Particle Imageing Velocimetry :),, 가 가 가 기

6.

PT V

.

.

 (reference group)
 ,

 7!
 1,500
 1,000

 3
 .
 3
 PTV

 (Doh et al, 1999)
 8
 (Kobayashi et al. 1989)
 (Kobayashi et al. 1989)

 (65%)
)
 3
 7!
 .

 GA
 3D-PTV
 7

 LES
 7
 ,

 Single-Frame
 (Choi et al. 1999)
 3
 7
 3

GA 3D-PTV , , (, ,

.

- 61 -

7 1,000 (1989,

Nishino et. al. 1989)

.

.

Adamczyk, A. A. and Rimai, L., Reconstruction of a 3-Dimensional flow field from orthogonal views of seed track video images. Exp. in Fluids. 6, (1988).

Agui, J. and Jimenez, J., On the performance analysis and application og grid interpolation techniques for fluid flows, exp. in Fluids Vol. 15 (1987).

Baek, S. J. and Lee, S. J., A new two-frame particle tracking algorithm using match probability. Exp. in Fluids. 22,(1988).

Chang, T. P. and Tatterson G. B., An automated analysis method for complex three dimensional mean flow fields. Proc. Third Int. Symp. Flow Visualization, (1983).

Chang, T. P., Wilcox, N. A and Tatterson, G. B., Application of image processing to the analysis of three-dimensional flow fields. Opt. Eng. 23(3), (1984).

Doh, D. H., A Study on three-dimensional particle imaging thermometry and velocimetry using liquid crystal. Ph.D. Thesis, The Univ. of Tokyo, (1995).

Doh, D. H., Jo H. J., Kobayashi, T. and Saga, T., A study on motion tracking of a floating vessel using 3-D PTV Proc. 2nd International Workshop on PIV '97-Fukui, Japan, (1997).

Doh, D. H., Choi, S. H., Hong, S. D., Baek, T. S. and Lee, Y. W., Investigation technique for ventilation characteristics in a building by PIV. Proc. of the Society of Air-conditioning and Refrigeration of Korea, Annual Winter Meeting, Institute for Korea Science and Technology, Vol.2, (1998).

Doh, D. H., Choi, S. H., Hong, S. D., Baek, T. S., Kobayashi, T. and Saga, T., Quantitative real time measurement of an acoustic energy flow by PIV. Proc. of International Conf. on Optical Tech and Image Processing in Fluid, Thermal, and Combustion Flow, VSJ-SPIE98, Yokohama, Japan, The Visualization Society of Japan, The International Society for Optical Engineering, (1998)

Doh, D. H., Choi, S. H., Cho, G. R. and Lee, Y. W., Virtual reality images for a benchmark test of 3-Dimensional PIV algorithms for unsteady turbulent flows, '99 , (1999).

Doh, D. H., Kim, D. H., Choi, S. W., Lee, Y. W., Saga, T. and Kobayashi, T., Development of noncontact velocity tracking algorithm for 3-D high speed flows using digital image processing technique(1-Frame 3-D PTV). Proc. The Third International Workshop on PIV '99-Santa Barbara, (1999).

Kasagi, N., Hirata, M., Nishino, K., Ninomiya, N. and Koizumi, N., Three - dimensional velocity measurement via digital image processing technique. J flow Visualization Soc. 7(26), (1987).

Kimura, I. and Nakami, Y., Determination of erroneous velocity vectors using genetic algorithms, 可視化情報, Vol.13 Suppl. No.2 (1993)

Kimura, I., Hattori, A., and Ueda, M., Particle pairing using genetic algorithms for PIV, Proceedings of VSJ-SPIE98, Yokohama, JAPAN (1998).

Kobayashi, T., Saga, T. and Sekimoto, K., Velocity measurement of three - dimensional flow around rotating parallel disks by digital image processing.

ASME FED 85, (1989).

Kobayashi, T., Saga, T. and Segawa, S., Multi-point velocity measurement for unsteady flow field by digital image processing. In: Flow Visualization V (Ed. Reznicek R). Washington D. C., (1990).

Kobayashi, T., Saga, T., Haeno, T. and Tsuda, N., Development of a real-time velocity measurement system for high Reynolds fluid flow using a digital image processing design. In: Experimental and Numerical Flow Visualization (Ed Khalighia, B. et al.). ASME FED 128, (1991)

Nishino, K., Kasagi, N. and Hirata M., Three-dimensional particle tracking velocimetry based on automated digital image processing. ASME J. Fluids Eng. 111(4), (1989)

Nishino, K., Yamawaki, T. and Masakazu, T. Application of 3-D PTV to microgravity fluid experiments. In: Workshop on PIV (Ed. Kobayashi, T. and Yamamoto, H.), Fukui: Visualization Society of Japan. (1995)

Ohyama, R. I., Takagi, T., Tsukiji, T., Nakanishi, S. and Kaneko, K., Particle tracking technique and velocity measurement of visualized flow fields by means of genetic algorithms, 可視化情報 Vol.13 Suppl. No.1 (1993).

Ohyama, R. I., Tsukiji, T. and Kaneko, K., Particle tracking of electrophoresis by using genetic algorithm, 可視化情報 Vol.13 Suppl. No.2 (1993).

Ohyama, R. I., Kunitou, Y. and Kaneko, K., Application of genetic algorithms of 3-Dimensional particle image tracking, 可視化情報 Vol.15 Suppl. N0.1 (1995).

Okamoto, K., Schmidl, W. D. and Hassan, Y. A., Spring model tracking algorithm for three-dimensional particle image velocimetry. FED-Vol. 209, ASME, (1995)

Okamoto, K. et al., Evaluation of the 3D-PIV Standard Images(PIV-STD Project). Proc. The Third International Workshop on PIV'99-Santa Barbara, (1999).

Racca, R. G. and Dewey, J. M., A method for automatic particle tracking in a three-dimensional flow field. Exp. in Fluids, 6, (1988)

Sugii, Y., Okuno, T. and Nishio, S., Image measurement using governing equation of fluid flow, 可視化情報 Vol.16 Suppl. No.1 (1996).

Sugii, Y., Okuno, T. and Nishio, S., Image measurement using governing equation of fluid flow(2en report), 可視化情報 Vol.16 Suppl. No.2 (1996).

Willert, C. E. and Gharib, M., Digital particle image velocimetry; Exp. in Fluids, Vol. 10, No. 4, (1991).

Yamada, H. and Yamane, K., Particle image velocimetry using a genetic algorithm", 可視化情報 Vol.15 Suppl. No.1 (1995).

