Substructure Synthesis Method using Dynamic Reduction

2000 2

本 論文 金聖祐 工學碩士 學位論文 認准 .

2000 2

Abstract		
1.		1
2.	(Substructure Synthesis Method : SSM)	3
2.1		3
2.2 Guyan	(Guyan's static reduction method)	7
2.3		9
3.		14
3.1	(Dynamic reduction method)	15
3.2		17
4.		19
4.1		19
4.2		27
5.		32
		33

Substructure Synthesis Method using Dynamic Reduction

Seong - Woo, Kim

Department of Naval Architecture, Graduate School, Korea Maritime University

Abstract

The finite element method(FEM) has been developed and applied for dynamic analysis on structures. In these days, it is a very common method for not only a simple vibration analysis but also the optimization of structures.

However, when we apply that method for the complicated and the huge structures, we should increase the number of elements to get more accurate results. Furthermore, it causes the increase of the degree of freedom and the limitation of calculating time and memory capacity of computer.

So, many researchers have challenged to find more improved modeling techniques and calculation methods to overcome those hurdles.

The Guyan's reduction method and the substructure synthesis method are typical examples of such methods. Of the substructure synthesis method, the component mode synthesis method (CMS) is widely used for dynamic analysis of structure.

However, as order of natural frequency becomes higher, it causes errors because it implies the Guyan's static reduction and the number of modes taken from each component is deficient.

In this thesis, the substructure synthesis method using dynamic reduction is proposed to obtain accurate results in high order natural frequency range.

Computer simulation of the proposed method, FEM, and the component mode synthesis method(CMS) have been carried out on a rectangular plate to prove the availability of the proposed method.

The results are as follows :

- 1. The analytical results of the substructure synthesis method using dynamic reduction coincide with those of FEM, and the availability of the proposed method has been verified.
- 2. The proposed method can overcome the error occurrence which were caused by the defects of the component mode synthesis method using Guyan's static reduction.
- 3. The natural frequency of the specific frequency range can be obtained without errors. So, it is expected that the proposed method could be applied to the analysis in high frequency range like noise problem.

IV

 $\{F\}$

 $\{X\}$

ΓIJ

[K]

[M]

[T]

[T]

С

е

 $[\varPhi]$

ω

(substructure synthesis method using dynamic reduction)

•

.

•

Fig. 2-1

(transfer function synthesis method), (characteristic matrix synthesis method), (mode synthesis method) .

가

•

, 가

, FEM ,

,

() FEM

가

.

[11] [12] •

, 가 . (; CMS) ,

,

. Table 2-1

· ·

Guyan 가 가

Fig. 2-1. Kinds of Sub-structure Synthesis Method

			(T)	5)				(N	1S)
									, Guyan
	· , 가	가					가	:	가
	7			•			۲ ۲		
					FEM				
							T S		가
						T S		가	
&	가	()						
		,							,
	fitting)			(curve			,	,	

Table 2-1 Comparison of TS with MS $% \left({T_{\rm{s}}} \right) = 0.015$

2.2 Guyan

Fig. 2-2 Guyan's static reduction model

Fig. 2-2

$$\left\{ \begin{array}{ccc} - \omega^2 \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \right\} \left\{ \begin{array}{c} X_{1} \\ X_{2} \end{bmatrix} \right\} = \left\{ \begin{array}{c} 0 \\ F_{2} \end{array} \right\}$$
(2-1)
, (2-1)
$$\left\{ \begin{array}{c} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \\ \left\{ \begin{array}{c} X_{2} \\ Y_{2} \end{bmatrix} \right\} = \left\{ \begin{array}{c} 0 \\ F_{2} \end{array} \right\}$$
(2-2)
$$\left\{ \begin{array}{c} X_{1} \\ Y_{1} \end{bmatrix} \right\} ,$$

$$[K_{11}]{X_{1}} + [K_{12}]{X_{2}} = \{0\}$$

$$\{X_{1}\} = [T] \{X_{2}\}$$

$$[T] Guyan$$

$$, [T] = - [K_{11}]^{-1}[K_{12}]$$

$$(2-4)$$

$$\left\{ \begin{array}{c} X \\ 2 \end{array} \right\} = \begin{bmatrix} \begin{bmatrix} T \\ T \end{bmatrix} \\ T \end{bmatrix} \left\{ X_2 \right\}$$

$$(2-5)$$

$$(2-5) (2-1) [[T]T []]$$

,

,

,

.

