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요약문

지문을 이용한 인식은 매우 오래전부터 이용되어 온 것으로 잘

알려져 있다. 지문은 본인만의 유일성과 불변성으로 오늘날 가장 널

리 이용되는 신체 특징중의 하나이다. 그러므로 지문을 이용한 개인

식별은 개인의 인증 수단으로 가장 안전한 방법 중의 하나라고 할

수 있다.

본 논문에서는 신경회로망을 이용한 지문인식방법과 그레이-스케

일 지문 영상으로 부터의 방향성 특징 벡터 추출방법에 대해 제안

하였다. 방향성 특징 벡터는 이진화와 세선화 과정없이 그레이-스케

일 영상으로부터 직접적으로 추출한다.

본 논문에서 제안한 특징 벡터 추출방법의 기본 아이디어는 융선

패턴의 지역 방위에 따라 그레이-스케일 영상의 융선을 따라가면서

융선의 방향성을 추출하는 것이다. 융선을 따라가는 시작점은 그레

이-스케일 영상을 일정한 격자로 나누어서 격자안의 중심점으로 결

정한다. 그 다음에 융선을 따라가면서 여러방향의 방향성 특징 벡터

를 추출하고, 추출된 방향성 특징 벡터를 4방향성 특징 벡터로 라벨

링한다.

실험은 4개의 지문에서 구성한 124개의 특징 패턴을 가지고 하였

으며, 하나의 지문은 31개의 특징패턴으로 구성하였다. 그 결과 학

습된 지문을 인식하는 능력이 매우 우수함을 보여주었다.
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A b s tract

Fingerprint - based identification is known to be used for a very

long time. Owing to their uniqueness and immutability ,

fingerprint s are today the most widely used biometric features .

T herefore, recognition using fingerprint s is one of the safest

methods as a w ay of per sonal identification .

In this paper , a fingerprint identification method using neural

networks and the direction feature vector s based on the

directional image extracted from gray - scale fingerprint image

without binarization and thinning is proposed.

T he basic idea of the above mentioned method is to track the

ridge lines on the gray - scale image, by sailing according to the

local orientation of the ridge pattern . A set of starting point s are

determined by superimposing a grid on the gray - scale image. A

labeling strategy is adopted to examine each ridge line only once

and locate the inter sections betw een ridge lines . After the

direction feature vectors are consisted of vectors by four

direction labeling . Matching method used in this paper is four

direction feature vectors based matching .

T he experiment are used total 124 feature patterns of four

fingerprint s , and One fingerprint image is consisted of 31 feature

patterns . T he result s is presented excellent recognition capability

of learned fingerprint images .
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Ch apter 1 . Introdu ct ion

In this paper , a fingerprint identification method using neural

networks [1] and the direction feature vector s based on the

directional image extracted from gray - scale fingerprint image

without binarization and thinning [2] is proposed. ; this choice is

motivated by the following considerations : the fir st , a lot of

information may be lost during the binarization process . the

second, binarization and thinning are time- consuming . the third,

the binarization techniques which w ere experimented proved to be

unsatisfactory when applied to low - quality images .

T he basic idea of the proposed method is to track the ridge

lines on the gray - scale image, by sailing according to the local

orientation of the ridge pattern . A set of starting point s is

determined by superimposing a grid on the gray - scale image；

for each starting point , the algorithm keeps following the ridge

lines until they terminate or intersect other ridge lines (direction

detection ). A labeling strategy is adopted to examine each ridge

line only once and locate the intersections betw een ridge lines .

After the direction feature vectors are consisted of vector s by

four direction labeling . Matching method used in this paper is

four direction feature vector s based matching . In this paper is
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proposed the use of Neural Networks (NN ) in fingerprint

matching .

In Section 2, Neural Networks (NN ) are discussed. In section 3,

discusses the direction feature vector detection, and four direction

labeling and pattern detection . In section 4, discusses the result

of fingerprint matching . Finally , in Section 5 some conclusions

are drawn .
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Ch apter 2 . N eural N etw ork s

2 .1 Introduction of N eural N etw orks

In search of better solutions for engineering and computing

tasks, many avenues have been pur sued. T here has been a long

history of interest in the biological sciences on the part of

engineer s, mathematicians, and physicist s endeavoring to gain

new ideas, inspirations , and designs . As the name implies, neural

networks are computer models of the process and mechanisms

that constitute biological nerve systems , to the extent that they

are understood by researchers .