Yamakawa, M. and Iwashige, K., On-line velocity distribution measuring system applying image processing. J Flow Visualization Soc. Jpn., 6(20), (1986).

A1	Table A1.1	Camera parameters of virtual image(11 parameters, IH)
A2	Table A1.2	3-D error of calibration of virtual image(11 parameters, IH)
A3	Table A2.1	Camera parameters of virtual image(11 parameters, RH)
A4	Table A2.2	3-D error of calibration of virtual image(11 parameters, RH)
A5	Table A3.1	Camera parameters of virtual image(10 parameters, IH)
A6	Table A3.2	3-D error of calibration of virtual image(10 parameters, IH)
A7	Table A4.1	Camera parameters of virtual image(10 parameters, RH)
A8	Table A4.2	3-D error of calibration of virtual image(10 parameters, RH)
A9	Table A5.1	Camera parameters of real image(11 parameters)
A 10	Table A5.2	3-D error of calibration of real image.
		(11 parameters, camera 1 and 3)
A11	Table A5.3	3-D error of calibration of real image.
		(11 parameters, camera 2 and 3)
A 12	Table A6.1	Camera parameters of real image(10 parameters)
A 13	Table A6.2	3-D error of calibration of real image.
		(10 parameters, camera 1 and 3)
A 14	Table A6.3	3-D error of calibration fo real image.
		(10 parameters, camera 2 and 3)
A 15	Table A7	Absolute coordinate of calibrator used experiment
		of backward facing step flow
A 16	Fig. A1	Image viewed by camera 1 of calibrator.
A 17	Fig. A2	Image viewed by camera 2 of calibrator.
A 18	Fig. A3	Image viewed by camera 3 of calibrator.
A 19	Fig. A4	Recovery ratio resulted by Doh et al(1999).
A20	Fig. A5	Recovery ratio of 1-Frame 3-D PTV used 10 parameters.
A21	Fig. A6	Recovery ratio of GA
A22	Fig. A7	Picture of calibrator used experiment
		of backward facing step flow

Parameter	Camera1	Camera2	Camera3
$X_{\circ}(mm)$	499.3601	- 499.2706	0.0000
$Y_{\circ}(mm)$	- 0.0000	0.0000	0.0000
$Z_{\circ}(mm)$	27.1021	27.0000	499.9997
ω(°)	- 89.9999	90.0001	0.0000
Ψ(°)	- 0.0004	0.0000	- 0.0000
к(°)	90.0001	- 89.9999	0.0000
x₀(pix el)	- 0.003 1	0.0023	0.0010
y₀(pix el)	0.0051	0.0067	0.0001
c(pixel)	- 2200.0009	- 2200.0008	- 2199.9992
k 1	0.0000	- 0.0000	- 0.0000
k2	- 0.0054	0.0015	0.0054
			1

Table A1.1 Camera parameters of virtual image (11 parameters, IH)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy	dz
1	-7.757.75	0.20 - 0.20	6.52 - 6.52	0.00	0.00	0.00
2	- 3.84 3.84	7.34 - 7.34	13.08 - 13.08	0.00	0.00	0.00
3	4.89 - 4.89	7.18 - 7.18	17.03 - 17.03	0.00	0.00	0.00
4	8.75 - 8.75	0.58 - 0.58	39.70 - 39.70	0.00	0.00	0.00
5	4.16 - 4.16	- 6.54 6.54	15.91 - 15.91	0.00	0.00	0.00
6	-3.263.26	- 6.31 6.31	24.52 - 24.52	0.00	0.00	0.00
7	- 17.75 17.75	0.84 - 0.84	29.07 - 29.07	0.00	0.00	0.00
8	- 15.48 15.48	10.21 - 10.21	26.46 - 26.46	0.00	0.00	0.00
9	-8.928.92	16.94 - 16.94	43.12 - 43.12	0.00	0.00	0.00
10	0.66 - 0.66	19.40 - 19.40	27.90 - 27.90	0.00	0.00	0.00
11	9.08 - 9.08	16.53 - 16.53	32.36 - 32.36	0.00	0.00	0.00
12	16.43 - 16.43	9.58 - 9.58	12.02 - 12.02	0.00	0.00	0.00
13	18.92 - 18.92	1.55 - 1.55	51.58 - 51.58	0.00	0.00	0.00
14	16.70 - 16.70	- 8.47 8.47	22.98 - 22.98	0.00	0.00	0.00
15	9.64 - 9.64	9.64 - 9.64	40.23 - 40.23	0.00	0.00	0.00
16	0.41 - 0.41	- 18.19 18.19	8.92 - 8.92	0.00	0.00	0.00
17	-8.548.54	- 15.10 15.10	31.53 - 31.53	0.00	0.00	0.00
18	- 15.61 15.61	- 8.59 8.59	13.87 - 13.87	0.00	0.00	0.00
19	-32.7732.77	0.61 - 0.61	43.42 - 43.42	0.00	0.00	0.00
20	-26.7326.73	17.14 - 17.14	52.54 - 52.54	0.00	0.00	0.00
21	- 15.89 15.89	28.20 - 28.20	37.90 - 37.90	0.00	0.00	0.00
22	0.60 - 0.60	33.32 - 33.32	4.98 - 4.98	0.00	0.00	0.00
23	16.92 - 16.92	28.93 - 28.93	46.47 - 46.47	0.00	0.00	0.00
24	28.67 - 28.67	16.85 - 16.85	17.47 - 17.47	0.00	0.00	0.00
25	33.22 - 33.22	1.05 - 1.05	34.18 - 34.18	0.00	0.00	0.00
26	28.88 - 28.88	- 16.40 16.40	6.64 - 6.64	0.00	0.00	0.00
27	16.87 - 16.87	16.87 - 16.87	20.82 - 20.82	0.00	0.00	0.00
28	0.29 - 0.29	- 32.60 32.60	50.45 - 50.45	0.00	0.00	0.00
29	- 16.33 16.33	-28.1228.12	10.19 - 10.19	0.00	0.00	0.00
30	-28.3328.33	- 15.13 15.13	33.23 - 33.23	0.00	0.00	0.00
31	- 50.03 50.03	0.27 - 0.27	38.20 - 38.20	0.00	0.00	0.00
32	-42.7942.79	26.42 - 26.42	30.16 - 30.16	0.00	0.00	0.00
33	-24.4124.41	43.83 - 43.83	8.32 - 8.32	0.00	0.00	0.00
34	0.01 - 0.01	49.46 - 49.46	49.47 - 49.47	0.00	0.00	0.00
35	25.31 - 25.31	43.65 - 43.65	36.06 - 36.06	0.00	0.00	0.00
36	44.05 - 44.05	25.55 - 25.55	3.85 - 3.85	0.00	0.00	0.00
37	49.95 - 49.95	- 0.32 0.32	24.92 - 24.92	0.00	0.00	0.00
38	43.83 - 43.83	- 23.81 23.81	45.75 - 45.75	0.00	0.00	0.00
39	25.34 - 25.34	-42.7142.71	42.03 - 42.03	0.00	0.00	0.00
40	0.02 - 0.02	-49.5949.59	47.82 - 47.82	0.00	0.00	0.00
41	-24.9224.92	- 42.03 42.03	25.87 - 25.87	0.00	0.00	0.00
42	- 43.03 43.03	- 24.12 24.12	19.16 - 19.16	0.00	0.00	0.00