$$- \omega^{2} [\widehat{M}] \{X_{2}\} + [\widehat{K}] \{X_{2}\} = \{F_{2}\}$$
(2-6)

$$[\widetilde{\mathbf{M}}] = [\mathbf{T}]^{\mathrm{T}} [\mathbf{M}_{11}] [\mathbf{T}] + [\mathbf{T}]^{\mathrm{T}} [\mathbf{M}_{12}] + [\mathbf{M}_{21}] [\mathbf{T}] + [\mathbf{M}_{22}]$$

$$[\widetilde{\mathbf{K}}] = [\mathbf{T}]^{\mathrm{T}} [\mathbf{K}_{11}] [\mathbf{T}] + [\mathbf{T}]^{\mathrm{T}} [\mathbf{K}_{12}] + [\mathbf{K}_{21}] [\mathbf{T}] + [\mathbf{K}_{22}]$$

$$(2-7)$$

가

,

•

가 .

Guyan

Fig. 2-3

•

Comp. 1 Comp. 2

Fig. 2-3 Rigid jointed model

с

Fig. 2-3

,

e

•

$$\left(- \omega^{2} \begin{bmatrix} M_{ee}^{1} & M_{ec}^{1} & 0 & 0 \\ M_{ce}^{1} & M_{cc}^{1} & 0 & 0 \\ 0 & 0 & M_{ee}^{2} & M_{ec}^{2} \\ 0 & 0 & M_{ce}^{2} & M_{cc}^{2} \end{bmatrix} + \begin{bmatrix} K_{ee}^{1} & K_{ec}^{1} & 0 & 0 \\ K_{ce}^{1} & K_{cc}^{1} & 0 & 0 \\ 0 & 0 & K_{ee}^{2} & K_{ec}^{2} \\ 0 & 0 & K_{ce}^{2} & K_{cc}^{2} \end{bmatrix} \right) \begin{bmatrix} X_{e}^{1} \\ X_{c}^{1} \\ X_{e}^{2} \\ X_{c}^{2} \end{bmatrix} = \begin{bmatrix} F_{e}^{1} \\ F_{c} + F_{r}^{1} \\ F_{e}^{2} \\ F_{r}^{2} \end{bmatrix}$$

$$(2.8)$$

(2-8)

•

$$F_r^{(1)}$$
 c 1 2
(2-8) 7 .

 $- \omega[M] \{X\} + [K] \{X\} = \{F\}$ (2-9)

$$\{X_{c}\} = \{X_{c}^{1}\} = \{X_{c}^{2}\}$$
(2-10)
$$\{F\} = \{-F_{r}^{1}\} = \{F_{r}^{2}\}$$
(2-11)

[T]

,

,

•

•

Guyan

$$\{X_{e}\} = [T] \{X_{c}\}$$
 (2-12)

(2-13) (2-8)

$$\{X\} = \begin{cases} X_{e}^{1} \\ X_{e}^{2} \\ X_{e}^{2} \\ X_{e}^{2} \end{cases} = \begin{cases} \varPhi^{1} T^{1} 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & \varPhi^{2} & T^{2} \\ 0 & 0 & 0 & I \end{cases} \begin{cases} \pounds^{1} \\ \xi^{2} \\ X_{e}^{2} \\ \xi^{2} \\ X_{e}^{2} \end{cases}$$
$$= \begin{cases} \varPhi^{1} T^{1} 0 \\ 0 & I & 0 \\ 0 & T^{2} & \varPhi^{2} \\ 0 & I & 0 \\ \end{bmatrix} \begin{cases} \pounds^{1} \\ X_{e} \\ \xi^{2} \\ \xi^{2}$$

$$\begin{bmatrix} \mathbf{T}_{p} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\phi}^{1} & \mathbf{T}^{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{T}^{2} & \boldsymbol{\phi}^{2} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} \end{bmatrix}$$
(2-15)
$$\{\mathbf{Y}\} = \begin{bmatrix} \boldsymbol{\xi}^{1} \\ \mathbf{X}_{c} \\ \boldsymbol{\xi}^{2} \end{bmatrix}$$
(2-16)
$$(2-14) \quad (2-9) \quad , \quad [\mathbf{T}_{p}] \quad , \quad (2-16)$$

$$\cdot \boldsymbol{\omega}^{2} [\tilde{\mathbf{M}}] \{\mathbf{Y}\} + [\tilde{\mathbf{K}}] \{\mathbf{Y}\} = \{\tilde{\mathbf{F}}\}$$
(2-17)

 $[\widetilde{\mathbf{M}}] = [\mathbf{T}_{p}]^{\mathrm{T}} [\mathbf{M}] [\mathbf{T}_{p}] ,$

