Open Inventor

Development of a Biped Robot Simulator Using the Open

Inventor

2002 8

Abstract

1.	•••••		1
2.	(KUBIR)	••••••	4
2.1.			4
2.2.			5
2.2.1			6

2.2.1.	
2.2.2.	11
2.2.3.	
2.3.	

20

-	
3.1.	
3.1.1.	
3.1.2.	
3.1.3.	
3.2.	

3.2.1.	
3.2.2.	
3.3.	
3.3.1.	
3.3.2.	
3.3.3.	
4.	
5.1.	
5.2.	
5.3.	
5.4. 3	
4.2.1	Open Inventor
4.2.2	Nodes Scene Graphs
4.2.3	Open Inventor Engine
4.2.4	3 40
4.5.	
4.6.	
4.7.	
5.	

	;3
--	----

Development of a Biped Robot Simulator Using the Open Inventor

Dae – Won Jun

Department of Mechanical Engineering Graduate School, Korea Maritime University

Abstract

In this thesis, for autonomous walking of the human-sized biped walking robot(BWR), an embedded motion control system and a computer simulator are studied.

The BWR which is actuated by the four-bar link mechanism is previously developed in our laboratory. The four-bar link mechanism is improved. The four-bar link mechanism is composed of the fixed length of three pitch joints and fixed angle of one roll joint.

A motion capture system with six potentiometers at the joints to get the walking pattern of BWR is developed. The potentiometer with A/D converter changed the revolution voltage to digital angle data. I extracted the basic walking pattern data of the BWR from that signal.

For autonomous walking motion control, a wireless input device, hard disk, flash memory and battery was setup. 3-dimension modeling was performed using a CAD program so called "Open Inventor".

The embedded computer is connected with the user control computer for the remote control. The Embedded computer has MMC motion board for the 8 D.O.F. control. The user control computer receives the information sent from the embedded computer and performs 3-Dimension simulation of the BWR.

d_1	
d_2	
d_3	
q_1	
q_2	
q_3	
$\alpha_{_1}$	4
α_2	4
$\alpha_{_3}$	4
L ₁	
L_2	
L_3	
T_a	
T_b	
a_2, a_3, a_4	4
b_2, b_3, b_4	4
c_2, c_3, c_4	4

2.1	
2.2	
2.3	
2.4	
2.5	7
2.6	
2.7	
2.8	
2.9	
2.10	
2.11	
2.12	19
3.1	
3.2	
3.3	가
3.4 기	
3.5 2	
3.6	
3.7	
3.8	A/D Converter

4.1						 32
4.2						 33
4.3			S/W			 34
4.4		Matlab				 35
4.5	α					 35
4.6		Inventor				 36
4.7	β			•••••		 36
4.8	Open Inver	ntor Architect	ure			 38
4.9	Open Inver	ntor File Form	nat			 39
4.10	Open Inve	entor Engine				 39
4.11		3				 40
4.12		3				 40
4.13		3				 41
4.14		3				 41
4.15						 43
4.16			(CF	U)	I/O Port	 43
4.17						 44
4.18		가	Flash D	rive		
						 44
4.19	Motor					 45
4.20	Motor	Мо	tion Board	Motor	Drive	 45
4.21						 46
4.22		walking	g position 1			 48
4.23		walking	g position 2		••••••	 48

4.24	standing position 1	
4.25	standing position 2	
4.26	standing position 3	
4.27	bending position 1	
4.28	bending position 2	
4.29	bending position 3	

3.1	
4.1	S/W Limit Encorder Data 46
4.2	NuPRO 770 47

, 가

60 Vucobratobic

.

.

. 90

	가			[9],			(In	verse	Dynamics)
					[14]					
	,									
•										
				가	[19],					
					[20]					
1998		()				가	가		
						,			2000)
				3			71			
		•		0			- 1			
		2								
		,	3	3						
	,	4								

,

10

,

3 CAD

가 Open Inventor

•

•

2

2.2

2.2.

10

가

2.2.1.