Average error : 0.00 0.00 0.00

Standard deviation : 0.00 0.00 0.00

Table A1.2 3-D error of calibration of virtual image (11 parameters, IH)

Parameter	Camera1	Camera2	Camera3
$X_{\circ}(mm)$	491.6701	- 493.6623	0.0105
$Y_{\circ}(mm)$	- 0.0000	- 1.0154	0.0073
$Z_{o}(mm)$	28.4032	26.9453	500.0433
ω(°)	- 89.2312	90.4817	- 0.0082
Ψ(°)	- 0.0324	0.0061	0.0095
κ(°)	90.5742	- 90.6415	- 0.0001
x _o (pixel)	- 18.8746	- 19.9873	- 0.4158
y _o (pixel)	19.4321	18.0556	- 0.3523
c(pixel)	- 2169.3432	- 2173.5252	- 2200.2813
k 1	0.0000	0.3038	- 0.0144
k2	- 25.3482	- 22.1474	0.9230

Table A2.1 Camera parameters of virtual image (11 parameters, RH)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx dy dz
1	-7.757.75	0.18 - 0.20	6.52 - 6.52	0.00 0.02 0.00
2	- 3.84 3.84	7.32 - 7.34	13.07 - 13.08	0.00 0.02 0.01
3	4.89 - 4.89	7.18 - 7.18	17.02 - 17.03	0.00 0.00 0.01
4	- 50.03 50.03	0.21 - 0.27	38.18 - 38.20	0.00 0.06 0.02
7	- 17.75 17.75	0.81 - 0.84	29.07 - 29.07	0.00 0.03 0.00
8	- 15.48 15.48	10.19 - 10.21	26.46 - 26.46	0.00 0.02 0.00
9	- 8.92 8.92	16.93 - 16.94	43.13 - 43.12	0.00 0.01 0.01
10	0.66 - 0.66	19.40 - 19.40	27.90 - 27.90	0.00 0.00 0.00
11	9.08 - 9.08	16.53 - 16.53	32.36 - 32.36	0.00 0.00 0.00
12	16.43 - 16.43	9.59 - 9.58	12.01 - 12.02	0.00 0.01 0.01
13	18.92 - 18.92	1.56 - 1.55	51.60 - 51.58	0.00 0.01 0.02
14	16.70 - 16.70	- 8.47 8.47	22.98 - 22.98	0.00 0.00 0.00
15	9.64 - 9.64	- 15.48 15.47	40.23 - 40.23	0.00 0.01 0.00
16	0.41 - 0.41	- 18.19 18.19	8.93 - 8.92	0.00 0.00 0.01
17	- 8.54 8.54	- 15.12 15.10	31.52 - 31.53	0.00 0.02 0.01
18	- 15.61 15.61	- 8.62 8.59	13.87 - 13.87	0.00 0.03 0.00
20	-26.7326.73	17.10 - 17.14	52.55 - 52.54	0.00 0.04 0.01
21	- 15.89 15.89	28.17 - 28.20	37.90 - 37.90	0.00 0.03 0.00
22	0.60 - 0.60	33.31 - 33.32	4.98 - 4.98	0.00 0.01 0.00
24	28.67 - 28.67	16.88 - 16.85	17.46 - 17.47	0.00 0.03 0.01
25	33.22 - 33.22	1.07 - 1.05	34.19 - 34.18	0.00 0.02 0.01
26	28.88 - 28.88	- 16.38 16.40	6.64 - 6.64	0.00 0.02 0.00
27	16.87 - 16.87	-28.1328.14	20.82 - 20.82	0.00 0.01 0.00
28	0.29 - 0.29	- 32.61 32.60	50.43 - 50.45	0.00 0.01 0.02
29	- 16.32 16.33	-28.1228.12	10.21 - 10.19	0.01 0.00 0.02
30	- 28.33 28.33	- 15.17 15.13	33.21 - 33.23	0.00 0.04 0.02
33	-24.4124.41	43.80 - 43.83	8.33 - 8.32	0.00 0.03 0.01
34	0.01 - 0.01	49.48 - 49.46	49.49 - 49.47	0.00 0.02 0.02
35	25.30 - 25.31	43.69 - 43.65	36.08 - 36.06	0.01 0.04 0.02
36	44.05 - 44.05	25.60 - 25.55	3.83 - 3.85	0.00 0.05 0.02
37	49.94 - 49.95	-0.280.32	24.91 - 24.92	0.01 0.04 0.01
38	43.83 - 43.83	- 23.79 23.81	45.76 - 45.75	0.00 0.02 0.01
39	25.34 - 25.34	- 42.69 42.71	42.02 - 42.03	0.00 0.02 0.01
40	0.02 - 0.02	- 49.60 49.59	47.81 - 47.82	0.00 0.01 0.01
41	- 24.92 24.92	- 42.03 42.03	25.87 - 25.87	0.00 00.0 00.0
42	-43.0343.03	-24.1524.12	19.17 - 19.16	0.00 0.03 0.01

Average error : 0.00 0.02 0.01

Standard deviation : 0.00 0.03 0.01

Table A2.2 3-D error of calibration of virtual image (11 parameters, RH)

Parameter	Camera1	Camera2	Camera3
dis(mm)	500.00036	499.9998	499.9997
cx (pix el)	2200.00170	2199.9995	2199.9997
cy (pix el)	2200.00122	2199.9995	2200.0000
ω(°)	- 90.0000	90.0000	- 0.0000
Ψ(°)	- 0.0000	0.0000	0.0000
к(°)	- 90.0000	90.0000	- 180.0000
mx (pixel)	0.00000	0.0000	0.0000
my(pixel)	27.00000	26.9999	- 0.0000
k 1	- 0.0000	0.0000	0.0000
k2	0.00000	- 0.0000	- 0.0000