,

$$[\widetilde{\mathbf{K}}] = [\mathbf{T}_{p}]^{T} [\mathbf{K}] [\mathbf{T}_{p}] ,$$

$$\{\widetilde{\mathbf{F}}\} = [\mathbf{T}_{p}] \{\mathbf{F}\} = \begin{cases} [\boldsymbol{\Phi}^{1}]^{T} \{\mathbf{F}_{e}^{1}\} \\ [\mathbf{T}^{1}]^{T} \{\mathbf{F}_{e}^{1}\} + [\mathbf{T}^{2}]^{T} \{\mathbf{F}_{e}^{2}\} \\ [\boldsymbol{\Phi}^{2}]^{T} \{\mathbf{F}_{e}^{2}\} \end{cases}$$

$$(2-18)$$

$$(2-9) , (2-17)$$

$$7$$

Fig. 2-4

•

•

가

Fig. 2-4 Spring jointed model

$$\begin{bmatrix} K_{c11} & -K_{c12} \\ -K_{c21} & K_{c22} \end{bmatrix} \begin{cases} \chi_{c}^{(1)} \\ \chi_{c}^{(2)} \end{cases} = \begin{cases} F_{r}^{(1)} \\ F_{r}^{(2)} \end{cases}$$
(2-19)
$$\{F_{r}\} \qquad (2-19)$$

(2-19 (2-8) 가,

$$\left(-\omega^{2} \begin{bmatrix} M_{ee}^{(1)} & M_{ec}^{(1)} & 0 & 0 \\ M_{ee}^{(1)} & M_{ec}^{(1)} & 0 & 0 \\ 0 & 0 & M_{ee}^{(2)} & M_{ec}^{(2)} \\ 0 & 0 & M_{ee}^{(2)} & M_{ec}^{(2)} \end{bmatrix} + \begin{bmatrix} K_{ee}^{(1)} & K_{ec}^{(1)} & 0 & -K_{c12} \\ K_{ee}^{(1)} & K_{ee}^{(1)} + K_{e11} & 0 & -K_{e12} \\ 0 & 0 & K_{ee}^{(2)} & K_{ec}^{(2)} \\ 0 & -K_{e21} & M_{ee}^{(2)} & K_{ec}^{(2)} + K_{e22} \end{bmatrix} \right) \begin{bmatrix} X_{e}^{(1)} \\ X_{e}^{(1)} \\ X_{e}^{(2)} \\ X_{e}^{(2)} \end{bmatrix} =$$

$$\begin{cases} F^{(1)} \\ F_{e}^{(1)} + F_{r}^{(1)} \\ F_{e}^{(2)} \\ F_{e}^{(2)} - F_{r}^{(1)} \end{bmatrix}$$

$$(2-20)$$

(2-14)가

,

,

$$\{X\} = \begin{cases} X_{e}^{1} \\ X_{c}^{1} \\ X_{e}^{2} \\ X_{c}^{2} \end{cases} = \begin{cases} \varPhi^{1} T^{1} 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & \varPhi^{2} T^{2} \\ 0 & 0 & 0 & I \end{cases} \begin{cases} \xi^{1} \\ X_{c}^{1} \\ \xi^{2} \\ X_{c}^{2} \end{cases} \equiv [T_{p}] \{Y\}$$
(2-21)

•

$$(2-20)$$
 , $[T_p]^T$

(Substructure Synthesis Method using Dynamic Reduction ; DRSSM)
Guyan

.

.

.

•

가

•

3.1 (Dynamic reduction method)

(2-1)

$$\begin{bmatrix} -\omega^{2}[M_{11}] + [K_{11}] & -\omega^{2}[M_{12}] + [K_{12}] \\ -\omega^{2}[M_{21}] + [K_{21}] & -\omega^{2}[M_{22}] + [K_{22}] \end{bmatrix} \begin{cases} X_{1} \\ Z_{2} \end{cases} = \begin{cases} 0 \\ Z_{2} \end{cases}$$
(3-1)

,

$$\{X_1\}$$
,

$$(-\omega^{2}[M_{11}] + [K_{11}])\{X_{1}\} + (-\omega^{2}[M_{12}] + [K_{12}])\{X_{2}\} = \{0\}$$

$$\{X_{1}\} = [\overline{T}]\{X_{2}\}$$
(3-2)

$$[\overline{\mathbf{T}}] = (-\omega^{2}[\mathbf{M}_{11}] + [\mathbf{K}_{11}])^{-1} (\omega^{2}[\mathbf{M}_{12}] - [\mathbf{K}_{12}])$$
(3-3)

$$, [\overline{T}] \qquad .$$

$$\left\{ \begin{array}{c} X_{1} \\ X_{2} \end{array} \right\} = \begin{bmatrix} [\overline{T}] \\ r \end{bmatrix} \left\{ X_{2} \right\} \qquad (3-4)$$

