工學碩士 學位論文

A Research about the Wave Force on Cylinders in Transient Waves

指導教授 趙孝 濟

2001年 2月

韓國海洋大學校 大學院

造船工學科

李 相 吉

本 論文 李相吉 工學 碩士 學位論文 認准

主審 工學博士 金 度三 (印)

- 副審 工學博士 玄 汎洙 (印)
- 副審 工學博士 趙 孝濟 (印)

2001年 2月

韓國海洋大學校 大學院

造船工學科

李 相 吉

A Research about Wave Force on Cylinders in Transient Waves

by

Sang-kil Lee

Department of Naval Architecture Graduate School Korea Maritime University

ABSTRACT

When the very large offshore structures are constructed at sea, the site has a various wave in which the physical phenomena are very complicated. But most research on the wave force of the very large offshore structures are carried out on linear wave force. Because of the complexity of analysis and difficulties of measurement. To get more realistic estimations of force on offshore structures in real sea, it is necessary to consider the effects of nonlinear water waves. Some research has been carried out analysis of transient waves to consider breaking waves. However, almost all of the simulations to transient waves are very complicated and difficult because of taking measurements.

This paper first presents easier simulation to transient wave. Second, It compares wave force based on the 3-D source distribution method and measured in breaking waves. A numerical procedure is described for predicting the wave force of cylinders by the 3-D source distribution method. As well as, to analysis of irregular wave, carried out a convolution integral with a response impulse function which is to take inverse FFT the wave exciting force in frequency domain. And transient wave is solved from linear Airy wave theory and based on combining an energy transmission velocity and a wave phase velocity. This formula applies to any water depth, because this formula includes linear dispersion relationship.

when the 3-D source distribution method is used to calculate the wave force and generated by breaking wave meets the very large floating body, the resulting figures are smaller than the real wave force.

At	strac	t
No	meno	clature
Lis	st of	T ables
Lis	st of	Figures
1.		
	1.1	
	1.2	
	1.3	
2		3
2.	2.1	2
	2.1	
	2.2	
	2.5	12
	2.4	
	2.)	
3.		
4.		
	4.1	
	4.2	1
	4.3	
5		
C	5 1	
	5.2	
	53	34
	5.4	
	5.5	
	5.5.	1
	5.5	2
	5.5	3
6.		

Contents

References	
. Haskind	

Nomenclature

A_{w}				
σ				
ε				
$\left\{ f \begin{array}{c} {}^{(1)}_{Fk} \end{array} \right\}$		$\omega_k = 1$		
$\{F^{(0)}\}$		S_m		
$\{F^{(1)}\}$				1
G				
8	가			
H_{F}				
$h_F(z)$				
k				
k _k	k	1		
$\mu_{_{kj}}$	j		k	가
<i>{ n }</i>				
${m u}_{kj}$	j		k	
O - X YZ				
$\widehat{O} - \widehat{X} \widehat{Y} \widehat{Z}$				
O' - X 'Y'Z'				
$\{ \Omega \}$				
$\{\dot{\Omega}\}$				
ω_k	k	1		
P 0				
Р		S _H	ł	
P			S_m	
\varPhi				
${\cal D}_{I}$				
${\cal O}_{D}$				
${\cal O}_{R}$				
[R]				
r				
ρ				
S _H				

S _m	S_m	
V		
V _n		
{ <i>V</i> }		
(X_f, Y_f)		
<i>{Ξ}</i>		
{ <i>Ξ</i> }		
Ζ		
$\zeta(X, Y, t)$		
$\boldsymbol{\xi}^{(1)}$	(X = Y = 0)	1
Ś R		

List of Tables

T able	4.1	Principal Dimensions of Models2	5
T able	5.1	List of Cases	2
T able	5.2	Results of Breaking Wave4	9

List of Figures

Fig	2.1	Coordinate Systems
Fig	2.2	Transformation of Coordinates7
Fig	2.3	Relationship between S and Sm13
Fig	4.1	Plans for Model
Fig	4.2	Plans for Model
Fig	4.3	Wave Exciting Force and Moment (Model)
Fig	4.4	Wave Exciting Force and Moment from Haskind Relation (Model)27
Fig	4.5	Wave Exciting Force and Moment (Model)28
Fig	4.6	Wave Exacting Force and Moment from Haskind Relation ($Model\;$)28
Fig	4.7	Impulse Function of Surge (Model)
Fig	4.8	Impulse Function of Heave (Model)
Fig	4.9	Impulse Function of Surge (Model)
Fig	4.10	Impulse Function of Heave (Model)
Fig	5.1	A Propagating Regular Signal
Fig	5.2	Input Wave Profile into Wave Maker (Case)
Fig	5.3	Input Wave Profile into Wave Maker (Case)
Fig	5.4	Input Wave Profile into Wave Maker (Case)
Fig	5.5	Input Wave Profile into Wave Maker (Case)
Fig	5.6	The Filtering Process of Experimental (Spectrum)
Fig	5.7	The Filtering Process of Experimental Data (Force Domain)34
Fig	5.8	Photo Wave Profile near The Cylinder (Case , Model)
Fig	5.9	Photo Wave Profile on The Cylinder(Case , Model)
Fig	5.10	Photo Wave Profile near The Cylinder (Case , Model)
Fig	5.11	Photo Wave Profile on The Cylinder (Case , Model)
Fig	5.12	Photo Wave Profile near The Cylinder (Case , Model)
Fig	5.13	Photo Wave Profile on The Cylinder (Case , Model)
Fig	5.14	Photo Wave Profile near The Cylinder (Case , Model)
Fig	5.15	Photo Wave Profile on The Cylinder (Case , Model)
Fig	5.16	Photo Wave Profile near The Cylinder (Case , Model $$) $$
Fig	5.17	Photo Wave Profile on The Cylinder (Case , Model)40
Fig	5.18	Photo Wave Profile near The Cylinder (Case , Model)41
Fig	5.19	Photo Wave Profile on The Cylinder (Case , Model)41
Fig	5.20	Measured Wave Profile (Case)42
Fig	5.21	Measured Wave Profile (Case)
Fig	5.22	Measured Wave Profile (Case)
Fig	5.23	Measured Wave Profile (Case)
Fig	5.24	Relationship Between Maximum Wave Slope and Wave Height43
Fig	5.25	Theoretical Wave Force in Time Domain (Case , Model) $\dots 45$

Fig	5.26	Theoretical Wave Force in Time Domain ($Case \ $, $Model \ $) $\ $
Fig	5.27	Theoretical Wave Force in Time Domain ($Case \ , \ Model \) \ \dots 45$
Fig	5.28	Theoretical Wave Force in Time Domain ($Case \ $, $Model \ $) $\ $
Fig	5.29	$Experimental \ Wave \ Force \ in \ Time \ Domain \ (\ Case \ , \ Model \) \$
Fig	5.30	Experimental Wave Force in Time Domain (Case , Model)
Fig	5.31	Experimental Wave Force in Time Domain (Case , Model) $\dots 46$
Fig	5.32	Experimental Wave Force in Time Domain (Case , Model)
Fig	5.33	Theoretical Wave Force in Time Domain (Case $\ , Model \)$
Fig	5.34	Theoretical Wave Force in Time Domain (Case $\ $, Model $\ $)
Fig	5.35	Theoretical Wave Force in Time Domain (Case $% \left({\left({{{\rm{Case}}}} \right)} \right)$
Fig	5.36	Theoretical Wave Force in Time Domain (Case $% \left({\left({{{\rm{Case}}}} \right)} \right)$
Fig	5.37	Experimental Wave Force in Time Domain (Case , Model)
Fig	5.38	Experimental Wave Force in Time Domain (Case , Model)
Fig	5.39	Experimental Wave Force in Time Domain (Case , Model)
Fig	5.40	Experimental Wave Force in Time Domain (Case, Model)
Fig	5.41	Comparison Experimental with Theoretical Maximum Wave Force (Model $\)$. 49
Fig	5.42	Comparison Experimental with Theoretical Maximum Wave Force (Model).49

- 1.
- 1.1

1.2

가 가

Seiji Takezawa가

[3][4]. J. S.

.

•

[5].

(Navier-Stokes equation) [6].

2 , ,

(SDM)

•

(impulse response (convolution integral)

가

,

가

- 2 -

(Fourier)

,

.

가

(time history)

function)

.

Reid

Park

2.1

, Z

O' - X 'Y'Z'

Fig 2.1 Coordinate Systems

	7	'F		
가				
		Fig2.1	0	가
Ζ		O - X YZ,		
	\widehat{O} - \widehat{X} $\widehat{Y}\widehat{Z}$			
- X 'Y'Z'		, , ,	,	
	ε	가, <i>O</i> -XYZ		
	0	$\{\boldsymbol{\Xi}\}=\{\boldsymbol{\Xi}_1 \ \boldsymbol{\Xi}_2 \ \boldsymbol{\Xi}_3\}^T$	n	
$\{\Omega\} = \{\Omega_1 \ \Omega_2 \ \Omega_1$	$2_{3} \}^{T}$			
$\{\Xi\} = \{\Xi\}$	$\left[\begin{array}{cc} \Xi_2 \end{array} \right]^T$			
= <i>ε</i> {Ξ	$\left\{ {{{\cal E}_{1}^{\left(1 \right)}}\;{{\cal E}_{2}^{\left(1 \right)}}\;{{\cal E}_{3}^{\left(1 \right)}}} ight\}^{T} + {{arepsilon }^{2}}$	$\left\{ \Xi_{1}^{(2)} \ \ \Xi_{2}^{(2)} \ \ \Xi_{3}^{(2)} ight\}^{T} + \ O(\varepsilon^{3})$	(2.1)	
$= \varepsilon \{\Xi$	(1) + ε^{2} { $\Xi^{(2)}$ } + $O(\varepsilon)$	ε^{3})		

$$\{ \Omega \} = \{ \Omega_1 \ \Omega_2 \ \Omega_3 \}^T$$

= $\varepsilon \{ \Omega_1^{(1)} \ \Omega_2^{(1)} \ \Omega_3^{(1)} \}^T + \varepsilon^2 \{ \Omega_1^{(2)} \ \Omega_2^{(2)} \ \Omega_3^{(2)} \}^T + O(\varepsilon^3)$ (2.2)
= $\varepsilon \{ \Omega^{(1)} \} + \varepsilon^2 \{ \Omega^{(2)} \} + O(\varepsilon^3)$

,
$$\{\Xi^{(1)}\}$$
 $\{Q^{(1)}\}$ 1
 $\{\Xi^{(2)}\}$ $\{Q^{(2)}\}$ 2 . . , ϕ^{7}
(Laplace equation) , $\phi^{(1)}$, $\phi^{(2)}$
. ,
 $\nabla^{2} \phi = 0$

,

.

$$\nabla^{2} (\boldsymbol{\varepsilon} \boldsymbol{\varPhi}^{(1)} + \boldsymbol{\varepsilon}^{2} \boldsymbol{\varPhi}^{(2)} + \ldots) = 0$$

$$\nabla^{2} \boldsymbol{\varPhi}^{(1)} = 0, \quad \nabla^{2} \boldsymbol{\varPhi}^{(2)} = 0, \ldots$$
(2.3)

2.2

.