2.3

$$d_1$$
 q_1
2.3 l_1 l_1

$$l_{1} = a_{2}^{2} + d_{1}^{2} - 2a_{2}d_{1}\cos\alpha_{1}$$

= $a_{3}^{2} + a_{4}^{2} - 2a_{3}a_{4}\cos\beta_{1}$
$$d_{1} = \frac{C_{1} + \left[C_{1}^{2} + 4\left(A_{1} + B_{1}\cos\beta_{1}\right)\right]^{0.5}}{2}$$
(2.1)

$$A_{1} = a_{3}^{2} + a_{4}^{2} - a_{2}^{2}$$

$$B_{1} = -2a_{3}a_{4}$$

$$C_{1} = 2a_{2}\cos\alpha_{1}$$

$$a_{2}, a_{2}, a_{4}$$

$$\alpha_{1}, N_{1}$$

$$q_1 = \beta_1 - N_1 \tag{2.2}$$

 q_1

·

.

,

 d_1

-	ı.
/	F

$$\boldsymbol{d}_{1}^{\mathbf{k}} = -\left[C_{1}^{2} + 4\left(A_{1} + B_{1}\cos\beta_{1}\right)\right]^{-0.5} B_{1}\sin\beta_{1}\beta_{1}^{\mathbf{k}}$$
(2.3)

$$\mathcal{A}_{1}^{\mathbf{A}} = -2 \Big[C_{1}^{2} + 4 \big(A_{1} + B_{1} \cos \beta_{1} \big) \Big]^{-1.5} B_{1}^{2} \sin^{2} \beta_{1} \beta_{1}^{\mathbf{A}} - \Big[C_{1}^{2} + 4 \big(A_{1} + B_{1} \cos \beta_{1} \big) \Big]^{-0.5} \Big(B_{1} \cos \beta_{1} \beta_{1}^{\mathbf{A}} + B_{1} \sin \beta_{1} \beta_{1}^{\mathbf{A}} \Big)$$
(2.4)

$$(2.1), (2.2), (2.3)$$
 (2.4) $q_1 d_1$ 7

$$\beta_1 = q_1 + N_1 = a \cos\left[\frac{d_1^2 - A_1 - C_1 d_1}{B_1}\right]$$
(2.5)

$$\beta_1^{\mathbf{k}} = q_1^{\mathbf{k}} = R_{11} d_1^{\mathbf{k}}$$
(2.6)

$$\beta_{1}^{\mathbf{A}} = \beta_{12}^{\mathbf{A}} = R_{12} d_{2}^{\mathbf{A}} + R_{13} d_{1}^{\mathbf{A}}$$
(2.7)

$$R_{11} = \frac{\left[C_1^2 + 4\left(A_1 + B_1 \cos \beta_1\right)\right]^{0.5}}{B_1 \sin \beta_1}$$

$$R_{12} = -2\left[C_1^2 + 4\left(A_1 + B_1 \cos \beta_1\right)\right]^{-1} B_1 \sin \beta_1 R_{11}^2 - \frac{\cos \beta_1}{\sin \beta_1} R_{11}^2 \qquad .$$

$$R_{13} = -\frac{\left[C_1^2 + 4\left(A_1 + B_1 \cos \beta_1\right)\right]^{0.5}}{B_1 \sin \beta_1}$$

2.4
$$d_1 \quad a_4$$
 7 $(x_1, y_1) \quad \phi_1 \quad d_1$

$$x_1 = d_1 \cos(\phi_1 + N_1) + a_2 \cos\theta_1 = a_4 \cos N_1 - a_3 \cos q_1$$
(2.8)

$$y_1 = d_1 \sin(\phi_1 + N_1) - a_2 \sin \theta_1 = a_4 \sin N_1 + a_3 \sin q_1$$
(2.9)