$$(3-4) \qquad [[\overline{T}]^{T} r]] \qquad , \qquad (3-4)$$

$$- \omega^{2} [\widetilde{M}] \{X_{2}\} + [\widetilde{K}] \{X_{2}\} = \{F_{2}\}$$
(3-5)

$$[\widetilde{\mathbf{M}}] = [\overline{\mathbf{T}}]^{\mathrm{T}} [\mathbf{M}_{11}][\overline{\mathbf{T}}] + [\overline{\mathbf{T}}]^{\mathrm{T}} [\mathbf{M}_{12}] + [\mathbf{M}_{21}][\overline{\mathbf{T}}] + [\mathbf{M}_{22}]$$

$$[\widetilde{\mathbf{K}}] = [\overline{\mathbf{T}}]^{\mathrm{T}} [\mathbf{K}_{11}][\overline{\mathbf{T}}] + [\overline{\mathbf{T}}]^{\mathrm{T}} [\mathbf{K}_{12}] + [\mathbf{K}_{21}][\overline{\mathbf{T}}] + [\mathbf{K}_{22}]$$

$$(3-6)$$

•

,

Fig. 2-3

$$\left(-\omega^{2} \begin{bmatrix} M_{ee}^{1} & M_{ec}^{1} & 0 & 0 \\ M_{ce}^{1} & M_{ec}^{1} & 0 & 0 \\ 0 & 0 & M_{ee}^{2} & M_{ec}^{2} \\ 0 & 0 & M_{ce}^{2} & M_{cc}^{2} \end{bmatrix} + \begin{bmatrix} K_{ee}^{1} & K_{ec}^{1} & 0 & 0 \\ K_{ce}^{1} & K_{cc}^{1} & 0 & 0 \\ 0 & 0 & K_{ee}^{2} & K_{ec}^{2} \\ 0 & 0 & K_{ee}^{2} & K_{cc}^{2} \end{bmatrix} \right) \begin{bmatrix} X_{e}^{1} \\ X_{c}^{1} \\ X_{e}^{2} \\ X_{e}^{2} \\ X_{c}^{2} \end{bmatrix} = \begin{cases} 0 \\ -F_{12} \\ 0 \\ F_{12} \end{cases}$$
(3-7)

,

,

(3-7)

$$- \omega[M] \{X\} + [K] \{X\} = \{F\}$$
(3-8)

.

$$\{X_e\} = [\overline{T}] \{X_c\}$$
(3-9)

.

$$\{X\} = \begin{cases} X_{e}^{1} \\ X_{c}^{1} \\ X_{e}^{2} \\ X_{c}^{2} \end{cases} = \begin{bmatrix} \overline{T}^{1} \\ I \\ \overline{T}^{2} \\ I \end{bmatrix} \{X_{c}\} = \begin{bmatrix} \overline{T}_{p} \end{bmatrix} \{X_{c}\}$$
(3-10)

$$(3-10) \quad (3-8) \quad , \qquad \left[\begin{array}{c} \overline{T}_{p} \end{array} \right]^{T} \quad ,$$

$$- \omega^{2} \left[\begin{array}{c} \overline{T}_{p} \end{array} \right]^{T} \left[M \right] \left[\begin{array}{c} \overline{T}_{p} \end{array} \right] \left\{ X_{c} \right\} + \left[\begin{array}{c} \overline{T}_{p} \end{array} \right]^{T} \left[K \right] \left[\begin{array}{c} \overline{T}_{p} \end{array} \right] \left\{ X_{c} \right\}$$

$$= \left[\begin{array}{c} \overline{T}_{p} \end{array} \right]^{T} \left\{ F \right\}$$

$$(3-11)$$

,

.

$$- \omega^{2} [\widehat{M}] \{X_{c}\} + [\widehat{K}] \{X_{c}\} = \{\widehat{F}\}$$

$$(3-12)$$

$$,$$

$$[\widehat{M}] = [\overline{T}_{p}]^{T} [M] [\overline{T}_{p}],$$

$$[\widehat{K}] = [\overline{T}_{p}]^{T} [K] [\overline{T}_{p}]$$

$$(3-13)$$

$$\{\widehat{F}\} = [\overline{T}_{p}] \{F\}$$

,

가

. (3-12) (3-9)

method)⁽¹³⁾

•

, 가 , 가

.