(Bernoulli equation)

$$\frac{1}{\rho}P = -\frac{\partial \Phi}{\partial t} - \frac{1}{2} \nabla \Phi \cdot \nabla \Phi - gZ$$
(2.4)

.

,
$$\rho$$
 , $Z = \zeta(X, Y, t)$,

$$-\frac{\partial \Phi}{\partial t} - \frac{1}{2} \nabla \Phi \cdot \nabla \Phi - gZ = \frac{1}{\rho} P_0 = 0$$

$$gZ + \Phi_t + \frac{1}{2} (\Phi_X^2 + \Phi_Y^2 + \Phi_Z^2) = 0 \quad on \ Z = \zeta(X, Y, t)$$
(2.5)

0

$$-\frac{1}{\rho}\frac{DP}{Dt} = \Phi_{tt} + g\Phi_{z} + \frac{\partial}{\partial t} [\nabla \Phi \cdot \nabla \Phi] + \frac{1}{2} \nabla \Phi \cdot \nabla (\nabla \Phi \cdot \nabla \Phi)$$

$$= 0 \qquad on \ Z = \zeta(X, Y, t)$$
(2.6)

,
$$\Phi(X, Y, Z, t)$$
 , , , , , , $\zeta(X, Y, t)$, g 7 \uparrow .

$$\Phi(X, Y, Z, t) = \varepsilon \Phi^{(1)} + \varepsilon^2 \Phi^{(2)} + \varepsilon^3 \Phi^{(3)} + \dots$$

$$\zeta(X, Y, t) = \varepsilon \zeta^{(1)} + \varepsilon^2 \zeta^{(2)} + \varepsilon^3 \zeta^{(3)} + \dots$$
(2.7)

(2.5)
$$Z = 0$$
 (Taylor) , (2.7) 2
, 1 2 7. .

$$\left[\varepsilon \left(g \zeta^{(1)} + \boldsymbol{\Phi}_{t}^{(1)} \right) + \varepsilon^{2} \left(g \zeta^{(2)} + \boldsymbol{\Phi}_{t}^{(2)} + \frac{1}{2} \boldsymbol{\Phi}_{X}^{(1)^{2}} + \frac{1}{2} \boldsymbol{\Phi}_{Y}^{(1)^{2}} + \frac{1}{2} \boldsymbol{\Phi}_{Z}^{(1)^{2}} + \zeta^{(1)} \boldsymbol{\Phi}_{Z}^{(1)} \right) + O(\varepsilon^{3}) \right]_{Z=0} = 0$$

first order :

$$(g \zeta^{(1)} + \boldsymbol{\Phi}_{t}^{(1)})|_{Z=0} = 0$$

$$\zeta^{(1)} = -\frac{1}{g} \boldsymbol{\Phi}_{t}^{(1)} \qquad on \quad Z=0$$
(2.8)

second order :

,

$$\left(g\,\zeta^{(2)}+\,\boldsymbol{\varPhi}_{t}^{(2)}+\frac{1}{2}\,\boldsymbol{\varPhi}_{X}^{(1)^{2}}+\frac{1}{2}\,\boldsymbol{\varPhi}_{Y}^{(1)^{2}}+\frac{1}{2}\,\boldsymbol{\varPhi}_{Z}^{(1)^{2}}+\,\zeta^{(1)}\,\boldsymbol{\varPhi}_{Z}^{(1)}\right)\Big|_{Z=0}=0$$

$$\zeta^{(2)}=-\frac{1}{g}\,\boldsymbol{\varPhi}_{t}^{(2)}-\frac{1}{2g}\,(\boldsymbol{\varPhi}_{X}^{(1)^{2}}+\boldsymbol{\varPhi}_{Y}^{(1)^{2}}+\boldsymbol{\varPhi}_{Z}^{(1)^{2}})+\frac{1}{g^{2}}\,\boldsymbol{\varPhi}_{t}^{(1)}\boldsymbol{\varPhi}_{Z}^{(1)}$$

$$on \quad Z=0$$

$$(2.9)$$

,
$$\zeta^{(1)}$$
 (X = Y = 0) 1

$$\begin{aligned} \zeta^{(1)} &= R e \sum_{k=1}^{N} \left[a_{k}^{(1)} e^{i(\{K_{k}\} \cdot \{r\} \cdot \{\omega_{k}t\})} \right] = R e \sum_{k=1}^{N} \left[a_{k}^{(1)} e^{-i\omega_{k}t} \right] \\ &= \sum_{k=1}^{N} \left[a_{k}^{(1)} \left| \cos\left(\omega_{k}t - \varepsilon_{k}\right) \right. \right] \end{aligned}$$
(2.10)

$$a_{k}^{(1)} |a_{k}^{(1)}| e^{i\varepsilon_{k}}$$

$$\{K_{k}\} = k_{k} \cos \beta\{i\} + k_{k} \sin \beta\{j\} = \{k_{k} \cos \beta \ k_{k} \sin \beta \ 0\}^{T}$$

$$\{r\} = X\{i\} + Y\{j\} = \{X \ Y \ 0\}^{T}$$
(2.11)

$$, a_{k}^{(1)}, k_{k}, \omega_{k}, \varepsilon_{k} \qquad k \qquad 1 \qquad , , , \\ , \qquad , \beta \qquad . , (2.6) \qquad Z=0 \\ (2.7) \qquad , \qquad 1 \qquad 2 \\ .$$

first order : $\Phi_{tt}^{(1)} + g \Phi_Z^{(1)} = 0$ on Z = 0 (2.12)

(2.12) $\mathbf{\Phi}^{(1)}$ 1 , (diffraction potential) (radiation potential) .

$$\boldsymbol{\Phi}^{(1)} = \boldsymbol{\Phi}_{I}^{(1)} + \boldsymbol{\Phi}_{D}^{(1)} + \boldsymbol{\Phi}_{R}^{(1)}$$
(2.14)

1 1 , ,

2

$$\Phi^{(1)} = R e \sum_{k=1}^{2} [a_{k}^{(1)} \phi_{k}^{(1)} e^{-i\omega_{k}t}]
\Phi^{(1)}_{I} = R e \sum_{k=1}^{2} [a_{k}^{(1)} \phi_{Ik}^{(1)} e^{-i\omega_{k}t}]
\Phi^{(1)}_{D} = R e \sum_{k=1}^{2} [a_{k}^{(1)} \phi_{Dk}^{(1)} e^{-i\omega_{k}t}]
\Phi^{(1)}_{R} = R e \sum_{k=1}^{2} [a_{k}^{(1)} \phi_{Rk}^{(1)} e^{-i\omega_{k}t}] = R e \sum_{j=1}^{6} \sum_{k=1}^{2} [-i\omega_{k} \eta_{jk}^{(1)} a_{k}^{(1)} \phi_{jk}^{(1)} e^{-i\omega_{k}t}]$$
(2.15)

	$\eta_{_{jk}}^{_{(1)}} \phi_{_{jk}}^{_{(1)}}$	ω_k	가	j
		j	ω_k	
가	(2.14)	(2.15) 1		
	$- \omega_{k}^{2} \phi_{Ik}^{(1)} - \omega_{k}^{2} \phi_{Dk}^{(1)} - \omega_{k}^{2} \phi_{Dk}^{(1)} - \omega_{k}^{2} \phi_{jk}^{(1)} - \omega_{k}^{2} \phi_{jk}^$	+ $g(\phi_{Ik}^{(1)})_{Z} = 0$ + $g(\phi_{Dk}^{(1)})_{Z} = 0$ + $g(\phi_{jk}^{(1)})_{Z} = 0$	$on \ Z = 0$ $on \ Z = 0$ $on \ Z = 0$	(2.16)

$$S_{H}(X, Y, Z, t) = 0 ,$$

$$\{n\} = \{n_{1}, n_{2}, n_{3}\}^{T} ,$$

$$7$$

$$\frac{\partial}{\partial n} \Phi = \{n\} \cdot \nabla \Phi = V_{n} = \{n\} \cdot \{V\} \quad on \ S_{H} \quad (2.17)$$

$$, \ V_{n} \quad \{V\}$$

$$Q = X \ YZ \quad Q = \widehat{X} \widehat{X} \widehat{Z}$$

. ...

$$O - X YZ, \qquad O - X YZ$$
$$O' - X 'Y'Z'$$
$$\{X \} = \{X Y Z\}^{T}, \{\widehat{X}\} = \{\widehat{X} \ \widehat{Y} \ \widehat{Z}\}^{T} \quad \{X '\} = \{X ' Y' Z'\} \quad , \qquad 7\}$$

$$\{\widehat{X}\} = [R](\{X\} - \{\Xi\}) = [R]\{X'\}$$

$$\{X\} = [R]^{T}\{\widehat{X}\} + \{\Xi\}$$

$$\{X'\} = [R]^{T}\{\widehat{X}\}$$
(2.18)

, $[R]^{T}$ [R] , [*R*]

2.3

•

(a)Roll (b)Pitch (c) Yaw Fig 2.2 Transformation of Coordinates

,

$$[R] \qquad \mathcal{Q}_1, \mathcal{Q}_2, \mathcal{Q}_3 \qquad \text{Fig 2.2}$$

$$\{ \hat{X} \} = [A] \{ X' \} [A] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos Q_1 & \sin Q_1 \\ 0 & -\sin Q_1 & \cos Q_1 \end{bmatrix}$$

•

$$\{\overline{X}\} = [B] \{\widehat{X}\}$$

$$[B] = \begin{bmatrix} \cos \Omega_2 & 0 & -\sin \Omega_2 \\ 0 & 1 & 0 \\ \sin \Omega_2 & 0 & \cos \Omega_2 \end{bmatrix}$$

$$\{\widehat{X}\} = [C] \{\overline{X}\}$$

$$[C] = \begin{bmatrix} \cos \Omega_3 & \sin \Omega_3 & 0 \\ -\sin \Omega_3 & \cos \Omega_3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[R] = [C][B][A]$$

$$= \begin{bmatrix} \cos \mathcal{Q}_{2} \cos \mathcal{Q}_{3} & \cos \mathcal{Q}_{1} \sin \mathcal{Q}_{3} + \sin \mathcal{Q}_{1} \sin \mathcal{Q}_{2} \cos \mathcal{Q}_{3} & \sin \mathcal{Q}_{1} \sin \mathcal{Q}_{3} - \cos \mathcal{Q}_{1} \sin \mathcal{Q}_{2} \cos \mathcal{Q}_{3} \\ - \cos \mathcal{Q}_{2} \sin \mathcal{Q}_{2} & \cos \mathcal{Q}_{1} \cos \mathcal{Q}_{3} - \sin \mathcal{Q}_{1} \sin \mathcal{Q}_{2} \sin \mathcal{Q}_{3} & \sin \mathcal{Q}_{1} \cos \mathcal{Q}_{3} + \cos \mathcal{Q}_{1} \sin \mathcal{Q}_{2} \sin \mathcal{Q}_{3} \\ \sin \mathcal{Q}_{2} & - \sin \mathcal{Q}_{1} \cos \mathcal{Q}_{2} & \cos \mathcal{Q}_{1} \cos \mathcal{Q}_{2} \end{bmatrix}$$

$$(2.19)$$

{
$$\Omega$$
} sin Ω_1 cos Ω_1 (Maclaurin) , (2.2)

$$\sin \Omega_{1} = \Omega_{1} - \frac{\Omega_{1}^{3}}{3!} + \frac{\Omega_{1}^{5}}{5!} - \dots = \varepsilon \Omega_{1}^{(1)} + \varepsilon^{2} \Omega_{1}^{(2)} + O(\varepsilon^{3})$$

$$\cos \Omega_{1} = 1 - \frac{\Omega_{1}^{2}}{2!} + \frac{\Omega_{1}^{4}}{4!} - \dots = 1 - \frac{\varepsilon^{2} \Omega_{1}^{(2)}}{2} + O(\varepsilon^{3})$$
(2.20)

, .

$$[R] \in \mathcal{E}$$

.

