工學碩士 學位論文

SA RCGA

Modeling of a Wheeled Inverted Pendulum Type Mobile Robot Using a SA and RCGA

指導教授 河 潤 秀

2001年 2月

韓國海洋大學校 大學院

制御計測工學科

白雲鶴

	Abstract
1	1
	2
4	2.1
	2.2
6	
	2.3

13	RCGA	SA	3
13		RCGA	3.1
16		3.1.1	
16		3.1.2	
17		3.1.3	
17		3.1.4	
		3.1.5	
	가	3.1.6	
21		SA	3.2
25		3.2.1	
25		3.2.2	

3.2	.3
3.3 SA	A RCGA
3.4	
4	
4.1	
4.2	
5	

Modeling of a Wheeled Inverted Pendulum Type Mobile Robot Using a SA and RCGA

Woon-Hak Baek

Department of Control & Instrumentation Engineering, Graduate school, Korea Maritime University

ABSTRACT

This paper describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the posture and velocity control. In order to control its posture and velocity, the optimal linearized modeling is quite crucial.

Meta-heuristics is a term used to characterize a number of methods which have been proven to be practical and effective algorithms for solving nonlinear problems.

This paper adapted the wheeled inverted pendulum type mobile robot which is typically nonlinear systems identification and linearization techniques, using a real-coded genetic algorithm. The algorithm is finely tuned by simulated annealing, which yields a faster convergence and a more accurate search.

By applying this method, the nonlinear model is transformed into a completely linearized system. 가

1965

가

.

Kapitza

[2][3][4]

.

• 가

,

[5][6]

,

가

.

가

가

•

.

(caster)

가

,

•

[1]

,

가

,

- 1 -

가

.

,

RCGA

SA

SA .

가

, RCGA

2

2.1

2.1

. (a) , (b)

•

DC 가

- 4 -

,

Fig. 2.1 Wheeled inverted pendulum type mobile robot in turning motion

.

,

,

.

•

가

,

,

,

•

,

- 6 -

가

가

,

,

2.3

•

•

2.2 1

.

, 가 .

2.2

Fig. 2.2 Schematic diagram of the wheeled inverted pendulum type mobile robot

2		1	
4	•	T	

Table 2.1 Parameters and Variables

M _b		12.18	[kg]
M _w		0.51	[kg]
I _b		0.35	[kg ⋅ m²]
I w		5.1E-4	[kg·m²]
I _M		3.2E - 6	$[kg \cdot m^2]$
r		0.062	[m]
1		0.143	[m]
μ_{s}		5.76E - 3	[Nm/ (rad/ sec)]
$\mu_{ m g}$		4.25E - 3	[Nm/ (rad/ sec)]
\mathcal{I}_{t}		23.5E - 3	[N m/ A]
g	가	9.8	$[m/sec^2]$
		39.5	
ϕ			[rad]
			[rad]
		 	[rad]
u			[A]

T,U,D,
$$\beta$$
 Q_{β}, θ Q_{θ} 2.2

$$T = \frac{1}{2} M_{w} (\dot{s}_{2}^{2} + \dot{z}_{2}^{2}) + \frac{1}{2} M_{b} (\dot{s}_{1}^{2} + \dot{z}_{1}^{2}) + \frac{1}{2} I_{w} \dot{\theta}^{2} + \frac{1}{2} I_{b} (\dot{\theta} - \dot{\beta})^{2} + \frac{1}{2} I_{M} \eta^{2} \dot{\beta}^{2}$$
(2.1)

.

$$U = M_{w}gr + M_{b}gl\cos(\theta - \beta)$$
(2.2)

$$D = \frac{1}{2} (\mu_{s} \dot{\beta}^{2} + \mu_{g} \dot{\theta}^{2})$$
 (2.3)

$$Q_{\beta} = \eta \tau_{t} u \tag{2.4}$$

$$Q_{\theta} = 0 \tag{2.5}$$

Lagrange

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial \mathrm{L}}{\partial \dot{\beta}} \right) - \frac{\partial \mathrm{L}}{\partial \beta} + \frac{\partial \mathrm{D}}{\partial \dot{\beta}} = \mathrm{Q}_{\beta}$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial \mathrm{L}}{\partial \dot{\theta}} \right) - \frac{\partial \mathrm{L}}{\partial \theta} + \frac{\partial \mathrm{D}}{\partial \dot{\theta}} = \mathrm{Q}_{\theta}$$