Namely , neural networks are systems that are deliberately

constructed to make use of some organizational principles

resembling those of the human brain . Neural netw orks are a

promising new generation of information processing systems that

demonstrate the ability to learn , recall, and generalize from

training pattern of data [3 - 8].

In summary, neural networks are a parallel distributed

information processing structure with the following

characterist ics :

1. Neural netw orks are neurally inspired mathematical models .

2. Neural netw orks consist of a large number of highly interco-
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nnected processing elements .

3. T heir connections (w eight ) hold the knowledge.

4. A processing element can dynamically respond to their input

stimulus , and the response completely depends on their local

information : that is, the input signals arrive at the processing

element via impinging connections and connection weights .

5. Neural netw orks have the ability to learn , recall, and

generalize from training data by assigning or adjusting the

connection weights .

6. T heir collective behavior demonstrates the computational

power , and no single neuron carries specific information .

Neural netw orks is expected to be widely applied in vision ,

speech, decision - making , reasoning , and signal processor s such as

filter s, detectors, and quality control systems . Also neural

networks may offer solutions for cases in which a processing

algorithm or analytical solutions are hard to find, hidden, or

nonexistent . Such cases include modeling complex processes ,

extracting properties of large set s of data, and providing

identification of plant s that need to be controlled [7][10].

2 .2 B iolog ic al N euron and A rtific ial N euron

Neural netw orks are inspired by modeling netw orks of real

biological neurons in the brain . Hence, the processing elements in
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neural netw orks are also called artificial neurons, or simply

neurons . A human brain consist s of approximately 1011 neurons

of many different types . A schematic diagram of a typical

biological neuron is shown in Fig . 1 [5 - 8].

Fig . 1 Schematic diagram of a biological neuron

A typical neuron has three major part s : the cell body or soma,

where the cell nucleus is located, the dendrites , and the axon .

T he signals reaching a synapse and received by dendrites are

electric impulses . Such signal transmission involves a complex

chemical process in which specific transmitter substances are

released from the sending side of the junction . T his raises or

lower s the electric potential inside the body of the receiving cell.

T he receiving cell fires if it s electric potential reaches a

threshold, and a pulse or action potential of fixed strength and

duration is sent out through the axon to the axonal arborization

to synaptic junctions to other neurons . After firing , a neuron has
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to w ait for a period of time called the refractory period before it

can fire again . Synapses are excitatory if they let passing

impulses cause the firing of the receiving neuron, or inhibitory if

they let passing impulses hinder the firing of the neuron .

Fig . 2 show s a simple mathematical model of the above

mentioned biological neuron proposed by McCulloch and

Pitt s [3],[5],[6].

Fig . 2 Schematic diagram of a Mc Culloch and Pitt s neuron

y i = f (
m

j = 1
w ijx j - i) (2.1)

T he w eight w ij represents the strength of the synapse

connecting neuron j to neuron i. A positive w eight corresponds

to an excitatory synapse, and a negative weight corresponds to

an inhibitory synapse. T he neuron as a processing node performs

the operation of summation of it s w eighted inputs , or the scalar

product computation . Subsequently , it performs the nonlinear
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operation f ( ) through it s activation function . Some commonly

used activation function show Fig . 3 such as unipolar sigmoid

function , bipolar sigmoid function , linear function .

Fig . 3 Activation functions of a neuron

2 .3 Le arning and S tructure of M ultilay ered

N eural N etw orks

Fig . 4 Multilayered neural networks

Multilayered neural netw orks were used as basic structure for

the applications discussed here. Fig . 4 show s multilayered neural

networks [3],[5 - 8].
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T he back propagation training algorithm allow s experiential

acquisition of input/ output mapping knowledge within

multilayered neural networks . Fig . 5 illustrates the flowchart of

the error back propagation training algorithm for a basic tw o

layer netw ork as in Fig . 4 [5 - 8].

Fig . 5 Error back propagation training algorithm

Given are P training pair s, {x 1 , d 1 , x 2 , d 2 , , x p , d p}, where x i is

( i 1) , d i is (K 1) , and i = 1 , 2 , , P . T he operator is a
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nonlinear diagonal operator with diagonal elements being identical

activation functions . T he learning begins with the feedforw ard

recall phase(step 2). After a single pattern vector x is submitted

at the input , the layers ' responses y and o are computed in this

phase. T hen, the error signal computation phase(step 4) follow s .