Table 3.1 Camera parameters of virtual image (10 parameters, IH)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy	dz
1	-7.757.75	0.20 - 0.20	6.52 - 6.52	0.00	0.00	0.00
2	- 3.84 3.84	7.34 - 7.34	13.08 - 13.08	0.00	0.00	0.00
3	4.89 - 4.89	7.18 - 7.18	17.03 - 17.03	0.00	0.00	0.00
4	8.75 - 8.75	0.58 - 0.58	39.70 - 39.70	0.00	0.00	0.00
5	4.16 - 4.16	- 6.54 6.54	15.91 - 15.91	0.00	0.00	0.00
6	-3.263.26	- 6.31 6.31	24.52 - 24.52	0.00	0.00	0.00
7	- 17.75 17.75	0.84 - 0.84	29.07 - 29.07	0.00	0.00	0.00
8	- 15.48 15.48	10.21 - 10.21	26.46 - 26.46	0.00	0.00	0.00
9	-8.928.92	16.94 - 16.94	43.12 - 43.12	0.00	0.00	0.00
10	0.66 - 0.66	19.40 - 19.40	27.90 - 27.90	0.00	0.00	0.00
11	9.08 - 9.08	16.53 - 16.53	32.36 - 32.36	0.00	0.00	0.00
12	16.43 - 16.43	9.58 - 9.58	12.02 - 12.02	0.00	0.00	0.00
13	18.92 - 18.92	1.55 - 1.55	51.58 - 51.58	0.00	0.00	0.00
14	16.70 - 16.70	- 8.47 8.47	22.98 - 22.98	0.00	0.00	0.00
15	9.64 - 9.64	- 15.47 15.47	40.23 - 40.23	0.00	0.00	0.00
16	0.41 - 0.41	- 18.19 18.19	8.92 - 8.92	0.00	0.00	0.00
17	-8.548.54	- 15.10 15.10	31.53 - 31.53	0.00	0.00	0.00
18	- 15.61 15.61	- 8.59 8.59	13.87 - 13.87	0.00	0.00	0.00
19	-32.7732.77	0.61 - 0.61	43.42 - 43.42	0.00	0.00	0.00
20	-26.7326.73	17.14 - 17.14	52.54 - 52.54	0.00	0.00	0.00
21	- 15.89 15.89	28.20 - 28.20	37.90 - 37.90	0.00	0.00	0.00
22	0.60 - 0.60	33.32 - 33.32	4.98 - 4.98	0.00	0.00	0.00
23	16.92 - 16.92	28.93 - 28.93	46.47 - 46.47	0.00	0.00	0.00
24	28.67 - 28.67	16.85 - 16.85	17.47 - 17.47	0.00	0.00	0.00
25	33.22 - 33.22	1.05 - 1.05	34.18 - 34.18	0.00	0.00	0.00
26	28.88 - 28.88	- 16.40 16.40	6.64 - 6.64	0.00	0.00	0.00
27	16.87 - 16.87	- 28.14 28.14	20.82 - 20.82	0.00	0.00	0.00
28	0.29 - 0.29	- 32.60 32.60	50.45 - 50.45	0.00	0.00	0.00
29	- 16.33 16.33	- 28.12 28.12	10.19 - 10.19	0.00	0.00	0.00
30	-28.3328.33	- 15.13 15.13	33.23 - 33.23	0.00	0.00	0.00
31	- 50.03 50.03	0.27 - 0.27	38.20 - 38.20	0.00	0.00	0.00
32	-42.7942.79	26.42 - 26.42	30.16 - 30.16	0.00	0.00	0.00
33	-24.4124.41	43.83 - 43.83	8.32 - 8.32	0.00	0.00	0.00
34	0.01 - 0.01	49.46 - 49.46	49.47 - 49.47	0.00	0.00	0.00
35	25.31 - 25.31	43.65 - 43.65	36.06 - 36.06	0.00	0.00	0.00
36	44.05 - 44.05	25.55 - 25.55	3.85 - 3.85	0.00	0.00	0.00
37	49.94 - 49.95	- 0.32 0.32	24.92 - 24.92	0.00	0.00	0.00
38	43.83 - 43.83	- 23.81 23.81	45.75 - 45.75	0.00	0.00	0.00
39	25.34 - 25.34	- 42.71 42.71	42.03 - 42.03	0.00	0.00	0.00
40	0.02 - 0.02	- 49.59 49.59	47.82 - 47.82	0.00	0.00	0.00
41	- 24.92 24.92	- 42.03 42.03	25.87 - 25.87	0.00	0.00	0.00
42	- 43.03 43.03	- 24.12 24.12	19.16 - 19.16	0.00	0.00	0.00

Average error : 0.00 0.02 0.01

Standard deviation : 0.00 0.03 0.01

Table A3.2 3-D error of calibration of virtual image (10 parameters, IH)

- A 6 -

Parameter	Camera1	Camera2	Camera3
dis(mm)	499.9994	499.9335	500.1036
cx (pix el)	2199.9973	2199.5288	2200.7526
cy (pix el)	2200.0166	2199.6311	2200.6987
ω(°)	- 90.0000	89.9950	- 0.0000
Ψ(°)	- 0.0000	- 0.0000	- 0.0000
К(°)	- 89.9987	89.9999	- 180.0000
mx (pixel)	- 0.0007	0.00002	0.0003
my(pixel)	26.9997	27.00034	0.0000
k 1	0.0000	- 0.0000	0.0000
k2	- 0.0000	0.00000	- 0.0000