•

(bisection

				Fig.4-1	1600mm ×
400mm × 3t			가	,	(CMS)
Fig.4	- 2	4			
4.1					
					10 , 15 , 20 ,
25 , 30 7	70	가		70	
FEM					
Table 4-1			1	35	
	Table 4-	2	36	70	
, Fig. 4-3	Fig. 4-4				
					가
	F	ЕМ			
					가
•					
,					
				,	
Table 4-3					FEM
		1	35		, T able 4-4 36
70				,	Fig. 4-5 Fig. 4-6

Fig. 4-5 가

•

.

20

. , Fig. 4-6

Table 4-1 Natural frequencies of Component Mode Synthesis method analysis (No. of natural freq. : 1 35)

(Unit : Hz)

Degree	10mode	15mode	20mode	25mode	30mode	70mode	FEM
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.03	0.03	0.03	0.03	0.03	0.03	0.00
3	0.05	0.05	0.05	0.05	0.05	0.05	0.00
4	0.16	0.16	0.16	0.16	0.16	0.16	0.00
5	0.16	0.16	0.16	0.16	0.16	0.16	0.00
6	0.16	0.16	0.16	0.16	0.16	0.16	0.00
7	6.18	6.18	6.18	6.18	6.18	6.18	6.20
8	15.06	15.06	15.06	15.06	15.06	15.06	15.10
9	17.15	17.15	17.15	17.15	17.15	17.15	17.10
10	31.26	31.22	31.22	31.22	31.22	31.22	31.20
11	42.32	33.81	33.80	33.80	33.80	33.80	33.80
12	60.10	49.54	49.49	49.49	49.49	49.49	49.50
13	60.14	56.32	56.11	56.11	56.10	56.09	56.10
14	77.86	70.78	70.78	70.78	70.78	70.78	70.80
15	120.69	84.73	83.90	83.83	83.83	83.79	83.80
16	121.61	98.36	95.90	95.89	95.89	95.88	95.90
17	131.13	103.40	103.30	103.27	103.27	103.24	103.20
18	144.09	116.87	106.19	106.12	106.12	106.11	106.10
19	147.55	124.25	119.42	119.39	119.32	119.28	119.30
20	174.85	125.53	120.87	120.84	120.84	120.82	120.80
21	177.12	131.13	125.53	125.49	125.48	125.45	125.40
22	186.02	160.01	141.82	141.79	141.78	141.78	141.80
23	201.27	178.93	158.15	158.03	158.03	157.77	157.80
24	201.87	185.82	159.97	159.95	159.94	159.94	159.90
25	207.05	200.17	168.61	168.53	168.53	168.49	168.50
26	250.06	218.24	198.24	197.52	197.52	197.50	197.50
27	250.18	240.24	200.17	200.02	200.01	199.63	199.60
28	260.23	253.26	206.84	206.03	205.58	205.01	205.00
29	296.43	255.49	234.24	233.74	233.74	233.65	233.60
30	297.58	291.13	245.28	244.92	244.88	244.45	244.50
31	298.23	294.09	255.66	255.65	255.60	255.33	255.30
32	315.10	304.92	291.13	273.74	273.48	273.42	273.40
33	327.44	306.33	296.88	282.99	282.87	282.74	282.70
34	335.64	312.58	299.29	287.92	287.86	287.46	287.50
35	367.78	319.44	304.92	294.34	293.74	293.63	293.60

Table 4-2 Natural frequencies of Component Mode Synthesis method analysis (No. of natural freq. : 36 70)