,

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \varepsilon \begin{bmatrix} 0 & \mathcal{Q}_{3}^{(1)} & - \mathcal{Q}_{2}^{(1)} \\ - \mathcal{Q}_{3}^{(1)} & 0 & \mathcal{Q}_{1}^{(1)} \\ \mathcal{Q}_{2}^{(1)} & \mathcal{Q}_{1}^{(1)} & 0 \end{bmatrix} + \varepsilon^{2} \begin{bmatrix} 0 & \mathcal{Q}_{3}^{(2)} & - \mathcal{Q}_{2}^{(2)} \\ - \mathcal{Q}_{3}^{(2)} & 0 & \mathcal{Q}_{1}^{(2)} \\ \mathcal{Q}_{2}^{(2)} & - \mathcal{Q}_{1}^{(2)} & 0 \end{bmatrix}$$
$$- \frac{\varepsilon^{2}}{2} \begin{bmatrix} \mathcal{Q}_{2}^{(1)^{2}} + \mathcal{Q}_{3}^{(1)^{2}} & - \mathcal{Q}_{1}^{(1)} \mathcal{Q}_{2}^{(1)} & - 2\mathcal{Q}_{1}^{(1)} \mathcal{Q}_{3}^{(1)} \\ 0 & \mathcal{Q}_{1}^{(1)^{2}} + \mathcal{Q}_{3}^{(1)^{2}} & - 2\mathcal{Q}_{2}^{(1)} \mathcal{Q}_{3}^{(1)} \\ 0 & 0 & \mathcal{Q}_{1}^{(1)^{2}} + \mathcal{Q}_{2}^{(1)^{2}} \end{bmatrix} + O(\varepsilon^{3})$$
$$= [R^{(0)}] + \varepsilon[R^{(1)}] + \varepsilon^{2}[R_{1}^{(2)}] + \varepsilon^{2}[R_{2}^{(2)}] + O(\varepsilon^{3}) \qquad (2.21)$$

.

(2.18)

$$\{X\} = [R]^{T} \{\widehat{X}\} + \{\Xi\}$$

= $([R^{(0)}]^{T} + \varepsilon[R^{(1)}]^{T} + \varepsilon^{2}[R^{(2)}_{1}]^{T} + \varepsilon^{2}[R^{(2)}_{2}]^{T})\{\widehat{X}\}$
+ $\varepsilon\{\Xi^{(1)}\} + \varepsilon^{2}\{\Xi^{(2)}\} + O(\varepsilon^{3})$

$$\{n^{(0)}\} = \{\hat{n}\}$$

$$\{n^{(1)}\} = \{Q^{(1)}\} \times \{\hat{n}\}$$

$$\{n^{(2)}\} = \{Q^{(2)}\} \times \{\hat{n}\} + [H]\{\hat{n}\}$$

$$S_{H}$$

$$S_{m}$$

$$(2.26) \qquad 5_{m}$$

$$(2.26) \qquad S_{m}$$

$$(2.26) \qquad S_{m}$$

$$(2.26) \qquad S_{m}$$

$$\{n\} = ([R^{(0)}]^{T} + \varepsilon[R^{(1)}]^{T} + \varepsilon^{2}[R^{(2)}_{1}]^{T} + \varepsilon^{2}[R^{(2)}_{2}]^{T})\{\hat{n}\} + O(\varepsilon^{3})$$

$$= \{\hat{n}\} + \varepsilon(\{\Omega^{(1)}\} \times \{\hat{n}\}) + \varepsilon^{2}(\{\Omega^{(2)}\} \times \{\hat{n}\} + [H]\{\hat{n}\}) + O(\varepsilon^{3})$$

$$= \{n^{(0)}\} + \varepsilon\{n^{(1)}\} + \varepsilon^{2}\{n^{(2)}\} + O(\varepsilon^{3})$$

[*R*]

.

.

$$\begin{array}{cccc} & & & , & O'-X'Y'Z' \\ n & & & \widehat{O}-\widehat{X}\widehat{Y}\widehat{Z} & & & \{\widehat{n}\} \end{array}$$

.

(2.18)

,

$$[H] = [R_{2}^{(2)}]^{T} = -\frac{1}{2} \begin{bmatrix} \mathcal{Q}_{2}^{(1)^{2}} + \mathcal{Q}_{3}^{(1)^{2}} & 0 & 0 \\ -2\mathcal{Q}_{1}^{(1)}\mathcal{Q}_{2}^{(1)} & \mathcal{Q}_{1}^{(1)^{2}} + \mathcal{Q}_{3}^{(1)^{2}} & 0 \\ -2\mathcal{Q}_{1}^{(1)}\mathcal{Q}_{3}^{(1)} & 2\mathcal{Q}_{2}^{(1)}\mathcal{Q}_{3}^{(1)} & \mathcal{Q}_{1}^{(1)^{2}} + \mathcal{Q}_{2}^{(1)^{2}} \\ \end{array}$$

$$(2.24)$$

•

$$\{X^{(0)}\} = \{\widehat{X}\}$$

$$\{X^{(1)}\} = \{\Xi^{(0)}\} + \{Q^{(1)}\} \times \{\widehat{X}\}$$

$$\{X^{(2)}\} = \{\Xi^{(2)}\} + \{Q^{(2)}\} \times \{\widehat{X}\} + [H]\{\widehat{X}\}$$

$$(2.23)$$

$$= \{\widehat{X}\} + \varepsilon (\{\Xi^{(1)}\} + \{\Omega^{(1)}\} \times \{\widehat{X}\}) + \varepsilon^{2} (\{\Xi^{(2)}\} + \{\Omega^{(2)}\} \times \{\widehat{X}\} + [H] \{\widehat{X}\}) + O(\varepsilon^{3})$$
(2.22)
$$= \{X^{(0)}\} + \varepsilon \{X^{(0)}\} + \varepsilon^{2} \{X^{(2)}\} + O(\varepsilon^{3})$$

$$\{\vec{\Xi}^{(1)}\} = Re \sum_{k=1}^{2} [a_{k}^{(1)}(-i\omega_{k})\{\xi_{k}^{(1)}\}e^{-i\omega_{k}t}]$$

(2.32)

$$(\phi_{Dk}^{(1)})_{n} = - (\phi_{Ik}^{(1)})_{n}$$
(2.33)

(2.15) (2.31) .

$$\{\hat{n}\} \cdot \nabla \Phi_{R}^{(1)} = \{\hat{n}\} \cdot [\{\Xi^{(1)}\} + \{Q^{(1)}\} \times \{\hat{X}\}] \quad on \ S_{m} \qquad (2.31)$$

$$\{\widehat{n}\} \cdot \nabla \Phi_D^{(1)} = -\{\widehat{n}\} \cdot \nabla \Phi_I^{(1)} \qquad on \ S_m \qquad (2.31)$$

(2.30) 1

.

$$\{\hat{n}\} \cdot (\nabla \boldsymbol{\Phi}_{I}^{(1)} + \nabla \boldsymbol{\Phi}_{D}^{(1)} + \nabla \boldsymbol{\Phi}_{R}^{(1)}) = \{\hat{n}\} \cdot [\{\hat{\boldsymbol{\Xi}}^{(1)}\} + \{\hat{\boldsymbol{\Omega}}^{(1)}\} \times \{\hat{\boldsymbol{X}}\}]$$
(2.30)

.

(2.14) (2.27) ,

$$B^{(2)}(X, Y, Z, t) = \{\hat{n}\} \cdot [[\dot{H}]\{\hat{X}\} - (X^{(1)} \cdot \nabla) \nabla \Phi^{(1)}] + (\{\Omega^{(1)}\} \times \{\hat{n}\}) \cdot [\{X^{(1)}\} - \nabla \Phi^{(1)}] \quad on \ S_{m}$$
(2.29)

$$- [(\{\Xi^{(1)}\} + \{\Omega^{(1)}\} \times \{\Omega^{(1)}\}) \cdot \nabla] \nabla \varPhi^{(1)}\}$$

$$+ (\{\Omega^{(1)}\} \times \{\hat{n}\}) \cdot [(\{\Xi^{(1)}\} + \{\Omega^{(1)}\} \times \{\hat{X}\}) - \nabla \varPhi^{(1)}]$$

$$= \{\hat{n}\} \cdot (\{\Xi^{(1)}\} + \{\Omega^{(2)}\} \times \{\hat{X}\})$$

$$+ \{\hat{n}\} \cdot [[\dot{H}]\{\hat{X}\} - (\{X^{(1)}\} \cdot \nabla) \nabla \varPhi^{(1)}]$$

$$+ (\{\Omega^{(1)}\} \times \{\hat{n}\}) \cdot (\{X^{(1)}\} - \nabla \varPhi^{(1)})$$

$$= \{\hat{n}\}[\{\Xi^{(2)}\} + \{\Omega^{(2)}\} \times \{\hat{X}\}]B^{(2)}(X, Y, Z, t)$$
on S_m

(2.28)

second order :