Note that the error signal vector must be determined in the

output layer first , and then it is propagated tow ard the netw ork

input nodes . T he w eights are subsequently adjusted within the

matrix W, V in step 5, 6. Note that the cumulative cycle error of

input to output mapping is computed in step 3 as a sum over all

continuous output errors in the entire training set . T he final error

value for the entire training cycle is calculated after each

completed pass through the training set {x 1 , x 2 , , x p}. T he

learning procedure stops when the final error value below the

upper bound, E m ax is obtained as shown in step 8.

Also, w eight adjustment use momentum method in this paper

as shown Fig . 6. T he purpose of the momentum method is to

accelerate the convergence the error back propagation learning

algorithm . T his is usually done according to the formula (2.2).

w (t ) = - E
w (t )

+ w (t - 1) (2.2)
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Fig . 6 Illustration of adding the momentum term in error back

propagation training for a tw o- dimensional case

where the argument s t and t - 1 are used to indicate the current

and the most recent training step, respectively , and alpha is a

user - selected positive momentum constant . Fig . 6 illustrates the

momentum term heuristics and provides the justification for it s

use. Let us initiate the gradient descent procedure at point A ' .

T he consecutive derivatives E / w 1 and E / w 2 at training

point s A ' , A ' ' , … , are of the same sign . Obviously , combining

the gradient components of several adjacent steps w ould result in

convergence speed- up. After starting the gradient descent

procedure at B ' , the two derivatives E / w 1 and E / w 2 ,

initially negative at B ' , both alter their signs at B ' ' , T he figure
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indicates that the negative gradient does not provide an efficient

direction of weight adjustment because the desired displacement

from B ' ' should be more tow ard the minimum M, or move the

w eight vector along the valley rather than across it .

2 .4 M ultilay ered N eural N etw ork s u s ed Ex perim ent al

Fig . 25 Multilayer neural netw orks used for matching sy stem

T he proposed neural netw orks has the capability of excellent

pattern identification . T he number of input node neurons is fifty

including bias, hidden node is fourteen , output node is one. T he

used algorithm is error back propagation algorithm in general

multilayer neural netw orks . T he proposed neural networks w ere

learned until error become 0.01.
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Ch apter 3 . F ing erprint Re c og nit ion

3 .1 Direction F e ature V ector D etection

Let I be an a×b gray - scale image with gl gray levels, and

gray (i,j ) be the gray level of pixel (i,j ) of I, i = 1,....a, j = 1,...b .

Let z = S (i,j ) be the discrete surface corresponding to the image

I: S (i,j ) = gray (i,j ), i = 1,...a, j = 1,...b . By associating bright

pixels with gray levels near to 0 and dark pixels with gray

levels near to gl- 1, the fingerprint ridge lines (appearing dark in

I) correspond to surface ridges , and the spaces between the ridge

lines (appearing bright in I) correspond to surface ravines (Fig . 7).

Fig . 7 a×b gray - scale fingerprint image

From a mathematical point of view , a ridge line is defined as a

set of point s which are local maxima along one direction . T he

ridge- line extraction algorithm attempts to locate, at each step, a
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local maximum relative to a section orthogonal to the ridge

direction . By connecting the consecutive maxima, a polygonal

approximation of the ridge line can be obtained

Let ( i s , j s ) be a local maximum of a ridge line of I, and 0

be the direction of the tangent to the ridge- line in ( i s , j s ); a

pseudo- code ver sion of the ridge- line following algorithm is ：

Fig . 8 Some ridge- line following algorithm
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Fig . 9 Some ridge- line following steps ; on the right ,

some sections are shown

T he alogorithm runs until a stop criterion becomes true. At

each step, it computes a point ( i t, j t), moving pixels from

( i c , j c ) along direction c . T hen, it computes the section set

as the set of point s belonging to the section segment lying on

the ij - plane and having median point ( i t, j t), direction
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orthogonal to c and length 2 +1. A new point ( i n , j n ),

belonging to the ridge line, is chosen among the local maxima of

the set . T he point ( i n , j n ) becomes the current point ( i c ,

j c ) and a new direction c is computed (Fig . 9). and are

parameters whose optimal value can be determined according to

the average thickness of the image ridge lines . T he main

algorithm steps, namely , sectioning and maximum determination ,

computation of the direction c and testing of the stop criteria,

are discussed in the following sub - sections .

3 .2 T ang ent Direction Com put ation

At each step, the algorithm computes a new point ( i t, j t) by

moving pixels from the current point ( i c , j c ) along direction

c . T he direction c represent s the ridge line local direction

and can be computed as the tangent to the ridge in the point

( i c , j c ).