Table A4.1 Camera parameters of virtual image (10 parameters, RH)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx dy dz
1	-7.757.75	0.20 - 0.20	6.52 - 6.52	0.00 0.00 0.00
2	- 3.84 3.84	7.34 - 7.34	13.08 - 13.08	0.00 0.00 0.00
3	4.89 - 4.89	7.18 - 7.18	17.03 - 17.03	0.00 0.00 0.00
4	8.75 - 8.75	0.58 - 0.58	39.70 - 39.70	0.00 0.00 0.00
5	4.16 - 4.16	- 6.54 6.54	15.91 - 15.91	0.00 0.00 0.00
6	- 3.26 3.26	- 6.31 6.31	24.52 - 24.52	0.00 0.00 0.00
7	- 17.75 17.75	0.84 - 0.84	29.07 - 29.07	0.00 0.00 0.00
8	- 15.48 15.48	10.21 - 10.21	26.46 - 26.46	0.00 0.00 0.00
9	- 8.92 8.92	16.94 - 16.94	43.12 - 43.12	0.00 0.00 0.00
10	0.66 - 0.66	19.40 - 19.40	27.90 - 27.90	0.00 0.00 0.00
11	9.08 - 9.08	16.53 - 16.53	32.36 - 32.36	0.00 0.00 0.00
12	16.43 - 16.43	9.58 - 9.58	12.02 - 12.02	0.00 00.0 00.0
13	18.92 - 18.92	1.55 - 1.55	51.58 - 51.58	0.00 00.0 00.0
14	16.70 - 16.70	- 8.47 8.47	22.98 - 22.98	0.00 00.0 00.0
15	9.64 - 9.64	- 15.47 15.47	40.23 - 40.23	0.00 00.0 00.0
16	0.41 - 0.41	- 18.19 18.19	8.92 - 8.92	0.00 00.0 00.0
17	- 8.54 8.54	- 15.10 15.10	31.53 - 31.53	0.00 00.0 00.0
18	- 15.61 15.61	-8.598.59	13.87 - 13.87	0.00 00.0 00.0
19	-32.7732.77	0.61 - 0.61	43.42 - 43.42	0.00 00.0 00.0
20	-26.7326.73	17.14 - 17.14	52.54 - 52.54	0.00 00.0 00.0
21	- 15.89 15.89	28.20 - 28.20	37.90 - 37.90	0.00 00.0 00.0
22	0.60 - 0.60	33.32 - 33.32	4.98 - 4.98	0.00 00.0 00.0
23	16.92 - 16.92	28.93 - 28.93	46.47 - 46.47	0.00 00.0 00.0
24	28.67 - 28.67	16.85 - 16.85	17.47 - 17.47	0.00 00.0 00.0
25	33.22 - 33.22	1.05 - 1.05	34.18 - 34.18	0.00 00.0 00.0
26	28.88 - 28.88	- 16.40 16.40	6.64 - 6.64	0.00 00.0 00.0
27	16.87 - 16.87	-28.1428.14	20.82 - 20.82	0.00 00.0 00.0
28	0.29 - 0.29	- 32.60 32.60	50.45 - 50.45	0.00 00.0 00.0
29	- 16.33 16.33	-28.1228.12	10.19 - 10.19	0.00 00.0 00.0
30	-28.3328.33	- 15.13 15.13	33.23 - 33.23	0.00 00.00 00.00
31	- 50.03 50.03	0.27 - 0.27	38.20 - 38.20	0.00 00.00 00.00
32	-42.7942.79	26.42 - 26.42	30.16 - 30.16	0.00 00.00 00.00
33	-24.4124.41	43.83 - 43.83	8.32 - 8.32	0.00 00.00 00.00
34	0.01 - 0.01	49.46 - 49.46	49.47 - 49.47	0.00 0.00 0.00
35	25.31 - 25.31	43.65 - 43.65	36.06 - 36.06	0.00 0.00 0.00
36	44.05 - 44.05	25.55 - 25.55	3.85 - 3.85	0.00 0.00 0.00
37	49.94 - 49.95	-0.320.32	24.92 - 24.92	0.00 0.00 0.00
38	43.83 - 43.83	- 23.81 23.81	45.75 - 45.75	0.00 0.00 0.00
39	25.34 - 25.34	- 42.71 42.71	42.03 - 42.03	0.00 0.00 0.00
40	0.02 - 0.02	- 49.59 49.59	47.82 - 47.82	0.00 0.00 0.00
41	- 24.92 24.92	- 42.03 42.03	25.87 - 25.87	0.00 0.00 0.00
42	- 43.03 43.03	- 24.12 24.12	19.16 - 19.16	0.00 0.00 0.00

Average error : 0.00 0.00 0.00

Standard deviation: 0.00 0.00 0.00

Table A4.2 3-D error of calibration of virtual image (10 parameter, RH)

- A 8 -

Parameter	Camera1	Camera2	Camera3
$X_{\circ}(mm)$	298.2380	- 294.3097	21.2176
$Y_{\circ}(mm)$	590.6079	- 636.8735	1.7067
$Z_{\circ}(mm)$	19.6709	28.7552	715.6505
ω(°)	83.8680	- 98.9806	9.4330
Ψ(°)	- 0.5757	0.1543	- 1.3937
κ(°)	27.6702	24.3260	- 784.2893
x _o (pixel)	33.8601	- 26.9847	- 30.1113
y _o (pixel)	- 399.2690	451.0914	- 594.7935
c(pixel)	- 2922.2584	3310.1608	2989.1971
k 1	0.5140	0.2397	0.2849
k2	- 12.0099	- 5.6973	- 4.2018