$$(2.6)$$

, L (Lagrangian) L=T-U 7 ; . (2.6) (2.7) (2.1) (2.5) $\theta \phi$, (2.8), (2.9)

$$(\mathbf{M}_{b}\mathbf{1}^{2} + \mathbf{I}_{b} + \eta^{2}\mathbf{I}_{M})\ddot{\boldsymbol{\phi}} + (\mathbf{M}_{b}\mathbf{r}\mathbf{1}\cos\boldsymbol{\phi} - \eta^{2}\mathbf{I}_{M})\ddot{\boldsymbol{\theta}} + \mu_{s}\dot{\boldsymbol{\phi}} - \mu_{s}\dot{\boldsymbol{\theta}} - \mathbf{M}_{b}g\mathbf{1}\sin\boldsymbol{\phi} = -\eta\tau_{t}u$$
(2.8)

$$(\mathbf{M}_{b}\mathbf{r}\mathbf{l}\cos\phi + \mathbf{M}_{b}\mathbf{l}^{2} + \mathbf{I}_{b})\ddot{\phi} + [(\mathbf{M}_{b} + \mathbf{M}_{w})\mathbf{r}^{2} + \mathbf{M}_{b}\mathbf{r}\mathbf{l}\cos\phi + \mathbf{I}_{w}]\ddot{\theta}$$
$$- \mathbf{M}_{b}\mathbf{r}\mathbf{l} \ddot{\phi}^{2}\sin\phi + \mu_{g}\dot{\theta} - \mathbf{M}_{b}g\mathbf{l}\sin\phi = 0$$
$$(2.9)$$

$$\mathbf{x}_{\mathbf{p}} = [\mathbf{x}_{\mathbf{p}1} \ \mathbf{x}_{\mathbf{p}2} \ \mathbf{x}_{\mathbf{p}3}]^{\mathrm{T}} = [\phi \ \dot{\phi} \ \dot{\theta}]^{\mathrm{T}}$$

$$\dot{x}_{p} = f(x_{p}, u, t)$$
 (2.10)

(2.10)

가

.

T aylor

가

•

"

(Real-Coded Genetic Algorithm: RCGA) (Simulated Annealing: SA) , SA RCGA

3.1 RCGA

"

.

•

.

,

(Charles Darwin, 1809 1882) 1895

[11]

"

•

",

가 (Tabu search),

가

,

.

.

•

•

가

•

.

[8]

,

3.1 Fig. 3.1 Flow chart of a GA

3.1.1

.

$$s(k) = x^{T}(k) = (x_{1}(k) x_{2}(k) \cdot \cdot \cdot \cdot x_{n}(k))$$
 (3.1)

•

3.1.2

N k . $p(k) = \{s_1(k) \ s_2(k) \ \cdot \ \cdot \ \cdot \ s_N(k)\}$ (3.2)

$$s_{i}(k) = (x_{i1}(k) x_{i2}(k) \cdot \cdot \cdot x_{ij}(k) \cdot \cdot \cdot x_{in}(k))$$
 i
, $x_{ij}(k)$ i , N ,

•

$$x_{j}^{L} \leq x_{ij}(k) \leq x_{j}^{U} \ (1 \leq i \leq N, 1 \leq j \leq n)$$
^[8].

3.1.4

,

•

•

,

,

Fig. 3.3 Arithmetical crossover

$$\widetilde{\mathbf{x}}_{j}^{u} = \lambda \ \overline{\mathbf{x}}_{j}^{v} + (1 - \lambda) \ \overline{\mathbf{x}}_{j}^{u}$$
(3.3)

$$\widetilde{x}_{j}^{v} = \lambda \ \overline{x}_{j}^{u} + (1 - \lambda) \ \overline{x}_{j}^{v} \ (1 \le j \le n)$$
(3.4)

, 0 1 가 ^[8].