,

first

$$\{\hat{n}\} \cdot \nabla \Phi^{(1)} = \{\hat{n}\} \cdot [\{\Xi^{(1)}\} + \{\Omega^{(1)}\} \times \{\hat{X}\}]$$

order :
$$= \{\hat{n}\} \cdot \{V^{(1)}\} \qquad on \quad S_{m} \qquad (2.27)$$

 $\{\widehat{n}\} \cdot \nabla \boldsymbol{\varPhi}^{(2)} = \{\widehat{n}\} \cdot \{(\{\vec{\Xi^{(2)}}\} + \{\vec{\varOmega^{(2)}}\} \times \{\hat{X}\} + [\vec{H}]\{\hat{X}\})$

$$\{\Omega^{(1)}\} = R e \sum_{k=1}^{2} [a_{k}^{(1)}(-i\omega_{k})\{a_{k}^{(1)}\}e^{-i\omega_{k}t}]$$
(2.34)

$$(\phi_{Rk}^{(1)})_{n} = -i\omega\{\hat{n}\} \cdot (\{\xi_{k}^{(1)}\} + \{a_{k}^{(1)}\} \times \{\hat{X}\}) \quad on \quad S_{m}$$
(2.35)

$$, \qquad (\phi_{jk}^{(1)})_n = \widehat{n_j}, \qquad (j = 1 \sim 6) \tag{2.36}$$

$$j=1 \qquad - \omega_{k} \{ \hat{\xi}_{k}^{(1)} \} = \{i\}, \{ a_{k}^{(1)} \} = \{0\}$$

$$j=2 \qquad - \omega_{k} \{ \hat{\xi}_{k}^{(1)} \} = \{j\}, \{ a_{k}^{(1)} \} = \{0\}$$

$$j=3 \qquad - \omega_{k} \{ \hat{\xi}_{k}^{(1)} \} = \{k\}, \{ a_{k}^{(1)} \} = \{0\}$$

$$j=4 \qquad \{ \hat{\xi}_{k}^{(1)} \} = \{0\}, - i\omega_{k} \{ a_{k}^{(1)} \} = \{i\}$$

$$j=5 \qquad \{ \hat{\xi}_{k}^{(1)} \} = \{0\}, - i\omega_{k} \{ a_{k}^{(1)} \} = \{j\}$$

$$j=6 \qquad \{ \hat{\xi}_{k}^{(1)} \} = \{0\}, - i\omega_{k} \{ a_{k}^{(1)} \} = \{j\}$$

$$j=6 \qquad \{ \hat{\xi}_{k}^{(1)} \} = \{0\}, - i\omega_{k} \{ a_{k}^{(1)} \} = \{k\}$$

$$\{ \hat{n} \} \cdot (\{i\} \times \{ \hat{X} \}) = \hat{n}_{4}$$

$$\{ \hat{n} \} \cdot (\{k\} \times \{ \hat{X} \}) = \hat{n}_{6}$$

2.2 2.3

1 2 . 1 2 .

(1	radiation)			
	$\nabla {}^2 \phi_{jk}^{(1)} = 0$	i n	${\it \Omega}$	(2.37)
	$- \omega_{k}^{2} \phi_{jk}^{(1)} + g(\phi_{jk}^{(1)})_{Z} = 0$	on	Z = 0	(2.38)
	$(\phi_{jk}^{(1)})_n = \widehat{n_j}$	on	S _m	(2.39)
	$(\phi_{jk}^{(1)})_n = (\phi_{jk}^{(1)})_z = 0$	on	S _B	(2.40)
	$\lim_{R \to \infty} \sqrt{R} \left(\frac{\partial \phi_{jk}^{(1)}}{\partial R} - ik \phi_{jk}^{(1)} \right) = 0$	on	S _R	(2.41)

(1 diffraction)

$$\nabla^{2} \phi_{Dk}^{(1)} = 0 \qquad in \quad \Omega \qquad (2.42)$$

$$- \omega_{k}^{2} \phi_{Dk}^{(1)} + g(\phi_{Dk}^{(1)})_{Z} = 0 \qquad on \quad Z = 0 \qquad (2.43)$$

$$(\phi_{Dk}^{(1)})_{n} = - (\phi_{Ik}^{(1)})_{n} \qquad on \quad S_{m} \qquad (2.44)$$

$$(\phi_{Dk}^{(1)})_{n} = (\phi_{Dk}^{(1)})_{Z} = 0 \qquad on \quad S_{B} \qquad (2.45)$$

$$(\varphi_{Dk})_{n} = (\varphi_{Dk})_{Z} = 0 \qquad on \quad S_{B} \qquad (2.45)$$
$$\lim_{R \to \infty} \sqrt{R} \left(\frac{\partial \phi_{Dk}^{(1)}}{\partial R} - ik \phi_{Dk}^{(1)} \right) = 0 \qquad on \quad S_{R} \qquad (2.46)$$

(2 radiation)
$$\nabla^2 \phi_{ijj}^{\pm(2)} = 0$$

$$\nabla^{2} \phi_{ikl}^{\pm(2)} = 0 \qquad in \quad \Omega \qquad (2.47)$$

$$- (\omega_{k} \pm \omega_{l})^{2} \phi_{ikl}^{(2)} + g(\phi_{ikl}^{(2)})_{Z} = 0 \qquad on \quad Z = 0 \qquad (2.48)$$

$$(\phi_{ikl}^{\pm(2)})_{n} = \widehat{n_{i}} \qquad on \quad S_{m} \qquad (2.49)$$

$$(\phi_{ikl}^{\pm})_{n} = h_{j} \qquad \qquad on \quad S_{B} \qquad (2.50)$$

$$(\phi_{ikl}^{\pm(2)})_{n} = (\phi_{ikl}^{\pm(2)})_{Z} = 0 \qquad \qquad on \quad S_{B} \qquad (2.50)$$

$$\lim_{R \to \infty} \sqrt{R} \left(\frac{\partial \phi_{ikl}^{\pm (2)}}{\partial R} - ik \phi_{ikl}^{\pm (2)} \right) = 0 \qquad on \quad S_R \qquad (2.51)$$

(2 diffraction)

$$\nabla^{2} \phi_{Dkl}^{\pm(2)} = 0 \qquad in \quad \Omega \qquad (2.52)$$

$$- (\omega_{k} \pm \omega_{l})^{2} \phi_{Dkl}^{(2)} + g(\phi_{Dkl}^{(2)})_{Z} = q_{Dkl}^{\pm(2)}(X, Y) \qquad on \quad Z = 0 \qquad (2.53)$$

$$(\phi_{Dkl}^{\pm(2)})_{n} = - (\phi_{Ikl}^{\pm(2)})_{n} + b_{kl}^{\pm(2)}(X, Y, Z) \qquad on \quad S_{m} \qquad (2.54)$$

$$P = P_{m}^{(0)} + \varepsilon P_{m}^{(1)} + \varepsilon^{2} [P_{m}^{(2)} + \{X_{m}^{(1)}\} \cdot \nabla P_{m}^{(1)}] + O(\varepsilon^{3})$$
(2.57)

Fig 2.3 Relationship between S and Sm

(2.22) {X} Z

.

, P

$$P(X, Y, Z, t) = -\rho g \widehat{Z} - \varepsilon \rho [\Phi_{t}^{(1)} + g Z^{(1)}]$$

- $\varepsilon^{2} [\rho \Phi_{t}^{(2)} + \frac{\rho}{2} |\nabla \Phi^{(1)}|^{2} + \rho \{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)} + \rho g Z^{(2)}] + O(\varepsilon^{3})$
= $P(0) + \varepsilon P^{(1)} + \varepsilon^{2} P^{(2)} + O(\varepsilon^{3})$ (2.58)

$$P^{(0)} = -\rho g \hat{Z}$$

$$P^{(1)} = -\rho \Phi_{t}^{(1)} - \rho g Z^{(1)}$$

$$P^{(2)} = -\rho \Phi_{t}^{(2)} - \frac{\rho}{2} |\nabla \Phi^{(1)}|^{2} - \rho \{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)} - \rho g Z^{(2)}$$

$$.$$
(2.59)

$$\{F_{k}(t)\} = -\int \int_{S_{H}} P(X, Y, Z, t) \{n_{k}\} dS, \qquad (k = 1 \sim 6)$$
(2.60)

$$= \rho g \int \int \int_{V} \nabla \widehat{Z} dV = \rho g V\{k\} = \{0 \ 0 \ \rho g V\}^{T}$$

$$, \ \nabla = \{i\} \frac{\partial}{\partial \widehat{X}} + \{j\} \frac{\partial}{\partial \widehat{Y}} + \{k\} \frac{\partial}{\partial \widehat{Z}} \quad , V$$

$$\{F^{(0)}\} = - \int \int_{S_m} P^{(0)} \{n^{(0)}\} dS = \rho g \int \int_{S_m} \widehat{Z} \{\widehat{n}\} dS$$

= $\rho g \int \int \int_{V_w} \nabla \widehat{Z} dV = \rho g V\{k\} = \{0 \ 0 \ \rho g V\}^T$ (2.63)

$$\{F^{(0)}\} = - \int \int_{S_m} P^{(0)} \{n^{(0)}\} dS = \rho g \int \int_{S_m} \widehat{Z} \{\widehat{n}\} dS$$

$$(2.63)$$

$$1 . \{F^{(2)}\} S_m$$

$$2 \Delta S$$

$$2 . (2.26), (2.59) ,$$

$$A_w \hat{Z} = 0 7 (Gauss)$$

$$\{F\} = - \iint_{S_{m}} [P^{(0)} + \varepsilon P^{(1)} + \varepsilon^{2} P^{(2)} + O(\varepsilon^{3})][\{n^{(0)}\} + \varepsilon \{n^{(1)}\} + \varepsilon^{2} \{n^{(2)}\} + O(\varepsilon^{3})]dS - \iint_{\Delta S} [\varepsilon P^{(1)} + \varepsilon^{2} P^{(2)} + O(\varepsilon^{3})][\{n^{(0)}\} + \varepsilon \{n^{(1)}\} + \varepsilon^{2} \{n^{(2)}\} + O(\varepsilon^{3})]dS = - \iint_{S_{m}} P^{(0)} \{n^{(0)}\} dS - \varepsilon \{\iint_{S_{m}} (P^{(1)} \{n^{(0)}\} + P^{(0)} \{n^{(1)}\}) dS \} - \varepsilon^{2} \{\iint_{S_{m}} (P^{(1)} \{n^{(1)}\} + P^{(2)} \{n^{(0)}\} + P^{(0)} \{n^{(2)}\}) dS + \iint_{\Delta S} P^{(1)} \{n^{(0)}\} dS \} + O(\varepsilon^{3}) = \{F^{(0)}\} + \varepsilon \{F^{(1)}\} + \varepsilon^{2} \{F^{(2)}\} + O(\varepsilon^{3})$$

$$(2.62) \{F^{(0)}\} \qquad S_{m} \qquad (2.62)$$

,
$$S_H$$
 , $\{n\}$
 dS

 . , S_H
 Fig2.3
 S_m
 ΔS
 , (2.58)

 (2.61)
 , ΔS
 $P^{(0)}$ 7 0
 , (2.61)

 $\{F\} = - \int \int_{S_H} P\{n\} dS$ (2.61)

. 2 , 0' - X 'Y'Z'

•

*S*_m

1 2 1

 $\{F^{(0)}\}$

•

 ${F^{(1)}}$ (2.62) (2.26), (2.59) (2.63) .