Several methods for estimating image directional information

have been proposed in the literature. T he simplest approach is

based on gradient computation . It is well known that the gradient

phase angle denotes the direction of the intensity maximum

change. T herefore, the direction c of a hypothetical edge which

crosses the region centered in pixel ( i c , j c ) is orthogonal to the
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gradient phase angle in ( i c , j c ). T his method, although simple

and efficient , suffer s from the non- linearity due to the

computation of the gradient phase angle.

Kawagoe and T ojo[11], in their w ork, use a different method.

For each 2×2 pixel neighborhood, they make a straight

comparison against four edge templates to extract a rough

directional estimate, which is then arithmetically averaged over a

larger region to obtain a more accurate estimate. Stock and

Sw onger [12], Mehtre, et al.[2], following similar approaches,

evaluate the tangent direction on the basis of pixel alignments

relative to a fixed number of reference directions .

T he method used in this work, proposed by Donahue and

Rokhlin [13], uses a gradient type operator to extract a directional

estimate from each 2×2 pixel neighborhood, which is then

averaged over a local window by least - squares minimization to

control noise. In Appendix A , the basic steps of this method are

described; more details can be found in [13]. T his method allow s

for an unoriented direction to be computed. T he computation of

an oriented direction is subordinate to the choice of an

orientation . For each step of the ridge line following, we choose

the orientation in such a w ay that c comes closest to the

direction computed at the previous step . T he technique used to

compute the tangent directions, although rather efficient and

robust , can become computationally expensive if the local
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window s used are large (if their side is 19 or more pixels ) and

the number of directions to be computed is very high . A more

efficient implementation schema can be obtained by

pre- computing the directional image over a discrete grid (Fig . 10)

and then determining the direction c through Lagrangian

interpolation .

Fig . 10 A fingerprint and the corresponding directional image

computed over a grid whose granularity is nine pixels .

3 .3 F our Direction Labeling and P attern D etection

I shall begin with four direction labeling . T his algorithm steps,

a various direction feature vectors of 360° are changed four

direction labeling . In principle, each vector is computed simply by

determining conditional ; using an angle value of the direction
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feature vector . Fig . 11 show s the coordinates which are four

direction labeling . Labeling of coordinates , 0°= direct 1, 45°=

direct2, 90°= direct3, 135° = direct4. T he direct 1 is the direction

feature vector s of 0°∼22.4°or 157.5°∼180°. T he direct2 is

the direction feature vector s of 22.5°∼67.4°. T he direct3 is the

direction feature vector s of 67.5°∼112.4°. T he direct4 is the

direction feature vectors of 112.5°∼157.4°.

Fig . 11 Four direction labeling coordinates
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T he four direction labeling algorithm is :

Fig . 12 Four direction labeling algorithm

T he fir st step, it is input the direction feature vector . T he

step2, When it is 0°< = direction feature vector angle< =180°,

the step4 progress . Otherwise, Add 180° to an angle of the

direction feature vector (step3). T he step4, When it is 0°< =

direction feature vector angle< 22.5°or 154.5°< = direction

feature vector angle< = 180° , the step5 progress , labeling (the

- 22 -



direction feature vector = 1). Otherwise, the stpe6 progress . T he

step6, When it is 22.5°< = direction feature vector angle< = 67.

5° , the step7 progress, labeling (the direction feature vector =

2). Otherwise, the stpe8 progress . T he step8, When it is 67.5°< =

direction feature vector angle< = 112.5° , the step9 progress,

labeling (the direction feature vector = 3). Otherwise, the stpe10

progress . T he step10, When it is 112.5°< = direction feature

vector angle< = 154.5° , the step11 progress, labeling (the

direction feature vector = 4). Fig . 13 show s four direction

labeling image.

Fig . 13 Four direction labeling on a fingerprint .

In this explained, making fingerprint feature pattern of four

direction labeling . A fingerprint image is divided on blocks the

size of 15×15 pixels . At each block is labeling . Let 128×128

fingerprint image is consisted of 49 blocks . At each blocks , the
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direction vector is expressed label value (Fig . 14). All the blocks

are consisted of label values . T herefore, a fingerprint image is

built up of feature vector pattern using 49 direction label value.

Fig . 14 A fingerprint image show label value.
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Ch apter 4 . E x perim ent al Re s u lt s

4 .1 Ex perim ent al Env ironm ent and M ethod

In this section , the used data makes 124 feature patterns from

four fingerprint images (whorl, arch , right loop, left loop). Each

fingerprint images is presented as a 128×128 image with 256

gray levels . Fig . 15 show s four samples .