3.1.5

,

,

,

가

$$x_{j} = \begin{cases} \widetilde{x}_{j} + \Delta(k, x_{j}^{(U)} - \widetilde{x}_{j}), \ \tau = 0 \\ \widetilde{x}_{j} - \Delta(k, \widetilde{x}_{j} - x_{j}^{(L)}), \ \tau = 1 \end{cases}$$
(3.5)

$$\Delta(\mathbf{k}, \mathbf{y}) = \mathbf{y} \cdot \mathbf{r} \cdot (1 - \frac{\mathbf{k}}{T})^{\mathbf{b}}$$
(3.6)

[0,y] • k가 가 0 가 • 가 가 가 [8] 가 3.1.6 가 가 가 / 가 • : f(s(k)) = F(x(k)) - r: f(s(k)) = -F(x(k)) - r

가 ,

,

•

•

.

, 가

,

f(s(k)) , F(x(k)) , r f(s(k))≥0 7 ↓ . r

[8]

3.1

. ,

Table 3.1 Physical annealing and SA

 $\mathbf{S}\mathbf{A}$

	SA
가	가 (feasible solution)
quenching	

	가	
	1953	Metropolis
. Metropolis		가

•

(thermal equilibrium)

 $\exp(-\frac{\Delta}{k_{B}T}), k_{B}: , T:$ (3.7)

가 (3.8)

.

.

$$P_{T} \{s = x\} = \frac{1}{Z(T)} \exp\left(\frac{-E(x)}{k_{B}T}\right)$$
 (3.8)

.

function) .

,

Metropolis

Fig. 3.4 Flow chart of a SA

. .

k (T_k) T_k =
$$\frac{T_o}{\log(k)}$$
 (k $\rightarrow \infty$)

,

.

, $T_k = \gamma \times T_k$ γ $0.8 \le \gamma < 1.0$ 7

3.2.3					
SA	가			가 0	
		가			
3.3 SA	RCGA				
RCGA		VLSI	CAD		
	SA			RCGA	
(crossover)			. GA	가	
가	•				
					[10,15].
, RC	GA				가
SA	가 가	•			
			3.5		
RCGA .	SA				가
-					

3.5 SA RCGA Fig. 3.5 Folw chart of the RCGA with SA

(2.10) 가 . (2.10) , $\mathbf{x}_{m} = [\mathbf{x}_{m1} \ \mathbf{x}_{m2} \ \mathbf{x}_{m3}]^{T} =$ $(\phi = 0, \dot{\phi} = 0)$ $\left[\phi \dot{\phi} \dot{\theta}\right]^{\mathrm{T}}$ (3.9) . $\mathbf{x}_{\mathbf{m}}(t) = \mathbf{A} \mathbf{x}_{\mathbf{m}}(t) + \mathbf{B} \mathbf{u}(t)$ (3.9) $, \quad \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ a_1 & a_3 & a_5 \\ a_2 & a_4 & a_6 \end{pmatrix} , \qquad \mathbf{B} = \begin{pmatrix} 0 \\ b_1 \\ b_2 \end{pmatrix}$ • 가 , . ,

3.4

.

가

(3.9) $a_1, a_2, a_3, a_4, a_5, a_6,$ b_1, b_2 SA RCGA

3.6 SA RCGA

Fig. 3.6 Parameters estimation of the controlled system using a RCGA with SA

•

3.6

u 가

•

가

$$J = \int_{0}^{t} [x_{p} - x_{m}]^{T} P [x_{p} - x_{m}] dt \qquad (3.10)$$

 x_p , x_m . P P = diag(P₁₁, P₂₂, P₃₃)

,

(3	.9)			(3.10)		가
가	SA	RCGA				
						u가
u					•	
	u					
u = -	$\cdot k_1 x_{p1} - k_1$	$_{2}x_{p2}$ - $k_{3}x_{p3}$			(3.11)	
, []	$k_{1}k_{2}k_{3}] =$	[17.7 3.04 0.181]				
	3.7	3.5				x (0) =
[5π/1	80 0 0]		(3.11)			
		u			3.8	3.9
	3.7 u	가		RCGA		
SA		RCGA			가	가
			3.10			
·	P= dia;	g(220, 3.0, 2.4)		: 5		
	: 300				: 0.95	
	: 40			: 5		
	: 0.95			: 5		
	: 0	.1				