$$\{F^{(1)}\} = - \iint_{S_{m}} (P^{(1)} \{n^{(0)}\} + P^{(0)} \{n^{(1)}\}) dS$$

$$= - \iint_{S_{m}} P^{(1)} \{\hat{n}\} dS + \{Q^{(1)}\} \times \{F^{(0)}\}$$

$$= - \iint_{S_{m}} P^{(1)} \{\hat{n}\} dS + \{Q^{(1)}\} \times \{0 - 0 \ \rho g \ V\}^{T}$$

$$= - \iint_{S_{m}} [-\rho \Phi_{t}^{(1)} - \rho g Z^{(1)}] \{\hat{n}\} dS + \{Q^{(1)}\} \times \{0 - 0 \ \rho g \ V\}^{T}$$

$$= \rho \iint_{S_{m}} \Phi_{t}^{(1)} \{\hat{n}\} dS + \rho g \iint_{S_{m}} (\Xi_{3}^{(1)} + Q_{1}^{(1)} \widehat{Y} - Q_{2}^{(1)} \widehat{X}) \{\hat{n}\} dS$$

$$+ \{Q^{(1)}\} \times \{0 - 0 \ \rho g \ V\}^{T}$$

$$(2.64)$$

$$\rho g \int \int_{S_m + A_w} (\Xi_3^{(1)} + \Omega_1^{(1)} \,\widehat{Y} - \Omega_2^{(1)} \,\widehat{X}) \{\,\widehat{n}\} dS$$

$$= \rho g \int \int \int_V \nabla (\Xi_3^{(1)} + \Omega_1^{(1)} \,\widehat{Y} - \Omega_2^{(1)} \,\widehat{X}) dV$$

$$= \rho g \int \int \int_V (-\Omega_2^{(1)} \{\,i\} + \Omega_1^{(1)} \{\,j\}) dV$$

$$= \rho g \, V (-\Omega_2^{(1)} \{\,i\} + \Omega_1^{(1)} \{\,j\}) = -\{\Omega^{(1)}\} \times \{0 - 0 - \rho g \, V\}^T$$
(2.65)
$$S_m + A_w \qquad S_m \qquad A_w$$

$$\rho \int \int_{S_{m}+A_{w}} (\Xi_{3}^{(1)} + \mathcal{Q}_{1}^{(1)} \,\widehat{Y} - \mathcal{Q}_{2}^{(1)} \,\widehat{X}) \{ \widehat{n} \} dS$$

$$= \rho g \int \int_{S_{m}} (\Xi_{3}^{(1)} + \mathcal{Q}_{1}^{(1)} \,\widehat{Y} - \mathcal{Q}_{2}^{(1)} \,\widehat{X}) \{ \widehat{n} \} dS$$

$$+ \rho g \int \int_{A_{w}} (\Xi_{3}^{(1)} + \mathcal{Q}_{1} \,\widehat{Y} - \mathcal{Q}_{2}^{(1)} \,\widehat{X}) \{ k \} d\widehat{X} d\widehat{Y}$$

(2.66)

.

.

(2.65) (2.66)

.

.

$$\rho g \int \int_{S_{m}} (\Xi_{3}^{(1)} + \mathcal{Q}_{1}^{(1)} \,\widehat{Y} - \mathcal{Q}_{2}^{(1)} \,\widehat{X}) \{n\} dS$$

$$= -\rho g \int \int_{A_{m}} (\Xi_{3}^{(1)} + \mathcal{Q}_{1}^{(1)} \,\widehat{Y} - \mathcal{Q}_{2}^{(1)} \,\widehat{X}) \{k\} d\widehat{X} \, d\,\widehat{Y}$$

$$- \{\mathcal{Q}^{(1)}\} \times \{0 \quad 0 \quad \rho g \, V\}^{T}$$
(2.67)

 $(2.67) \qquad (2.64) \qquad , \quad \{F^{(1)}\}$

$$\{F^{(1)}\} = \rho \int \int_{S_m} \mathcal{O}_t^{(1)} \{\widehat{n}\} dS - \rho g \int \int_{A_w} (\Xi_3^{(1)} + \mathcal{Q}_1^{(1)} \,\widehat{Y} - \mathcal{Q}_2^{(1)} \,\widehat{X}) \{k\} d\widehat{X} d\widehat{Y}$$

$$= \rho \int \int_{S_m} \mathcal{O}_t^{(1)} \{n\} dS - \rho g A_w (\Xi_3^{(1)} + \mathcal{Q}_1^{(1)} \,\widehat{Y_f} - \mathcal{Q}_2^{(1)} \,\widehat{X_f}) \{k\}$$

$$= \{F_I^{(1)}\} + \{F_D^{(1)}\} + \{F_R^{(1)}\} + \{F_{HS}^{(1)}\}$$

,

$$\{F_{I}^{(1)}\} = \rho \int \int_{S_{m}} \Phi_{II}^{(1)} \{\hat{n}\} dS$$

$$\{F_{D}^{(1)}\} = \rho \int \int_{S_{m}} \Phi_{DI}^{(1)} \{\hat{n}\} dS$$

$$\{F_{R}^{(1)}\} = \rho \int \int_{S_{m}} \Phi_{RI}^{(1)} \{\hat{n}\} dS$$

$$\{F_{R}^{(1)}\} = -\rho g A_{w} (\Xi_{3}^{(1)} + \Omega_{1}^{(1)} \widehat{Y}_{f} - \Omega_{2}^{(1)} \widehat{X}_{f}) \{k\}$$

$$(2.69)$$

, $(\widehat{X}_{f}, \widehat{Y}_{f})$

,

$$\widehat{X}_{f} = \frac{1}{A_{w}} \int \int_{A_{w}} \widehat{X} d\widehat{X} d\widehat{Y}$$

$$\widehat{Y}_{f} = \frac{1}{A_{w}} \int \int_{A_{w}} \widehat{Y} d\widehat{X} d\widehat{Y}$$
(2.70)

(2.68) , 1
, 1
$$\{F_{m}^{(1)}\}$$
 .

$$\{F_{ex}^{(1)}\} = \{F_{I}^{(1)}\} + \{F_{D}^{(1)}\}$$

$$= \rho \int \int_{S_{n}} (\boldsymbol{\Phi}_{It}^{(1)} + \boldsymbol{\Phi}_{Dt}^{(1)}) \{\hat{n}\} dS$$

$$(2.71)$$

(2.71) 1 2 1
(2.15)
$$\boldsymbol{\varPhi}_{It}^{(1)} \quad \boldsymbol{\varPhi}_{Dt}^{(1)}$$
 .

$$\Phi_{It}^{(1)} = R e \sum_{k=1}^{2} [a_{k}^{(1)} (-i\omega_{k})\phi_{Ik}^{(1)}e^{-i\omega_{k}t}]$$

$$\Phi_{Dt}^{(1)} = R e \sum_{k=1}^{2} [a_{k}^{(1)} (-i\omega_{k})\phi_{Dk}^{(1)}e^{-i\omega_{k}t}]$$

$$(2.72)$$

.

(2.72) (2.71)

$$\{F_{ex}^{(1)}\} = R e \sum_{k=1}^{2} [a_{k}^{(1)} (\rho \int \int_{S_{m}} -i\omega_{k} (\phi_{Ik}^{(1)} + \phi_{Dk}^{(1)}) \{\hat{n}\} dS) e^{-i\omega_{k}t}]$$

= $R e \sum_{k=1}^{2} [a_{k}^{(1)} \{f_{Fk}^{(1)}\} e^{-i\omega_{k}t}]$ (2.73)

,
$$\{f_{Fk}^{(1)}\}$$
 $\omega_k = 1$

$$\{f_{Fk}^{(1)}\} = -i\rho\omega_k \int \int_{S_m} (\phi_{Ik}^{(1)} + \phi_{Dk}^{(1)})\{\hat{n}\} dS$$
(2.74)

.

, .

,
$$\{F^{(2)}\}$$
 (2.62) (2.62) (2.26)

$$\{F^{(2)}\} = -\int \int_{S_{m}} (P^{(1)}\{n^{(1)}\} + P^{(2)}\{\hat{n}\} + P^{(0)}\{n^{(2)}\}) dS - \int \int_{\Delta S} P^{(1)}\{\hat{n}\} dS$$
(2.75)
$$dS = -\int \int_{S_{m}} (2.75) dS - \int \int_{\Delta S} P^{(1)}\{\hat{n}\} dS$$

$$\frac{dS}{(2.26)} \quad (2.64) \quad , \qquad . \qquad (2.75) \quad S_m$$

$$- \int \int_{S_{m}} P^{(1)} \{n^{(1)}\} dS = \{\Omega^{(1)}\} \times - \int \int_{S_{m}} P^{(1)} \{\hat{n}\} dS$$

$$= \{\Omega^{(1)}\} \times [\{F^{(1)}\} - (\{\Omega^{(1)}\} \times \{0 \ 0 \ \rho g \ V\}^{T})]$$

$$= \{\Omega^{(1)}\} \times \{F^{(1)}\} - \{\Omega^{(1)}\} \times (\{\Omega^{(1)}\} \times \{0 \ 0 \ \rho g \ V\}^{T})$$

$$= \{\Omega^{(1)}\} \times \{F^{(1)}\} - \rho g \ V \left\{ \begin{array}{c} \Omega^{(1)}_{2} \Omega^{(1)}_{3} \\ \Omega^{(1)}_{2} \Omega^{(1)}_{3} \\ \Omega^{(1)^{2}} - \Omega^{(1)^{2}} \end{array} \right\}$$

$$(2.76)$$

$$(2.75) (2.59) P^{(2)} , 2 (2.26) , (2.76)$$

$$- \int \int_{S_{m}} P^{(0)} \{n^{(2)}\} dS = \{\Omega^{(2)}\} \times - \int \int_{S_{m}} P^{(0)} [H] \{\hat{n}\} dS$$

$$= \{\Omega^{(2)}\} \times \{0 \ 0 \ \rho g \ V\}^{T} + [H] \{0 \ 0 \ \rho g \ V\}^{T}$$

$$= \rho g \ V \{\Omega_{2}^{(2)} - \Omega_{1}^{(2)} \ 0\}^{T} - \frac{1}{2} \rho g \ V \{\Omega_{1}^{(1)^{2}} + \Omega_{2}^{(1)^{2}}\} \{k\}$$

$$(2.77)$$

$$(2.75) \qquad \Delta S \ S \ Z^{(1)} = Z_{WL}^{(1)} \ Z^{(1)} = \zeta^{(1)}$$

(2.8), (2.59) $dS = dZ^{(1)} \cdot dl$

$$\{F^{(2)}\} = -\frac{1}{2} \rho g \int_{WL} \zeta_{R}^{(1)^{2}} \{\widehat{n}\} dl + \{Q^{(1)}\} \times \{F^{(1)}\}$$