/TT '/		TT \
(1 n 1f	•	H7)
(Unit		1121

						(-	
Degree	10mode	15mode	20mode	25mode	30mode	70mode	FEM
36	368.10	361.59	312.99	304.00	303.08	302.93	302.90
37	374.56	368.07	318.30	312.55	312.49	312.08	312.10
38	378.28	368.30	353.80	317.56	317.52	317.48	317.50
39	399.89	374.56	368.07	321.95	318.42	318.42	318.40
40	401.52	375.90	368.20	345.11	345.10	345.09	345.10
41	414.30	401.06	375.11	353.80	353.36	352.95	352.90
42	427.48	414.29	411.99	367.86	366.14	366.03	366.00
43	428.45	421.57	414.29	375.04	375.03	374.45	374.40
44	438.02	426.99	420.04	394.41	377.84	377.71	377.70
45	444.86	428.37	426.90	415.02	411.03	410.77	410.80
46	454.08	443.47	428.37	419.92	419.29	418.73	418.70
47	546.82	464.98	441.89	434.38	419.55	419.15	419.20
48	547.47	484.07	479.50	441.87	441.84	441.74	441.70
49	564.66	512.66	481.48	472.60	472.57	456.59	456.60
50	567.43	533.50	512.24	477.18	477.09	476.77	476.80
51	567.43	548.30	536.50	483.18	483.08	481.61	481.60
52	586.83	548.35	547.13	504.81	504.29	504.08	504.10
53	605.06	550.12	550.12	512.14	512.14	511.90	511.90
54	605.33	567.43	551.41	535.56	535.35	534.82	534.80
55	610.31	567.50	567.33	542.89	539.54	538.95	538.90
56	612.84	605.06	567.50	547.11	542.22	540.65	540.60
57	632.87	605.80	582.80	550.54	550.53	550.22	550.20
58	633.38	615.65	605.68	565.49	552.35	550.60	550.60
59	643.71	632.73	605.71	582.76	569.07	555.78	555.80
60	644.40	633.17	606.88	593.31	583.17	565.07	565.10
61	656.92	638.94	616.16	605.38	590.62	582.68	582.70
62	657.34	642.43	633.17	606.29	592.56	588.17	588.20
63	657.38	657.34	633.88	617.62	606.16	604.68	604.70
64	661.76	657.37	638.98	634.36	611.98	611.65	611.60
65	677.23	670.00	657.41	640.75	617.62	616.91	616.90
66	686.94	671.72	657.45	641.76	627.35	617.19	617.20
67	688.29	680.84	670.00	657.29	638.89	637.77	637.80
68	784.03	773.28	672.69	670.13	663.26	649.99	650.00
69	784.09	781.77	751.94	672.68	670.12	668.82	668.80
70	825.93	783.97	779.08	693.08	672.41	671.47	671.40

Fig. 4-4 Comparison of natural frequencies (No. of natural freq. : 36 70)

Table 4-3 Error rate of Component Mode Synthesis method analysis (No. of natural freq. : 1 35)

						(Unit : %)
Degree	10mode	15mode	20mode	25mode	30mode	70mode
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0.32	0.32	0.32	0.32	0.32	0.32
8	0.26	0.26	0.26	0.26	0.26	0.26
9	0.29	0.29	0.29	0.29	0.29	0.29
10	0.19	0.06	0.06	0.06	0.06	0.06
11	25.21	0.03	0.00	0.00	0.00	0.00
12	21.41	0.08	0.02	0.02	0.02	0.02
13	7.20	0.39	0.02	0.02	0.00	0.02
14	9.97	0.03	0.03	0.03	0.03	0.03
15	44.02	1.11	0.12	0.04	0.04	0.01
16	26.81	2.57	0.00	0.01	0.01	0.02
17	27.06	0.19	0.10	0.07	0.07	0.04
18	35.81	10.15	0.08	0.02	0.02	0.01
19	23.68	4.15	0.10	0.08	0.02	0.02
20	44.74	3.92	0.06	0.03	0.03	0.02
21	41.24	4.57	0.10	0.07	0.06	0.04
22	31.18	12.84	0.01	0.01	0.01	0.01
23	27.55	13.39	0.22	0.15	0.15	0.02
24	26.25	16.21	0.04	0.03	0.03	0.03
25	22.88	18.80	0.07	0.02	0.02	0.01
26	26.61	10.50	0.37	0.01	0.01	0.00
27	25.34	20.36	0.29	0.21	0.21	0.02
28	26.94	23.54	0.90	0.50	0.28	0.00
29	26.90	9.37	0.27	0.06	0.06	0.02
30	21.71	19.07	0.32	0.17	0.16	0.02
31	16.82	15.19	0.14	0.14	0.12	0.01
32	15.25	11.53	6.49	0.12	0.03	0.01
33	15.83	8.36	5.02	0.10	0.06	0.01
34	16.74	8.72	4.10	0.15	0.13	0.01
35	25.27	8.80	3.86	0.25	0.05	0.01

Table 4-4 Error rate of Component Mode Synthesis method analysis (No. of natural freq. : 36 70)