Table A5.1 Camera parameters of real image(11 parameter)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy dz	
1	- 3.84 3.84	7.31 - 7.34	13.01 - 13.08	0.00	0.03 0.	.07
2	8.75 - 8.75	0.61 - 0.58	39.67 - 39.70	0.00	0.03 0.	.03
3	4.14 - 4.16	-6.576.54	15.98 - 15.91	0.02	0.03 0.	.07
4	- 3.28 3.26	-6.286.31	24.49 - 24.52	0.02	0.03 0.	.03
5	- 8.88 8.92	16.93 - 16.94	43.27 - 43.12	0.04	0.01 0.	.15
6	0.64 - 0.66	19.36 - 19.40	27.93 - 27.90	0.02	0.04 0.	.03
7	9.05 - 9.08	16.52 - 16.53	32.39 - 32.36	0.03	0.01 0.	.03
8	16.44 - 16.43	9.58 - 9.58	12.00 - 12.02	0.01	0.00 0.	.02
9	18.88 - 18.92	1.70 - 1.55	51.61 - 51.58	0.04	0.15 0.	.03
10	16.66 - 16.70	-8.598.47	17.37 - 22.98	0.04	0.12 5.	.61
11	9.62 - 9.64	- 15.46 15.47	40.30 - 40.23	0.02	0.01 0.	.07
12	0.42 - 0.41	- 18.22 18.19	8.86 - 8.92	0.01	0.03 0.	.06
13	- 8.50 8.54	- 15.07 15.10	31.49 - 31.53	0.04	0.03 0.	.04
14	- 15.62 15.61	-8.568.59	13.90 - 13.87	0.01	0.03 0.	.04
15	- 32.64 32.77	0.72 - 0.61	43.39 - 43.42	0.13	0.11 0.	.03
16	- 26.60 26.73	17.14 - 17.14	52.50 - 52.54	0.13	0.00 0.	.04
17	- 15.87 15.89	28.11 - 28.20	37.86 - 37.90	0.02	0.09 0.	.04
18	0.55 - 0.60	33.20 - 33.32	4.88 - 4.98	0.05	0.12 0.	.10
19	16.88 - 16.92	28.96 - 28.93	46.52 - 46.47	0.04	0.03 0.	.05
20	28.59 - 28.67	16.79 - 16.85	22.80 - 17.47	0.08	0.06 5.	.33
21	33.23 - 33.22	1.14 - 1.05	34.17 - 34.18	0.01	0.09 0.	.01
22	28.96 - 28.88	- 16.49 16.40	6.51 - 6.64	0.08	0.09 0.	.13
23	16.85 - 16.87	- 28.31 28.14	20.88 - 20.82	0.02	0.17 0.	.06
24	0.23 - 0.29	- 32.62 32.60	50.48 - 50.45	0.06	0.02 0.	.03
25	- 16.33 16.33	- 28.08 28.12	10.19 - 10.19	0.00	0.04 0.	.00
26	- 28.25 28.33	- 14.96 15.13	33.23 - 33.23	0.08	0.17 0.	.00
27	- 49.95 50.03	0.42 - 0.27	38.18 - 38.20	0.08	0.15 0.	.02
28	- 42.87 42.79	26.29 - 26.42	30.30 - 30.16	0.08	0.13 0.	.14
29	- 24.64 24.41	43.65 - 43.83	8.38 - 8.32	0.23	0.18 0.	.06
30	-0.06 - 0.01	49.24 - 49.46	49.37 - 49.47	0.07	0.22 0.	.10
31	25.22 - 25.31	43.60 - 43.65	36.06 - 36.06	0.09	0.05 0.	.00
32	44.16 - 44.05	25.72 - 25.55	3.83 - 3.85	0.11	0.17 0.	.02
33	50.06 - 49.95	-0.140.32	24.90 - 24.92	0.12	0.18 0.	.02
34	43.89 - 43.83	- 23.84 23.81	45.88 - 45.75	0.06	0.03 0.	.13
35	25.28 - 25.34	-42.9342.71	42.11 - 42.03	0.06	0.22 0.	.08
36	-0.06 - 0.02	-49.7249.59	47.75 - 47.82	0.08	0.13 0.	.07
37	- 24.93 24.92	-41.9742.03	25.79 - 25.87	0.01	0.06 0.	.08
38	- 42.99 43.03	- 23.83 24.12	19.18 - 19.16	0.04	0.29 0.	.02

Average error : 0.05 0.09 0.34

Standard deviation: 0.07 0.12 1.27

Table A5.2 3-D error of calibration of real image

(11 parameter, Camera 1 and 3)

- A 10-

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy	dz
1	-7.747.75	0.19 - 0.20	6.49 - 6.52	0.01	0.01	0.03
2	- 3.82 3.84	7.33 - 7.34	13.00 - 13.08	0.02	0.01	0.08
3	4.88 - 4.89	7.18 - 7.18	17.05 - 17.03	0.01	0.00	0.02
4	8.77 - 8.75	0.61 - 0.58	39.68 - 39.70	0.02	0.03	0.02
5	4.14 - 4.16	-6.556.54	15.98 - 15.91	0.02	0.01	0.07
6	- 3.26 3.26	-6.286.31	24.49 - 24.52	0.00	0.03	0.03
7	- 17.70 17.75	0.86 - 0.84	29.04 - 29.07	0.05	0.02	0.03
8	- 8.92 8.92	16.94 - 16.94	43.25 - 43.12	0.00	0.00	0.13
9	0.65 - 0.66	19.37 - 19.40	27.88 - 27.90	0.01	0.03	0.02
10	9.07 - 9.08	16.52 - 16.53	32.34 - 32.36	0.01	0.01	0.02
11	16.43 - 16.43	9.62 - 9.58	12.02 - 12.02	0.00	0.04	0.00
12	18.96 - 18.92	1.65 - 1.55	51.66 - 51.58	0.04	0.10	0.08
13	16.67 - 16.70	-8.488.47	22.95 - 22.98	0.03	0.01	0.03
14	9.63 - 9.64	- 15.47 15.47	40.29 - 40.23	0.01	0.00	0.06
15	0.38 - 0.41	- 18.20 18.19	8.87 - 8.92	0.03	0.01	0.05
16	- 8.51 8.54	- 15.07 15.10	31.48 - 31.53	0.03	0.03	0.05
17	- 15.60 15.61	-8.578.59	13.91 - 13.87	0.01	0.02	0.04
18	- 32.68 32.77	0.74 - 0.61	43.39 - 43.42	0.09	0.13	0.03
19	- 26.69 26.73	17.16 - 17.14	52.53 - 52.54	0.04	0.02	0.01
20	- 15.90 15.89	28.12 - 28.20	37.83 - 37.90	0.01	0.08	0.07
21	0.61 - 0.60	33.23 - 33.32	4.91 - 4.98	0.01	0.09	0.07
22	16.91 - 16.92	28.95 - 28.93	46.57 - 46.47	0.01	0.02	0.10
23	28.59 - 28.67	16.98 - 16.85	17.46 - 17.47	0.08	0.13	0.01
24	33.28 - 33.22	1.13 - 1.05	34.19 - 34.18	0.06	0.08	0.01
25	28.87 - 28.88	- 16.42 16.40	6.61 - 6.64	0.01	0.02	0.03
26	16.78 - 16.87	- 28.28 28.14	20.88 - 20.82	0.09	0.14	0.06
27	0.26 - 0.29	- 32.64 32.60	50.48 - 50.45	0.03	0.04	0.03
28	- 16.34 16.33	- 28.09 28.12	10.27 - 10.19	0.01	0.03	0.08
29	- 28.25 28.33	- 14.96 15.13	33.23 - 33.23	0.08	0.17	0.00
30	- 49.98 50.03	0.44 - 0.27	38.18 - 38.20	0.05	0.17	0.02
31	-42.8642.79	26.30 - 26.42	30.22 - 30.16	0.07	0.12	0.06
32	- 24.50 24.41	43.62 - 43.83	8.34 - 8.32	0.09	0.21	0.02
33	-0.13 - 0.01	49.26 - 49.46	49.41 - 49.47	0.14	0.20	0.06
34	25.25 - 25.31	43.61 - 43.65	36.05 - 36.06	0.06	0.04	0.01
35	50.12 - 49.95	-0.120.32	24.87 - 24.92	0.17	0.20	0.05
36	43.98 - 43.83	- 23.87 23.81	45.83 - 45.75	0.15	0.06	0.08
37	25.28 - 25.34	-42.9542.71	42.06 - 42.03	0.06	0.24	0.03
38	-0.07 - 0.02	-49.7349.59	47.71 - 47.82	0.09	0.14	0.11
39	- 24.95 24.92	-41.9842.03	25.84 - 25.87	0.03	0.05	0.03
40	- 42.92 43.03	- 23.88 24.12	19.19 - 19.16	0.11	0.24	0.03