+ $\int \int_{S_{m}} [\frac{1}{2} \rho |\nabla \Phi^{(1)}|^{2} + \rho \Phi_{t}^{(2)} + \rho(\{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)})] \{\widehat{n}\} dS$
- $\rho g \int \int_{A_{m}} [\Xi_{3}^{(2)} + Q_{2}^{(2)} \widehat{Y} - Q_{2}^{(2)} \widehat{X} + Q_{1}^{(1)} Q_{3}^{(1)} \widehat{X} + Q_{2}^{(1)} Q_{3}^{(1)} \widehat{Y}] \{k\} d\widehat{X} d\widehat{Y}$
= $\{F_{I}^{(2)}\} + \{F_{D}^{(2)}\} + \{F_{Q}^{(2)}\} + \{F_{R}^{(2)}\} + \{F_{R}^{(2)}\} + \{F_{R}^{(2)}\}$

$$\rho g \int \int_{S_{\pi}} Z^{(2)} \{ \hat{n} \} dS$$

$$= \rho g V \begin{cases} - \mathcal{Q}_{2}^{(2)} + \mathcal{Q}_{1}^{(1)} \mathcal{Q}_{3}^{(1)} \\ \mathcal{Q}_{1}^{(2)} + \mathcal{Q}_{2}^{(1)} \mathcal{Q}_{3}^{(1)} \\ - \frac{1}{2} (\mathcal{Q}_{1}^{(1)^{2}} + \mathcal{Q}_{2}^{(1)^{2}}) \end{cases}$$

$$- \rho g \int \int_{A_{\pi}} [\mathcal{Z}_{3}^{(2)} + \mathcal{Q}_{1}^{(2)} \hat{Y} - \mathcal{Q}_{2}^{(2)} \hat{X} + \mathcal{Q}_{1}^{(1)} \mathcal{Q}_{3}^{(1)} \hat{X} + \mathcal{Q}_{2}^{(1)} \mathcal{Q}_{3}^{(1)} \hat{Y}] \{k\} d\hat{X} d\hat{Y}$$

$$(2.80)$$

$$(2.79) , (2.79) 3 \{F^{(2)}\}$$

$$\{F^{(2)}\} = -\frac{1}{2} \int_{WL} \xi_{R}^{(1)^{2}} \{\hat{n}\} dl + \{Q^{(1)}\} \times \{F^{(1)}\}$$

+
$$\int \int_{S_{m}} [\frac{1}{2} \rho | \nabla \Phi^{(1)} |^{2} + \rho \Phi_{t}^{(2)} + \rho (\{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)})] \{\hat{n}\} dS$$

+
$$\int \int_{S_{m}} \rho g Z^{(2)} \{\hat{n}\} dS - \{Q^{(1)}\} \times (\{Q^{(1)}\} \times \{0 \ 0 \ \rho g \ V\}^{T})$$

+
$$\{Q^{(2)}\} \times \{0 \ 0 \ \rho g \ V\}^{T} + [H] \{0 \ 0 \ \rho g \ V\}^{T}$$
(2.79)

,
$$\zeta_R^{(1)} = \zeta^{(1)} - Z_{WL}^{(1)}$$
, dl (water line)
(2.76), (2.59), (2.77) (2.78) (2.75) , 2

,

$$- \int \int_{\Delta S} P^{(1)} \{ \hat{n} \}$$

$$= - \int_{WL} dl \int_{Z_{WL}^{(1)}}^{\xi^{(1)}} \{ - \rho g Z^{(1)} - \rho \Phi_{T}^{(1)} \} \{ \hat{n} \} dZ^{(1)}$$

$$= - \int_{WL} dl \int_{Z_{WL}^{(1)}}^{\xi^{(1)}} \{ - \rho g Z^{(1)} + \rho g \xi^{(1)} \} \{ \hat{n} \} dZ^{(1)}$$

$$= - \rho g \int_{WL} [\xi^{(1)^{2}} - \frac{1}{2} \xi^{(1)^{2}} - \zeta Z_{WL}^{(1)} + \frac{1}{2} Z_{WL}^{(1)^{2}}] \{ \hat{n} \} dl$$

$$= - \frac{1}{2} \rho g \int_{WL} (\xi^{(1)} - Z_{WL}^{(1)})^{2} \{ \hat{n} \} dl$$

$$= - \frac{1}{2} \rho g \int_{WL} \zeta_{R}^{(1)^{2}} \{ \hat{n} \} dl$$
(2.78)

$$[7].$$

$$\{F_{ex}^{(2)}\} = R e \sum_{k=1}^{2} \sum_{l=0}^{2} [a_{k}^{(1)} a_{l}^{(1)} \{f_{Fkl}^{+(2)}\} e^{-i(\omega_{k}+\omega_{l})t} + a_{k}^{(1)} a_{l}^{(1)*} \{f_{Fkl}^{-(2)}\} e^{-i(\omega_{k}-\omega_{l})t}]$$

$$(2.84)$$

$$\{F_{ex}^{(2)}\} = \{F_{l}^{(2)}\} + \{F_{D}^{(2)}\} + \{F_{Q}^{(2)}\}$$

$$= -\frac{1}{2} \int_{WL} \zeta_{R}^{(1)^{2}} \{\hat{n}\} dl + \{Q^{(1)}\} \times \{F^{(1)}\}$$

$$+ \int_{S_{m}} \int_{S_{m}} [\frac{1}{2} |\nabla \Phi^{(1)}|^{2} + \rho(\Phi_{lt}^{(2)} + \Phi_{Dt}^{(2)}) + \rho(\{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)})] \{\hat{n}\} dS$$

$$- \rho g A_{W} Q_{3}^{(1)} (Q_{1}^{(1)} \widehat{X_{f}} + Q_{2}^{(1)} \widehat{Y_{f}}) \{k\}$$

$$(2.83)$$

2

$$\{F_{ex}^{(2)}\} \qquad (2.81) \qquad \{F_{I}^{(2)}\}, \{F_{D}^{(2)}\}, \{F_{Q}^{(2)}\}\}$$

1

2

(2.81)

(2.83)

(2.83) 2

,

(2.82)

2

·

, 2

,

$$\{F_{I}^{(2)}\} = \rho \int \int_{S_{m}} \Phi^{(2)}\{\hat{n}\} dS$$

$$\{F_{D}^{(2)}\} = \rho \int \int_{S_{m}} \Phi_{Dt}^{(2)}\{\hat{n}\} dS$$

$$\{F_{Q}^{(2)}\} = -\frac{1}{2} \rho g \int_{WL} \zeta_{R}^{(1)^{2}}\{\hat{n}\} dl + \{Q^{(1)}\} \times \{F^{(1)}\}$$

$$+ \int \int_{S_{m}} [\frac{1}{2} \rho |\nabla \Phi^{(1)}|^{2} + \rho(\{X^{(1)}\} \cdot \nabla \Phi_{t}^{(1)})]\{\hat{n}\} dS$$

$$- \rho g A_{W} Q_{3}^{(1)}(Q_{1}^{(1)} \widehat{X_{f}} + Q_{2}^{(1)} \widehat{Y_{f}})\{k\}$$

$$\{F_{R}^{(2)}\} = \rho \int \int_{S_{m}} \Phi_{Rt}^{(2)}\{\hat{n}\} dS$$

$$\{F_{HS}^{(2)}\} = -\rho g A_{W} (\Xi_{3}^{(2)} + Q_{1}^{(2)} \widehat{Y_{f}} - Q_{2}^{(2)} \widehat{X_{f}})\{k\}$$

,

		, Hsu	(time
history)	(zero cross)		
	[8].		,
			가.

$${F_{W}(t)}$$
 (Volterra) 2 ,

$$\{F_{ex}(t)\} = \{F_{ex}^{(1)}(t)\} + \{F_{ex}^{(2)}(t)\} = \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} \xi(t-\tau) d\tau + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{h_{F}^{(2)}(\tau_{1},\tau_{2})\} \xi(t-\tau_{1}) \xi(t-\tau_{2}) d\tau_{1} d\tau_{2}$$
(3.1)

, .

(3.5)

(3.1) 1 2

•

,

$$\{F_{ex}^{(1)}\} = \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} \zeta(\tau - \tau) d\tau$$
(3.2)

$$\{F_{ex}^{(2)}\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{h_{F}^{(2)}(\tau_{1},\tau_{2})\} \zeta(t-\tau_{1}) \zeta(t-\tau_{2}) d\tau_{1} d\tau_{2}$$
(3.3)

 ${h_F^{(1)}(\tau)}, {h_F^{(2)}(\tau)} = 1 - 2$

$$\{h_{F}^{(1)}(\tau)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \{H_{F}^{(1)}(\omega)\} e^{-i\omega\tau} d\omega$$

$$\{h_{F}^{(2)}(\tau_{1},\tau_{2})\} = (\frac{1}{2\pi})^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [\{H_{F}^{(2)}(\omega_{1},\omega_{2})\} e^{-i(\omega_{1}\tau_{1}+\omega_{2}\tau_{2})}] d\omega_{1} d\omega_{2}$$

$$, \ \{H_{F}^{(1)}\} \quad 1 \qquad , \ \{H_{F}^{(2)}(\omega_{1}, \omega_{2})\} \quad 2$$

$$\left\{H_{F}^{(1)}(\omega)\right\} = \int_{-\infty}^{\infty} \left\{h_{F}^{(1)}(\tau)\right\} e^{i\omega\tau} d\tau$$
(3.6)

$$\left\{H_{F}^{(2)}(\omega_{1},\omega_{2})\right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\left\{h_{F}^{(2)}(\tau_{1},\tau_{2})\right\} e^{i(\omega_{1}\tau_{1}+\omega_{2}\tau_{2})} d\tau_{1} d\tau_{2} \right]$$
(3.7)

$$(3.9) (2.73) 1 , 1 \{H_{F}^{(1)}(\omega_{k})\} \{f_{F}^{(1)}(\omega_{k})\}$$
 7

$$\{F_{ex}^{(2)}(t)\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{h_{F}^{(2)}(\tau_{1}, \tau_{2})\} \xi(t - \tau_{1}) \xi(t - \tau_{2}) d\tau_{1} d\tau_{2}$$

$$= \frac{1}{2} R e \sum_{k=1}^{2} \sum_{l=1}^{2} [a_{k}^{(1)} a_{l}^{(1)} \{H_{F}^{(2)}(\omega_{k}, \omega_{l})\} e^{-i(\omega_{k} + \omega_{l})t}$$

$$+ a_{k}^{(1)} a_{l}^{(1)*} \{H_{F}^{(2)}(\omega_{k}, - \omega_{l})\} e^{-i(\omega_{k} - \omega_{l})t}]$$

$$(3.10)$$

$$(3.9)$$

$$(3.5) \quad (3.8) \quad (3.3) \quad , 2 \quad .$$

$$\{F_{ex}^{(2)}(t)\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{h_{F}^{(2)}(\tau_{1}, \tau_{2})\} \xi(t - \tau_{1}) \xi(t - \tau_{2}) d\tau_{1} d\tau_{2}$$

$$(3.10)$$

$$\{F_{ex}^{(1)}(t)\} = \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} \xi(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} [\frac{1}{2} |a_{1}^{(1)}| e^{-i[\omega_{1}(t-\tau)-\varepsilon_{1}]} + e^{i[\omega_{1}(t-\tau)-\varepsilon_{1}]} + \frac{1}{2} |a_{2}^{(1)}| e^{-i[\omega_{2}(t-\tau)-\varepsilon_{2}]} + e^{i[\omega_{2}(t-\tau)-\varepsilon_{2}]}]d\tau$$

$$= \frac{1}{2} |a_{1}^{(1)}| [\{H_{F}^{(1)}(\omega_{1})\} e^{-i(\omega_{1}t-\varepsilon_{1})} + \{H_{F}^{(1)*}(\omega_{1})\} e^{i(\omega_{1}t-\varepsilon_{1})}]$$