Fig . 15 Experimental fingerprint images .

[ a ) whorl, b ) arch, c) left loop d) right loop ]
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T he performance of experiment is executed which consist

feature pattern of 49 label value in each fingerprint images, and

a feature pattern is presented an angle of between - 15 degrees

and 15 degrees (Fig . 16, Fig . 17). Here, a feature pattern is

consisted of 31 patterns (Fig . 17).

Fig . 16 A fingerprint images an angle of between - 15 degrees

and 15 degrees .

In experimental method is ;

1. Classify learning data among 31 feature pattern ; this

experiment is used learning data the feature pattern of an

even angles ( 0°,2°,4°,6°,8°,10°,12°,14°,- 2°,- 4°,- 6°,

- 8°,- 10°,- 12°,- 14°).

2. Learning neural netw orks using 60 feature pattern ; each

fingerprint images are presented 15 feature pattern of an even

angles . Here, neural netw orks learning which is registered

labeling each fingerprint images for number s . In experiment ,

whorl registered to number1, arch registered to number2,
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right loop registered to number3, left loop registered to

number4.

3. Matching input the feature pattern of an odd angles ( 1°,3°,

5° ,7° ,9° ,11° ,13° ,15° , - 1° ,- 3° , - 5° ,- 7° , - 9° ,- 11° ,

- 13°,- 15°) not learning of each fingerprint images . ;

matching result show s Fig . 26, 27.

T able 1. show s experimental environment .

T able 1.

Program running and Neural

Netw orks learning
IBM PC Pentium Ⅱ

Programing language Borland C++ MFC 6.0

Fingerprint images purchase VeriFinger v3.3
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Fig . 17 Experimental 31 fingerprint images .
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4 .2 Ex perim ent al Res ult s

In experimental, preference step1, four fingerprint images are

detected as various direction feature vectors (Fig . 19), and step2, a

various direction feature vector s are changed Four direction

feature vectors (Fig . 20), and step3, the direction feature vector s

are labeling , and step4, registered for matching system (neural

networks) labeling each fingerprint images for number ; in

experimental, whorl registered to number 1, arch registered to

number2, right loop registered to number3, left loop registered to

number4. Step5, Matching experimental using label feature

patterns of each fingerprint s . Fig 21, 22, 23, 24 show s label

feature patterns .

Fig . 25 show s neural networks using matching experimental.

Fig . 26 and Fig . 27 show s matching result s . As show s

experimental result s is presented very good capability .
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Fig . 19 Four fingerprint images are detected various direction

feature vector s
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Fig . 20 A various direction feature vectors are changed four

direction feature vector s

- 3 1 -



Fig . 21 Feature patterns of whorl
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Fig . 22 Feature patterns of arch
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Fig . 23 Feature patterns of right loop
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Fig . 24 Feature patterns of left loop
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In experiment are used total 124 feature patterns of four

fingerprint s . One fingerprint image is consisted of 31 feature

patterns . Each fingerprint images are learned fifteen patterns of

an even angles, and matching ten patterns of an odd angles . T he

result s show s Fig . 26 and 27. Fig . 26- (a) show s which is

Registered labeling whorl image for number1, and Fig . 26- (b)

show s which is Registered labeling arch image for number2, and

Fig . 27- (c) show s which is Registered labeling right loop image

for number3, and Fig 27- (d) show s which is registered labeling

left loop image for number4. In experimental result s show s very

excellent identification capability irrespective of angle transfor -

mation . Input patterns using in experiment show s table 2.

T able 2.
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Fig . 26 Result s for feature pattern matching
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Fig . 27 Result s for feature pattern matching
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Ch apter 5 . Conc lu s ion

In this paper we have presented approach to automatic the

direction feature vector s detection , which detect s the ridge line

directly in gray scale images .

In spite of a greater conceptual complexity , we have shown

that our technique has less computational complexity than the

complexity of the techniques which require binarization and

thinning . And a various direction feature vector s are changed

four direction feature vector s . In this paper used matching

method is four direction feature vector s based matching .

T his four direction feature vectors consist feature patterns in

fingerprint images . T his feature patterns w ere used for

identification of individuals inputed multilayer Neural

Netw orks (NN) which has capability of excellent pattern

identification .

In experimental result s is presented very good capability . In the

future work , in order to reduce error rate mistaken identification ,

have to continue research , and apply actual automatic systems

for fingerprint comparison .
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