						(Unit : %)
Degree	10mode	15mode	20mode	25mode	30mode	70mode
36	21.53	19.38	3.33	0.36	0.06	0.01
37	20.01	17.93	1.99	0.14	0.12	0.01
38	19.14	16.00	11.43	0.02	0.01	0.01
39	25.59	17.64	15.60	1.11	0.01	0.01
40	16.35	8.92	6.69	0.00	0.00	0.00
41	17.40	13.65	6.29	0.26	0.13	0.01
42	16.80	13.19	12.57	0.51	0.04	0.01
43	14.44	12.60	10.65	0.17	0.17	0.01
44	15.97	13.05	11.21	4.42	0.04	0.00
45	8.29	4.28	3.92	1.03	0.06	0.01
46	8.45	5.92	2.31	0.29	0.14	0.01
47	30.44	10.92	5.41	3.62	0.08	0.01
48	23.95	9.59	8.56	0.04	0.03	0.01
49	23.67	12.28	5.45	3.50	3.50	0.00
50	19.01	11.89	7.43	0.08	0.06	0.01
51	17.82	13.85	11.40	0.33	0.31	0.00
52	16.41	8.78	8.54	0.14	0.04	0.00
53	18.20	7.47	7.47	0.05	0.05	0.00
54	13.19	6.10	3.11	0.14	0.10	0.00
55	13.25	5.31	5.28	0.74	0.12	0.01
56	13.36	11.92	4.98	1.20	0.30	0.01
57	15.03	10.11	5.93	0.06	0.06	0.00
58	15.03	11.81	10.00	2.70	0.32	0.00
59	15.82	13.84	8.98	4.85	2.39	0.00
60	14.03	12.05	7.39	4.99	3.20	0.01
61	12.74	9.65	5.74	3.89	1.36	0.00
62	11.75	9.22	7.65	3.08	0.74	0.01
63	8.71	8.71	4.83	2.14	0.24	0.00
64	8.20	7.48	4.48	3.72	0.06	0.01
65	9.78	8.61	6.57	3.87	0.12	0.00
66	11.30	8.83	6.52	3.98	1.64	0.00
67	7.92	6.75	5.05	3.06	0.17	0.00
68	20.62	18.97	3.49	3.10	2.04	0.00
69	17.24	16.89	12.43	0.58	0.20	0.00
70	23.02	16.77	16.04	3.23	0.15	0.01

Fig. 4-5 Comparison of Error rate between Component Mode Synthesis method(CMS) results (No. of natural ferq. : 1 35)

Fig. 4-6 Comparison of Error rate between Component Mode Synthesis method(CMS) results (No. of natural ferq. : 36 70)

Fig. 4-1 FEM (CMS) (DRSSM) . 20 , 70 • Table 4-5 FEM , • Fig. 4-7 1 35 , Fig. 4-8 70 36 • Fig. 4-7 1 31 3가 , FEM 가 , • , Fig. 4-7 Fig.4-8 32 70 FEM , FEM . Guyan 가 • Table 4-6 FEM 1 , Fig. 4-9 35 , Fig. 4-10 36 70 . Fig. 4-9 4-10 가 0% 32

•

1 abid + 5 Results of CMD, DRSSM & 1 Di	Table 4-5	6 Results	of	CMS,	DRSSM	&	FEM
---	-----------	-----------	----	------	-------	---	-----

(Unit : Hz)

Degree	CMS	DRSSM	FEM	Degree	CMS	DRSSM	FEM
1	0.000	0.000	0.000	36	312.990	302.929	302.900
2	0.030	0.000	0.000	37	318.300	312.080	312.100
3	0.160	0.000	0.000	38	353.800	317.478	317.500
4	0.160	0.000	0.000	39	368.070	318.415	318.400
5	0.160	0.000	0.000	40	368.200	345.087	345.100
6	0.160	0.026	0.000	41	375.110	352.943	352.900
7	6.180	6.182	6.200	42	411.990	366.024	366.000
8	15.060	15.062	15.100	43	414.290	374.447	374.400
9	17.150	17.148	17.100	44	420.040	377.711	377.700
10	31.220	31.224	31.200	45	426.900	410.775	410.800
11	33.800	33.801	33.800	46	428.370	418.734	418.700
12	49.490	49.493	49.500	47	441.890	419.153	419.200
13	56.110	56.091	56.100	48	479.500	441.727	441.700
14	70.780	70.776	70.800	49	481.480	456.589	456.600
15	83.900	83.789	83.800	50	512.240	476.767	476.800
16	95.900	95.877	95.900	51	536.500	481.575	481.600
17	103.300	103.242	103.200	52	547.130	504.080	504.100
18	106.190	106.109	106.100	53	550.120	511.905	511.900
19	119.420	119.281	119.300	54	551.410	534.820	534.800
20	120.870	120.818	120.800	55	567.330	538.945	538.900
21	125.530	125.447	125.400	56	567.500	540.668	540.600
22	141.820	141.777	141.800	57	582.800	550.223	550.200
23	158.150	157.767	157.800	58	605.680	550.705	550.600
24	159.970	159.943	159.900	59	605.710	555.781	555.800
25	168.610	168.485	168.500	60	606.880	565.071	565.100
26	198.240	197.497	197.500	61	616.160	582.664	582.700
27	200.170	199.629	199.600	62	633.170	588.171	588.200
28	206.840	205.012	205.000	63	633.880	604.678	604.700
29	234.240	233.648	233.600	64	638.980	611.649	611.600
30	245.280	244.453	244.500	65	657.410	616.905	616.900
31	255.660	255.329	255.300	66	657.450	617.188	617.200
32	291.130	273.416	273.400	67	670.000	637.772	637.800
33	296.880	282.739	282.700	68	672.690	649.994	650.000
34	299.290	287.463	287.500	69	751.940	668.822	668.800
35	304.920	293.629	293.600	70	779.080	671.359	671.400