Fig. 3.7 Input data for parameter estimation

(b) Parameters (a3, a4, a5, a6)

3.8 RCGA

Fig. 3.8 Results of parameter estimation

using a RCGA

(a) Parameters (a1, a2, b1, b2)

(b) Parameters (a3, a4, a5, a6)

Fig. 3.9 Results of parameter estimation using the proposed method

3.10 RCGA

3.8 · 9 · 10

가 RCGA

. 3.2 RCGA

3.2 RCGA

Table 3.2 Parameter values estimated by RCGA and the proposed algorithm

	RCGA	
А	$\begin{bmatrix} 0 & 1 & 0 \\ 40.8195 & 0.0796 & 0.0522 \\ - 80.4474 & 0.4082 & - 0.2789 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \\ 43.5915 & 0.0955 & 0.0531 \\ - 80.7274 & 0.4259 & - 0.2790 \end{bmatrix}$
В	$\begin{bmatrix} 0 \\ -5.8305 \\ 28.1734 \end{bmatrix}$	$\begin{bmatrix} 0 \\ - 6.076 \\ 28.1985 \end{bmatrix}$

4

4.1

.

.

, RCGA

가

Matlab

, 0.05 sec • 5 / 180, 0, 0

4.2

4.1 3.7 u 가

RCGA

•

가

Fig. 4.1 Responses of input u

Fig. 4.2 Control input

4.2 **7**[†] . 4.3

•

가 .

.

(2.10)

. .

가

Fig. 4.3 Responses of control input u

가

.

5

RCGA

•

3) RCGA

- R.H. Canon and J.F. Shaefer, On the Control of Unstable Mechanical Systems, I.F.A.C, London, England, 1966.
- [2] K. Furuta, T. Okutani and H. Sone, "Computer Control of a Double Inverted Pendulum," Comput. & Elect.Eng., Vol. 5, pp. 67-84, Nov. 1978.
- K. Furuta, T. Ochiai, N. One, "Attitude Control of a Triple Inverted Pendulum," Int. J. Control, Vol. 39, No. 6, pp. 1351-1365, 1984.
- [4] Quing Feng and Kazuo Yamafuji, "Design and Simulation of Control Systems of an Inverted Pendulum," Robotica, Vol. 6, pp. 235-241, Mar. 1987.
- [5] Yun-Su Ha and Shin'ichi Yuta, "Trajectory Tracking Control for Navigation of Self-Contained Mobile Inverse Pendulum," Proc. of IEEE/RJS International Conference on Intelligent Robots and Systems, pp. 1875-1882, 1994.
- [6] 河潤秀, "平行二輪車の速度制御に關する研究," 第1回山彦シンポジ ウム, pp. 41-44, 1992.

- [10] Dan Adler, "Genetic Algorithms and Simulated Annealing: A Marriage Proposal," IEEE International Conference on Neural Network, 1993.
- [11] J.H. Halland, Adaptation in natural and artificial systems, The University of Michigan Press, Michigan, 1975.
- [12] D.P. Kwok and F. Sheng, "Genetic algorithm and simulated annealing for Optimal Robot Arm PID Control," Proceedings of the first IEEE Conference on Evolutionary Computation, pp. 708-713, 1994.
- [13] 江口 純司、 "組合せ最適化問題におけるシミュレーテットアニー リング 法による解の探索のダイナミウスに關する研究、" 第3回山彦シンポジウム、 pp. 101-109, 1998.
- [14] Morten Irgens, "Why Simulated Annealing Works and Why it Doesn't," http://fas.sfu.ca/~mirgens.
- [15] Bruce E. Rosen, 中野 良平, "シミュレーテットアニーンリグ 基礎
 と最新技術-,"人工知能學會, Vol. 9, No. 3, pp. 365-372, May.
 1995.
- [16] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, "Optimization by Simulated Annealing," in Science, Vol. 220, pp.671-680, May. 1983.