$$\theta_1 = \pi - \phi_1 - (\alpha_1 + N_1)$$

(2.8)
$$\theta_1 \qquad \phi_1$$

$$d_{1}(\cos\phi_{1}\cos N_{1} - \sin\phi_{1}\sin N_{1}) + a_{2}\left[\cos(\pi - \phi_{1})\cos(\alpha_{1} + N_{1}) + \sin(\pi - \phi_{1})\sin(\alpha_{1} + N_{1})\right] \\ = \left[d_{1}\cos N_{1} - a\cos(\alpha_{1} + N_{1})\right]\cos\phi_{1} - \left[d_{1}\sin N_{1} - a_{2}\sin(\alpha_{1} + N_{1})\right]\sin\phi_{1}$$

$$\cos(\pi - \phi_1) = -\cos\phi_1$$

$$\sin(\pi - \phi_1) = \sin\phi_1$$

$$A_1 = d_1 \cos N_1 - a_2 \cos(\alpha_1 + N_1)$$

$$B_1 = d_1 \sin N_1 - a_2 \sin(\alpha_1 + N_1)$$

,

$$A_{1}\cos\phi_{1} - B_{1}\sin\phi_{1} = x_{1} \tag{2.10}$$

,

$$(2.9) \qquad \theta_1 \qquad \phi_1$$

$$d_{1}(\sin\phi_{1}\cos N_{1} + \cos\phi_{1}\sin N_{1}) -a_{2}\left[\sin(\pi - \phi_{1})\cos(\alpha_{1} + N_{1}) - \cos(\pi - \phi_{1})\sin(\alpha_{1} + N_{1})\right] = \left[d_{1}\cos N_{1} - a_{2}\cos(\alpha_{1} + N_{1})\right]\sin\phi_{1} + \left[d_{1}\sin N_{1} - a_{2}\sin(\alpha_{1} + N_{1})\right]\cos\phi_{1} , \quad (2.9)$$

$$B_{1}\cos\phi_{1} + A_{1}\sin\phi_{1} = y_{1} \tag{2.11}$$

$$(2.10)$$
 (2.11) ϕ_1

$$\phi_{1} = a \cos\left[\frac{A_{1}x_{1} + B_{1}y_{1}}{A_{1}^{2} + B_{1}^{2}}\right]$$
(2.12)

2.2.2.

$$d_{2} = \frac{C_{2} + \left[C_{2}^{2} + 4\left(A_{2} + B_{2}\cos\beta_{2}\right)\right]^{0.5}}{2}$$
(2.13)

$$A_2 = b_3^2 + b_4^2 - b_2^2$$
$$B_2 = -2b_3b_4$$
$$C_2 = 2b_2 \cos \alpha_2$$

$$b_2$$
, b_3 , b_4 α_2 , N_2 , N_{2k}

.

$$q_2 = \pi - (\beta_2 + N_2) \tag{2.14}$$

•

$$\boldsymbol{d}_{2}^{\boldsymbol{\aleph}} = \left[C_{2}^{2} + 4 \left(A_{2} + B_{2} \cos \beta_{2} \right) \right]^{-0.5} B_{2} \sin \beta_{2} \boldsymbol{\beta}_{2}^{\boldsymbol{\aleph}}$$
(2.15)

$$\mathbf{a}_{2}^{\mathbf{x}} = -2 \Big[C_{2}^{2} + 4 \big(A_{2} + B_{2} \cos \beta_{2} \big) \Big]^{-1.5} B_{2}^{2} \sin^{2} \beta_{2} \mathbf{\beta}_{2}^{\mathbf{x}} - \Big[C_{2}^{2} + 4 \big(A_{2} + B_{2} \cos \beta_{2} \big) \Big]^{-0.5} \Big(B_{2} \cos \beta_{2} \mathbf{\beta}_{2}^{\mathbf{x}} + B_{2} \sin \beta_{2} \mathbf{\beta}_{2}^{\mathbf{x}} \Big)$$
(2.16)