Average error : 0.05 0.07 0.04

Standard deviation: 0.06 0.11 0.05

Table A5.3 3-D error of calibration of real image

(11 parameter, Camera2 and 3)

- A 11-

Parameter	Camera1	Camera2	Camera3
dis(mm)	691.7072	717.5567	731.4384
cx (m m)	3113.3847	3434.6047	3118.2497
cy (mm)	3146.4086	3468.9360	3158.2297
ω(°)	- 93.4833	92.8993	- 1.9217
Ψ(°)	62.9341	- 65.2117	- 0.0985
К(°)	- 87.4470	92.5015	- 64.3059
mx (pixel)	2.7532	- 7.7429	0.4125
my (pixel)	38.0886	43.9326	3.7371
k 1	0.0000	0.0000	- 0.0000
k 2	- 0.0000	0.0000	0.0000

Table A6.1 Camera parameters of real image(10 parameter)

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx dy dz
1	- 3.81 3.84	7.36 - 7.34	13.22 - 13.08	0.03 0.02 0.13
2	8.74 - 8.75	0.58 - 0.58	39.66 - 39.70	0.01 0.00 0.05
3	4.11 - 4.16	- 6.53 6.54	16.16 - 15.91	0.05 0.01 0.25
4	- 3.29 3.26	- 6.29 6.31	24.56 - 24.52	0.03 0.02 0.04
5	- 8.87 8.92	16.96 - 16.94	43.22 - 43.12	0.05 0.02 0.10
6	0.68 - 0.66	19.43 - 19.40	27.96 - 27.90	0.01 0.03 0.06
7	9.06 - 9.08	16.54 - 16.53	32.39 - 32.36	0.02 0.02 0.03
8	16.38 - 16.43	9.61 - 9.58	12.22 - 12.02	0.05 0.03 0.20
9	18.85 - 18.92	1.61 - 1.55	51.53 - 51.58	0.07 0.06 0.05
10	16.61 - 16.70	- 8.47 8.47	23.06 - 22.98	0.09 0.00 0.08
11	9.59 - 9.64	- 15.47 15.47	40.28 - 40.23	0.05 0.00 0.05
12	0.38 - 0.41	- 18.14 18.19	9.19 - 8.92	0.04 0.05 0.27
13	-8.528.54	- 15.11 15.10	31.51 - 31.53	0.02 0.01 0.02
14	- 15.61 15.61	- 8.59 8.59	14.12 - 13.87	0.00 0.00 0.25
15	- 32.64 32.77	0.57 - 0.61	43.32 - 43.42	0.13 0.03 0.10
16	- 26.58 26.73	17.10 - 17.14	52.36 - 52.54	0.15 0.04 0.18
17	- 15.78 15.89	28.19 - 28.20	37.83 - 37.90	0.11 0.01 0.06
18	0.68 - 0.60	33.34 - 33.32	5.18 - 4.98	0.08 0.01 0.20
19	16.89 - 16.92	28.96 - 28.93	46.49 - 46.47	0.03 0.03 0.02
20	28.53 - 28.67	16.85 - 16.85	17.62 - 17.47	0.14 0.00 0.15
21	33.08 - 33.22	1.04 - 1.05	34.22 - 34.18	0.15 0.00 0.03
22	28.73 - 28.88	- 16.35 16.40	6.91 - 6.64	0.15 0.05 0.27
23	16.74 - 16.87	- 28.13 28.14	21.07 - 20.82	0.13 0.01 0.25
24	0.22 - 0.29	- 32.60 32.60	50.37 - 50.45	0.07 0.01 0.08
25	- 16.33 16.33	- 28.07 28.12	10.50 - 10.19	0.00 0.05 0.31
26	- 28.26 28.33	- 15.11 15.13	33.24 - 33.23	0.07 0.02 0.02
27	- 49.86 50.03	0.13 - 0.27	38.16 - 38.20	0.18 0.15 0.05
28	- 42.63 42.79	26.20 - 26.42	30.34 - 30.16	0.16 0.22 0.18
29	- 24.28 24.41	43.76 - 43.83	8.66 - 8.32	0.13 0.07 0.34
30	0.09 - 0.01	49.45 - 49.46	49.29 - 49.47	0.07 0.01 0.17
31	25.26 - 25.31	43.64 - 43.65	36.05 - 36.06	0.05 0.01 0.01
32	43.87 - 44.05	25.60 - 25.55	4.16 - 3.85	0.17 0.05 0.32
33	49.73 - 49.95	-0.300.32	25.04 - 24.92	0.22 0.02 0.12
34	43.66 - 43.83	- 23.79 23.81	45.77 - 45.75	0.17 0.02 0.02
35	25.18 - 25.34	-42.6542.71	42.07 - 42.03	0.15 0.07 0.04
36	-0.06 - 0.02	- 49.57 49.59	47.66 - 47.82	0.08 0.02 0.17
37	- 24.94 24.92	- 42.04 42.03	25.88 - 25.87	0.02 0.02 0.00
38	- 42.92 43.03	- 24.11 24.12	19.37 - 19.16	0.11 0.01 0.20

Average error : 0.09 0.03 0.13

Standard deviation : 0.20 0.05 0.16

Table A6.2 3-D error of calibration of real image. (10 parameter, Camera 1 and 3)