$$+ \frac{1}{2} |a_{2}^{(1)}| [\{H_{F}^{(1)}(\omega_{2})\} e^{-i(\omega_{2}t-\varepsilon_{2})} + \{H_{F}^{(1)*}(\omega_{2})\} e^{i(\omega_{2}t-\varepsilon_{2})}]$$

$$= R e[|a_{1}^{(1)}| [\{H_{F}^{(1)}(\omega_{1})\} e^{-i(\omega_{1}t-\varepsilon_{1})} + |a_{2}^{(1)}| [\{H_{F}^{(1)}(\omega_{2})\} e^{-i(\omega_{2}t-\varepsilon_{2})}]$$

$$= R e \sum_{k=1}^{2} [a_{k}^{(1)} \{H_{F}^{(1)}(\omega_{k})\} e^{-i\omega_{k}t}]$$

$$(3.0)$$

•

$$\{ H_{F}^{(1)}(\omega) \} = \{ |H_{F}^{(1)}(\omega)| \} e^{i\{\theta^{(1)}(\omega)\}} = \{ |H_{F}^{(1)}(\omega)| e^{i\theta_{1}^{(1)}(\omega)} \\ H_{2F}^{(1)}(\omega)| e^{i\theta_{2}^{(1)}(\omega)} \\ H_{3F}^{(1)}(\omega)| e^{i\theta_{3}^{(1)}(\omega)} \} \}$$

$$\{F_{ex}^{(1)}(t)\} = \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} \zeta(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} \{h_{F}^{(1)}(\tau)\} [\frac{1}{2} \int_{0}^{\infty} \{e^{-i[\omega(t-\tau)-\varepsilon]} + e^{i[\omega(t-\tau)-\varepsilon]}\} \sqrt{2S_{\zeta}(\omega) d\omega}] d\tau$$

$$= \int_{0}^{\infty} \cos(\omega t - \varepsilon - \{\theta^{(1)}\}) \cdot \sqrt{2\{|H_{F}^{(1)}(\omega)|^{2}\}} \zeta(\omega) d\omega$$

$$(3.14)$$

$$\varepsilon \quad 0 \sim 2\pi$$
 (random phase) . (3.13) (3.2)
(4.33) , 1 .

$$\zeta(t) = \int_{0}^{\infty} \cos(\omega t - \varepsilon) \sqrt{2S_{\zeta}(\omega) d\omega}$$

$$= \frac{1}{2} \int_{0}^{\infty} \{ e^{-i(\omega t - \varepsilon)} + e^{i(\omega t - \varepsilon)} \} \sqrt{2S_{\zeta}(\omega) d\omega}$$
(3.13)

 $\zeta(t)$

,

,

$$\zeta(t) = \int_{0}^{\infty} \cos(\omega t - \varepsilon) \sqrt{2S_{\zeta}(\omega) d\omega}$$
, (one-side), Rice
[10].

 $\left\{H_{F}^{(2)}(\omega_{k}, \pm \omega_{l})\right\} = \left\{f_{F}^{\pm(2)}(\omega_{k}, \omega_{l})\right\}$ 가 . $\{H_{F}^{(2)}(\omega_{k}, \omega_{l})\} = 2\{f_{F}^{+(2)}(\omega_{k}, \omega_{l})\} = 2\{f_{Fkl}^{+(2)}\}$ (3.12) $\{H_{F}^{(2)}(\omega_{k}, - \omega_{l})\} = 2\{f_{F}^{(2)}(\omega_{k}, \omega_{l})\} = 2\{f_{Fkl}^{(2)}(\omega_{k}, \omega_{l})\} = 2\{f_{Fkl}^{(2)}\}$ 가 1 2 2 2 1 , (3.5) , 1 2 , 2 2 가, (3.3) 1 2

$$\{H_{F}^{(1)*}(\omega)\} = \{|H_{F}^{(1)}(\omega)|\} e^{-i\{\theta^{(1)}(\omega)\}} = \left\{ H_{F}^{(1)}(\omega)|e^{-i\theta^{(1)}(\omega)} \\ H_{2F}^{(1)}(\omega)|e^{-i\theta^{(1)}(\omega)} \\ H_{3F}^{(1)}(\omega)|e^{-i\theta^{(1)}(\omega)} \\ H_{3F}^{(1)}(\omega)|e^{-i\theta^{(1)}(\omega)} \\ \end{bmatrix}$$

$$(3.15)$$

$$(3.13) \qquad (3.3) \qquad (3.7) \qquad , \qquad 2$$

$$\{F_{ex}^{(2)}(t)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \{h_{F}^{(2)}(\tau_{1},\tau_{2})\} \zeta(t-\tau_{1})\zeta(t-\tau_{2})d\tau_{1}d\tau_{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos\left[(\omega_{1}+\omega_{2})t-(\varepsilon_{1}+\varepsilon_{2})-\{\theta^{(2)}(\omega_{1},\omega_{2})\}\right]$$

$$\cdot \sqrt{\{|H_{F}^{(2)}(\omega_{1},\omega_{2})|^{2}\}} \zeta(\omega_{1})S_{\zeta}(\omega_{2})d\omega_{1}d\omega_{2}}$$

$$+ \int_{0}^{\infty} \int_{0}^{\infty} \cos\left[(\omega_{1}-\omega_{2})t-(\varepsilon_{1}-\varepsilon_{2})-\{\theta^{(2)}(\omega_{1},-\omega_{2})\}\right]$$

$$\cdot \sqrt{\{|H_{F}^{(2)}(\omega_{1},-\omega_{2})|^{2}\}} \zeta(\omega_{1})S_{\zeta}(\omega_{2})d\omega_{1}d\omega_{2}}$$
(3.16)

$$\left\{ H_{F}^{(2)}(\omega_{1},\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},\omega_{2}) \right| e^{i \left\{ \theta^{(2)}(\omega_{1},\omega_{2}) \right\}} \right\}$$

$$= \left\{ H_{F}^{(2)}(\omega_{1},\omega_{2}) \left| e^{i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\} \right\}$$

$$= \left\{ H_{F}^{(2)}(\omega_{1},\omega_{2}) \left| e^{i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\} \right\}$$

$$\left\{ H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$= \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right\} = \left\{ \left| H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)*}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right\}$$

$$\left\{ H_{F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

$$\left\{ H_{2F}^{(2)}(\omega_{1},-\omega_{2}) \right| e^{-i \theta^{(2)}_{1}(\omega_{1},-\omega_{2})} \right\}$$

4.						
4.1						
				Model,		Fig4.2
Model			가			0.07m
	0.15m	. Fig4.3		가	Model	

T able4.1

0.15m .

Design	ation	Unit	Model 1	Model 2
Length overall L		М	0.2	0.5
Breadth	В	М	0.22	0.45
Draft	Т	М	0.15	0.15
Displacement		M ³	0.000577	0.03948
center of	VCG	М	0.09	0.124
gravity	LCG	М	0	0
Metercentric	GM L	М	- 0.162	- 0.197
height	GM T	М	- 0.162	- 0.197
Mass moments . of	Ix x	$\mathbf{kg} \cdot \mathbf{m}^2$	0.0094996	0.03948
	Iy y	$\mathbf{kg} \cdot \mathbf{m}^2$	0.0094996	0.04031
Inertia	Izz	$kg \cdot m^2$	0.0003646	0.0092387

Table 4.1 Principal Dimensions of Models

Fig 4.1 Plans for Model

Fig 4.2 Plans for Model

5.00 A 4.00 pitch 3.00 F/(ρ*g*ζ*d 2.00 AAAAAAA 1.00 0000 ********** MAMA 0.00 + 0.00 4.00 8.00 12.00 16.00 omega

1

Fig 4.3 Wave Exciting Force and Moment (Model)

Fig 4.4 Wave Exciting Force and Moment from Haskind Relation (Model)

Fig 4.5 Wave Exciting Force and Moment (Model)

Fig 4.6 Wave Exacting Force and Moment from Haskind Relation (Model)

Fig4.4, Fig4.5, Fig4.6, Fig4.7						
		Fig4.4	Fig4.6		가	
			Fig4.5	Fig4.7		(haskind)]
	[13][14].				가	

Fig 4.9 Impulse Response Function of Surge (Model)

Fig 4.10 Impulse Response Function of Heave (Model)

5. 5.1

$$\eta_n = -a_n \sin(k_n x - \omega_n t + \phi_n) \tag{5.1}$$

•

$$\eta_n = -a_n \sin \omega_n (\frac{k_n}{\omega_n} x - t + \phi_n)$$
(5.3)

$$\frac{k_n}{\omega_n} x - t + \phi_n' = (-8T_n - \frac{1}{4}T_n)$$
(5.4)

$$\frac{1}{u_{c}}x - t + \phi_{n}' + \frac{33}{4}T_{n} = 0$$
(5.5)

$$\omega_n \qquad (\phi') \qquad .$$

. $x \quad 7^{\dagger} \qquad , t \quad 7^{\dagger} \qquad .$

(5.5) (5.2) $u_E \quad u_C \qquad .$

$$\frac{1}{2 * u_E} x - t + \phi_n' + \frac{33}{4} T_n = 0$$
(5.6)

$$\frac{t}{2*8*\lambda_n}x - t + \phi_n' + \frac{33}{4}T_n = 0$$
(5.7)

$$\lambda_n, T_n, \phi_n = 3$$

가

.

.

Т

$$_{n} = \frac{\sqrt{2\pi\lambda_{n}}}{\sqrt{g \tanh\left(\frac{2\pi d}{\lambda_{n}}\right)}}$$
(5.8)

가

[16].

(5.8)

가.				
"BISECTION METHOD F	FOR TWO VARIABLES"	[17].		
가	ϕ_{n}	가		•
			,	
ϕ_n				

$$k, x \implies \omega_{1}, k_{1}, \phi_{1}(= 0)$$

$$k, x \implies \omega_{2}, k_{2}, \phi_{2}(= T_{1})$$

$$k, x \implies \omega_{3}, k_{3}, \phi_{3}(= \sum_{i=1}^{2} T_{i})$$

$$\vdots$$

$$k, x \implies \omega_{n}, k_{n}, \phi_{n}(= \sum_{i=1}^{n-1} T_{i})$$

$$(5.9)$$

 $\phi_1 = 0$ ϕ_{n} ω_n, k_n . ω_1, k_1 ϕ_2 ω_2, k_2 (5.9) ϕ_n . , (5.2) . ω_n ϕ_{n} • .

		(<i>t</i>),	(x)		
				가	Case
		フト	Case		
가	Case	Case	가		. Table5.1

Table 5.1 List of Cases

Case	Case	Case	Case
0.130	0.120	0.110	0.100
7	7	7	7

Fig 5.5 Input Wave Profile into Wave Maker (Case)

. Fig5.6

, Fig5.7

•

Fig 5.6 The Filtering Process of Experimental Data. (Spectrum)

Fig 5.7 The Filtering Process of Experimental Data. (Force History)

.