Degree	CMS	DRSSM	Degree
1	0.00	0.00	36
2	0.00	0.00	37
3	0.00	0.00	38
4	0.00	0.00	39
5	0.00	0.00	40
6	0.00	0.00	41
7	0.32	0.29	42
8	0.26	0.25	43
9	0.29	0.28	44
10	0.06	0.08	45
11	0.00	0.00	46
12	0.02	0.01	47
13	0.02	0.02	48
14	0.03	0.03	49
15	0.12	0.01	50
16	0.00	0.02	51
17	0.10	0.04	52
18	0.08	0.01	53
19	0.10	0.02	54
20	0.06	0.01	55
21	0.10	0.04	56
22	0.01	0.02	57
23	0.22	0.02	58
24	0.04	0.03	59
25	0.07	0.01	60
26	0.37	0.00	61
27	0.29	0.01	62
28	0.90	0.01	63
29	0.27	0.02	64
30	0.32	0.02	65
31	0.14	0.01	66
32	6.49	0.01	67
33	5.02	0.01	68
34	4.10	0.01	69
35	3.86	0.01	70

T able	4-6	Error	rate	of	CMS	&	DRSSM
--------	-----	-------	------	----	-----	---	-------

	(Unit : %)	
Degree	CMS	DRSSM
36	3.33	0.01
37	1.99	0.01
38	11.43	0.01
39	15.60	0.00
40	6.69	0.00
41	6.29	0.01
42	12.57	0.01
43	10.65	0.01
44	11.21	0.00
45	3.92	0.01
46	2.31	0.01
47	5.41	0.01
48	8.56	0.01
49	5.45	0.00
50	7.43	0.01
51	11.40	0.01
52	8.54	0.00
53	7.47	0.00
54	3.11	0.00
55	5.28	0.01
56	4.98	0.01
57	5.93	0.00
58	10.00	0.02
59	8.98	0.00
60	7.39	0.01
61	5.74	0.01
62	7.65	0.00
63	4.83	0.00
64	4.48	0.01
65	6.57	0.00
66	6.52	0.00
67	5.05	0.00
68	3.49	0.00
69	12.43	0.00
70	16.04	0.01

(No. of natural freq. : 1 35)

(No. of natural freq. : 36 70)

- 5.
- .
- 1)
- 2) , 7ŀ
- 3) Guyan
 - 4)
 - 가

- 가 . FEM
- 가 .
 - 가 .

32

.

[1] 長松召男, 大熊政明, "部分構造合成法", 培風館, 1991

[2] 大熊政明, "部分構造合成法による振動解析", 博士學位論文, 東京工業大學, p.58,

- [4] K.F.Ehmann, Joo H. H., "A Method for Substructural Sensitivity Synthesis" ASME J. Vol.113, p201, 1991,
- [5] R.J.Guyan, "Reduction of Stiffness and Mass Matrices", AIAA J., Vol.3, No.2, p.130, 1965
- [6] 朴錫柱,長松召男,"部分構造合成法 振動解析 動特性 最適化",韓國舶 用機關學會誌,弟13卷,弟4號,1989
 p.74,1986
- [7] 朴錫柱 3人, "プレス機械の振動解析と動特性の最適化",日本機械學會論文集C,56
 524 , p. 872, Apr. 1990
- [8] 朴錫柱, "モ-ド合成法による振動解析と動特性の最適化",東京工業大學 博士學位 論 文, Mar. 1989
- [9] 長松召男, "モ-ド 解析", 培風館, pp.76-85, pp.166-170,1985
- [10] A. Nagamatsu, T. Ishii, S. Honda., "Vibration analysis and structural optimazation of a press machine", Finite Elements in Analysis and Design, The International Journal of Applied Finite Elements and Computer Aided Engineering, Vol. 14 No.2&3, Elsevier Publishers B.V., pp.297, Oct. 1993

, 16 , 5 , pp.60, 1992

- [12] A.A Huckelbridge, C.Lawrence, "Identification of Structural Interface Characteristics Using Component Mode Synthesis", ASME J., Vol.111 pp.140, 1989
- [13] 戶川隼人, "マトフリクスの數値解析", オーム社, pp.170 177, 224 230, 1971