- A 13-

NO	CalcX - KjnX	CalcY - KjnY	CalcZ - KjnZ	dx	dy	dz
1	-7.747.75	0.21 - 0.20	6.63 - 6.52	0.01	0.01	0.11
2	- 3.81 3.84	7.36 - 7.34	13.11 - 13.08	0.03	0.02	0.03
3	4.89 - 4.89	7.19 - 7.18	17.14 - 17.03	0.00	0.01	0.11
4	8.76 - 8.75	0.57 - 0.58	39.68 - 39.70	0.00	0.01	0.02
5	4.16 - 4.16	- 6.56 6.54	16.07 - 15.91	0.00	0.02	0.16
6	- 3.26 3.26	- 6.31 6.31	24.54 - 24.52	0.01	0.00	0.02
7	- 17.72 17.75	0.83 - 0.84	29.10 - 29.07	0.02	0.01	0.03
8	-8.918.92	16.99 - 16.94	43.25 - 43.12	0.02	0.04	0.13
9	0.67 - 0.66	19.43 - 19.40	27.94 - 27.90	0.01	0.03	0.04
10	9.07 - 9.08	16.54 - 16.53	32.37 - 32.36	0.01	0.01	0.01
11	16.43 - 16.43	9.59 - 9.58	12.14 - 12.02	0.00	0.01	0.12
12	18.88 - 18.92	1.60 - 1.55	51.59 - 51.58	0.03	0.05	0.01
13	16.66 - 16.70	- 8.50 8.47	23.02 - 22.98	0.04	0.03	0.04
14	9.63 - 9.64	- 15.48 15.47	40.29 - 40.23	0.02	0.01	0.06
15	0.42 - 0.41	- 18.17 18.19	8.99 - 8.92	0.01	0.02	0.07
16	-8.518.54	- 15.11 15.10	31.51 - 31.53	0.03	0.02	0.02
17	- 15.62 15.61	- 8.59 8.59	14.01 - 13.87	0.01	0.00	0.15
18	- 32.69 32.77	0.61 - 0.61	43.40 - 43.42	0.08	0.00	0.02
19	- 26.63 26.73	17.14 - 17.14	52.47 - 52.54	0.10	0.00	0.07
20	- 15.83 15.89	28.22 - 28.20	37.86 - 37.90	0.06	0.03	0.04
21	0.66 - 0.60	33.35 - 33.32	5.09 - 4.98	0.06	0.03	0.11
22	16.89 - 16.92	28.96 - 28.93	46.54 - 46.47	0.03	0.03	0.06
23	28.52 - 28.67	16.86 - 16.85	17.58 - 17.47	0.15	0.01	0.10
24	33.14 - 33.22	1.02 - 1.05	34.22 - 34.18	0.08	0.03	0.04
25	28.86 - 28.88	- 16.41 16.40	6.77 - 6.64	0.02	0.01	0.14
26	16.83 - 16.87	- 28.17 28.14	20.97 - 20.82	0.05	0.03	0.15
27	0.26 - 0.29	- 32.61 32.60	50.45 - 50.45	0.03	0.01	0.00
28	- 16.31 16.33	- 28.09 28.12	10.37 - 10.19	0.02	0.03	0.18
29	- 28.29 28.33	- 15.09 15.13	33.28 - 33.23	0.03	0.04	0.05
30	- 49.94 50.03	0.20 - 0.27	38.23 - 38.20	0.09	0.07	0.02
31	- 42.73 42.79	26.29 - 26.42	30.31 - 30.16	0.06	0.13	0.15
32	- 24.36 24.41	43.83 - 43.83	8.52 - 8.32	0.05	0.00	0.20
33	0.04 - 0.01	49.48 - 49.46	49.37 - 49.47	0.03	0.02	0.10
34	25.25 - 25.31	43.64 - 43.65	36.06 - 36.06	0.06	0.01	0.00
35	49.84 - 49.95	-0.340.32	24.98 - 24.92	0.11	0.02	0.06
36	43.75 - 43.83	- 23.82 23.81	45.80 - 45.75	0.09	0.00	0.05
37	25.28 - 25.34	- 42.68 42.71	42.07 - 42.03	0.06	0.03	0.04
38	-0.02 - 0.02	- 49.58 49.59	47.70 - 47.82	0.04	0.01	0.12
39	- 24.93 24.92	- 42.05 42.03	25.88 - 25.87	0.01	0.02	0.01
40	- 42.97 43.03	- 24.08 24.12	19.29 - 19.16	0.06	0.04	0.12

Average error : 0.04 0.02 0.07

Standard deviation: 0.05 0.03 0.09

Table A6.3 3-D error of calibration of real image (10 parameter, Camera 2 and 3)

- A 14-

No.	Х	Y	Z
1	27.2359	25.8712	50.8389
2	17.0659	30.8656	12.2741
3	7.3853	28.1224	20.4705
4	- 4.0899	31.6828	27.9866
5	- 9.8180	24.1802	34.5475
6	- 21.1356	29.9407	57.3446
7	- 19.1988	20.9384	17.8583
8	- 23.3158	13.9380	25.5348
9	0.0455	17.3297	35.0617
10	4.9856	10.0397	25.1099
11	12.7309	12.0777	11.1630
12	17.5439	17.2804	54.6606
13	23.2251	8.0389	12.9859
14	25.2377	4.0284	32.0377
15	23.9438	- 4.9078	24.5114
16	16.5195	- 11.2036	14.9579
17	10.7404	- 1.9926	15.0674
18	3.0244	- 3.6137	7.1928
19	- 0.9431	2.7587	57.3938
20	- 17.4006	7.4468	52.9113
21	- 17.1236	0.0179	45.3506
22	- 27.0326	3.6517	40.3120
23	- 20.4484	- 7.0391	55.7908
24	- 25.7401	- 13.7081	23.1994
25	- 26.3041	- 34.3459	55.5443
26	- 13.5432	- 31.6327	6.5229
27	- 14.6283	- 22.0101	11.3685
28	- 9.9468	- 17.8094	34.2984
29	- 6.4483	- 10.2072	46.7946
30	6.3441	- 9.2417	36.3864
31	6.8545	- 16.4655	58.3965
32	13.6273	- 18.8086	44.9948
33	20.8506	- 24.0402	57.3853
34	25.1569	- 27.2610	15.0176
35	19.9751	- 30.4456	40.5589
36	9.8929	- 32.3615	32.0924
37	0.2662	- 26.3782	22.8299
38	- 9.0213	- 30.8461	38.3497

 Table A7
 Absolute coordinate of calibrator used experiment

 of backward facing step flow

- A 15 -

Fig. A1 Image viewed by camera 1 of calibrator.

Fig. A2 Image viewed by camera 2 of calibrator.

Fig. A3 Image viewed by camera 3 of calibrator

Fig. A4 Recovery ratio resulted by Doh et al(1999)

Fig. A5 Recovery ratio of 1-Frame 3-D PTV used 10 parameter.

Fig. A6 Recovery ratio of GA.

Fig. A7 Picture of calibrator used experiment of backward facing step flow

3 PTV

,

· , - , - 3 . , 3

.

PT V 기·