Fig5.8,	Fig5.9, Fig5	5.14, Fig5.15	Case		-	Fig5.8 Fig	5.14	
가		가		, Fig5.9	Fig5.15	가		
		. Fig5.10,	Fig5.11,	Fig5.16, Fig	g5.17 Cas	e		
Fig5.10	Fig5.16		가		Fig5.11	Fig5.17		가
		. Fig5.12, F	5.13, F	ig5.18, Fig5.	19 Case			
Fig5.12	Fig5.18	가			, Fig5.13	Fig5.19		가
						가	Case	

Case

Fig 5.8 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.9 Photo Wave Profile on The Cylinder(Case, Model)

Fig 5.10 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.11 Photo Wave Profile on The Cylinder (Case, Model)

Fig 5.12 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.13 Photo Wave Profile on The Cylinder (Case, Model)

Fig 5.14 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.15 Photo Wave Profile on The Cylinder (Case, Model)

Fig 5.16 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.17 Photo Wave Profile on The Cylinder (Case, Model)

Fig 5.18 Photo Wave Profile near The Cylinder (Case, Model)

Fig 5.19 Photo Wave Profile on The Cylinder (Case, Model)

Fig 5.23 Measured Wave Profile (Case)

Fig 5.24 Relationship Between Maximum Wave Slope and Wave Height

Fig5.25	Fig5.28	Model		가			
Fig5.2	29 Fig5.3	2 Mode	el				
Fig5.	.33 Fig5	.36 M c	odel		가		,
Fig5.37	Fig5.40	Model					
						가	
Fig5.41	가						
T able5.2		가 가	Case				
		가 Model	27%, Model		32%		
Fig5.41	Model				가		
		가		가			
						가	
	가						

Fig 5.28 Theoretical Wave Force in Time Domain (Case, Model)

Fig 5.32 Experimental Wave Force in Time Domain (Case, Model)

Fig 5.36 Theoretical Wave Force in Time Domain (Case, Model)

Fig 5.40 Experimental Wave Force in Time Domain (Case, Model)

5.5.3

Fig 5.41 Comparison Experimental with Theoretical Maximum Wave Force

	Experimental Wave Force	Theoretical Wave Force	(Experimental Wave Force) - (Theoretical Wave Force)	Percentage
Model	0.3388	0.2474	0.0914	27%
Model	0.9337	0.6321	0.3016	32%

Table 5.2 Results of Breaking Wave

.

		1,	4 가		Case ,
Case , Case , Case			3		
	,				
		. 2			
			•		
(1)					
(1)					
(2)					
(3)	가 기	ŀ		가	
가		가			
	가				

References

- [1] 小山健夫, 藤野正隆 and 前田久明 共著, " ", , Chapter 3, 1990.
- [2] Hooft, JP., "Mathematical Method of Determining Hydrodynamically Induced Forces on a Semisubmergible", SNAME, Vol 79, 1971
- [3] Seiji Takezawa, Masahiro Fukuhara, Member Seiya Yamashita, Member,"線型試驗水槽で發生させた Transient Water wave の特性 について",日本 造船學會秋季講演會,昭和 43年 11月
- [4] Seiji Takezawa, "Transient Water Wave 中における 船體運動の實測
 例 について",日本 造船學會春季講演會,昭和 45年 5月
- [5] J.S.Reid, "The Sideband Instability and Onset of Wave Breaking", IUTAM Symposium Sydney, Australia, 1991
- [6] Tong-Chun Park and Hideaki Miyata, "Computational Study on the Characteristics of Nonlinear Wave Cased by Breaking Wave of Two-Dimensional Regular Periodic Wave", 韓國海洋工學會誌 弟3號, pp 50-61, 1996. 8
- [7] Kim,M.H. and Yue,D.K., "Sum- and Difference-Frequency Wave Loads on a Body in Unidirectional Gaussian Seas", Journal of Ship Research, vol.35, No2, 1991
- [8] Hus,F.H. and Blenkarn,K.A., "Analysis of Peak Mooring Force Caused by Slow Vessel Drift Oscillation in Random Sea", Offshore Technology Conference 1159, 1970

[9]		",
	, page 208-224, 1998	

- [10] Rice,S.O., "Mathematical Analysis of Random noise", Bell System Technical Journal, 1944
- [11] 流力研究グループ、"3次元波動流體のグリーソ函數を求める方法"、造船流
 體力學 ノート(3)、日本 造船學會誌 弟 536号、昭和 49年 2月
- [12] 流力研究グループ, "2次元波動流體のグリーソ函數を求める方法", 造船流 體力學 ノート(2), 日本 造船學會誌 弟 534号, 昭和 48年 12月
- [13] Greenberg M.D., "Application of Green's Function in Science and Engineering", Prentice-Hall, page 51-92, 1971
- [14] Newman J.N. "Marine Hydrodynamics", The MIT Press, page 285-306, 1978
- [15] J. N. Newman, "Marine Hydrodynamics", The MIT Press Cambridge, Massachusetts and London, England, page 261, 1982
- [16] S.K.Chakrabarti, "Hydrodynamics of Offshore Structures", Computational Mechanics Publications Southampton Boston, page 49-50, 1994
- [17] Steven C. Chapra, Raymond P.Canale, "Numerical Methods for Engineering", HEE JOONG DANG, 1994

. Haskind

.

$$\phi_{j}(j = 1 \sim 6)$$

$$j , j , \eta_{j}e^{-i\omega t}$$

$$- i\omega\eta_{j}\phi_{j}e^{-i\omega t} , k$$

$$f_{kj}e^{-i\omega t} = -\int \int_{S_{H}} P_{j}n_{k}dS$$

$$= -\int \int_{S_{H}} -\rho \frac{\partial}{\partial t}(-i\omega\eta_{j}\phi_{j}e^{-i\omega t})n_{k}dS$$

$$= -\int \int_{S_{H}} -\rho\phi_{j}n_{k}dS(-i\omega)^{2}\eta_{j}e^{-i\omega t}$$
(A.1)

,

,

.

$$P_{j}(X, Y, Z, t) = -\rho \frac{\partial}{\partial t} (-i\omega \eta_{j} \phi_{j} e^{-i\omega t})$$
(A.2)

$$\begin{array}{l} \mathbf{\mathcal{P}}_{j} & \mathbf{\eta}_{j} \\ \mathbf{\eta}_{j} = \mathbf{\phi}_{jc} + i \mathbf{\phi}_{js} \end{array}$$

,

$$f_{kj}e^{-i\omega t} = -\int \int_{S_{H}} -\rho \phi_{jc} n_{k} dS \cdot (-i\omega)^{2} \eta_{j} e^{-i\omega t}$$

$$-\int \int_{S_{H}} -\rho \omega \phi_{js} n_{k} dS \cdot (-i\omega) \eta_{j} e^{-i\omega t}$$

$$= -\mu_{kj} \frac{\partial^{2} (\eta_{j} e^{-i\omega t})}{dt^{2}} -\nu_{kj} \frac{\partial (\eta_{j} e^{-i\omega t})}{\partial t}$$
(A.3)

$$\mu_{kj} = -\rho \int \int_{S_{\mu}} \phi_{jc} n_{k} dS$$

$$\nu_{kj} = -\rho \omega \int \int_{S_{\mu}} \phi_{js} n_{k} dS, \qquad (j, k = 1 \sim 6)$$
(A.4)

,
$$j$$
 k 가
 $\eta_j e^{-i\omega t}$ j (A.3)
가

,

. , (A.3)

.

가

$$P_{w}(X, Y, Z, t) = -\rho \frac{\partial}{\partial t} \{ (\phi_{I} + \phi_{D})e^{-i\omega t} \} = i\omega\rho(\phi_{I} + \phi_{D})e^{-i\omega t}$$

$$P_{w} k F_{k}e^{-i\omega t}$$
(A.5)

$$F_{k}e^{-i\omega t} = - \int \int_{S_{H}} P_{w}n_{k}dS$$

$$= - \int \int_{S_{H}} i\omega\rho(\phi_{I} + \phi_{D})n_{k}dS \cdot e^{-i\omega t}$$
(A.6)

$$F_k$$

$$F_{k} = -i\rho\omega \int \int_{S_{H}} (\phi_{I} + \phi_{D}) n_{k} dS, (k = 1 \sim 6)$$
(A.7)

 $\phi_{\scriptscriptstyle D}$ 가

.

,

. ф_D

.

,

$$\phi_{D} \overrightarrow{P} ,$$

$$\phi_{j}(j = 1 \sim 6) \overrightarrow{P} ,$$

$$f = \phi_{D}, g = \phi_{j} ,$$

$$Q \qquad R \rightarrow \infty$$

$$(A.30)$$

.

.

$$\begin{split} \int \int \int_{\Omega} \left(\phi_D \nabla^2 \phi_j - \phi_j \nabla^2 \phi_D \right) dV \\ &= \left\{ \int \int_{S_{\mu}} + \int \int_{S_{\mu}} + \int \int_{S_{\mu}} + \int \int_{R_{\mu}} + \lim_{R \to \infty} \int \int_{S_{\mu}} \right\} \phi_j \frac{\partial \phi_D}{\partial n} - \phi_D \frac{\partial \phi_i}{\partial n}) dS \\ &= \int \int_{S_{\mu}} (\phi_j \frac{\partial \phi_D}{\partial n} - \phi_D \frac{\partial \phi_j}{\partial n}) dS - \int \int_{S_{\mu}} (\phi_j \frac{\partial \phi_D}{\partial Z} - \phi_D \frac{\partial \phi_j}{\partial Z}) dS \\ &+ \int \int_{S_{\mu}} (\phi_j \frac{\partial \phi_D}{\partial Z} - \phi_D \frac{\partial \phi_j}{\partial Z}) dS - \lim_{R \to \infty} \int \int_{S_{\mu}} (\phi_j \frac{\partial \phi_D}{\partial R} - \phi_D \frac{\partial \phi_j}{\partial R}) dS \end{split}$$
(A.8)

$$\phi_{D} , , ,$$

$$\phi_{j}(j = 1 \sim 6) , , ,$$

$$\cdot$$

$$0 = \int \int_{S_{u}} (\phi_{j} \frac{\partial \phi_{D}}{\partial n} - \phi_{D} \frac{\partial \phi_{j}}{\partial n}) dS$$
(A.9)

54

(A.9)

$$\int \int_{S_{H}} -\phi_{j} \frac{\partial \phi_{I}}{\partial n} dS = \int \int_{S_{H}} -\phi_{D} n_{j} dS \qquad (A.10)$$

,
$$j k$$
 , (A.52)

$$F_{k} = -i\rho\omega \int \int_{S_{\mu}} (\phi_{I}n_{k} - \phi_{k}\frac{\partial\phi_{I}}{\partial n}) dS \qquad (A.11)$$
$$= -i\rho\omega \int \int_{S_{\mu}} (\phi_{I}\frac{\partial\phi_{k}}{\partial n} - \phi_{k}\frac{\partial\phi_{I}}{\partial n}) dS, \quad (k = 1 \sim 6)$$

[14].

, , , , , 가

가 .