(2.13), (2.14), (2.15) (2.16)
$$q_2 \quad d_2 \quad \forall$$

$$\beta_2 = q_2 + N_2 - \pi = a \cos\left[\frac{d_2^2 - A_2 - C_2 d_2}{B_2}\right]$$
(2.17)

$$\beta_{2}^{\mathbf{k}} = -q_{2}^{\mathbf{k}} = R_{21} q_{2}^{\mathbf{k}}$$
(2.18)

$$\beta_{2}^{\mathbf{x}} = -\beta_{2}^{\mathbf{x}} = R_{21}d_{2}^{\mathbf{x}} + R_{23}d_{2}^{\mathbf{x}}$$
(2.19)

$$R_{21} = \frac{\left[C_2^2 + 4\left(A_2 + B_2 \cos \beta_2\right)\right]^{0.5}}{B_2 \sin \beta_2}$$

$$R_{22} = -2\left[C_2^2 + 4\left(A_2 + B_2 \cos \beta_2\right)\right]^{-1} B_2 \sin \beta_2 R_{21}^2 + \frac{\cos \beta_2}{\sin \beta_2} R_{21}^2$$

$$R_{23} = -\frac{\left[C_2^2 + 4\left(A_2 + B_2 \cos \beta_2\right)\right]^{0.5}}{B_2 \sin \beta_2}$$

 ϕ_2 d_2

$$\phi_2 = a \cos\left[\frac{A_2 x_2 + B_2 y_2}{A_2^2 + B_2^2}\right]$$
(2.20)

.

2.8

$$A_{2} = d_{2} \cos N_{2k} - a_{2} \cos(\alpha_{2} + N_{2k})$$
$$B_{2} = d_{2} \sin N_{2k} - a_{2} \sin(\alpha_{2} + N_{2k})$$

2.2.3.

7ト . d3 q3 . l3

21

2.9

$$d_{3} = \frac{C_{3} + \left[C_{3}^{2} + 4\left(A_{3} + B_{3}\cos\beta_{3}\right)\right]^{0.5}}{2}$$
(2.21)

$$A_{3} = c_{3}^{2} + c_{4}^{2} - c_{2}^{2}$$

$$B_{3} = -2c_{3}c_{4}$$

$$C_{3} = 2c_{2}\cos\alpha_{3}$$

$$c_{2}, c_{3}, c_{4}$$

$$\alpha_{3}, N_{3}, N_{3k}$$

.

 $q_3 = \pi - (\beta_3 + N_3 + N_{3k}) \tag{2.22}$

가

$$\boldsymbol{d}_{3}^{\boldsymbol{\xi}} = -\left[C_{3}^{2} + 4\left(A_{3} + B_{3}\cos\beta_{3}\right)\right]^{-0.5}B_{3}\sin\beta_{3}\beta_{3}^{\boldsymbol{\xi}}$$
(2.23)

$$\mathbf{a}_{3}^{\mathbf{B}} = -2\left[C_{3}^{2} + 4\left(A_{3} + B_{3}\cos\beta_{3}\right)\right]^{-1.5}B_{3}^{2}\sin^{2}\beta_{3}\beta_{3}^{\mathbf{B}} - \left[C_{3}^{2} + 4\left(A_{3} + B_{3}\cos\beta_{3}\right)\right]^{-0.5}\left(B_{3}\cos\beta_{3}\beta_{3}^{\mathbf{B}} + B_{3}\sin\beta_{3}\beta_{3}^{\mathbf{B}}\right)$$
(2.24)

(2.21), (2.22), (2.23) (2.24)
$$q_2 \quad d_2 \quad 7$$

$$\beta_3 = q_3 + N_3 + N_{3k} - \pi = a \cos\left[\frac{d_3^2 - A_3 - C_3 d_3}{B_3}\right]$$
(2.25)

$$\beta_{3}^{\mathbf{x}} = q_{3}^{\mathbf{x}} = R_{31} d_{3}^{\mathbf{x}}$$
(2.26)

$$\beta_{3}^{\mathbf{B}} = \beta_{32}^{\mathbf{B}} = R_{32}d_{3}^{\mathbf{B}} + R_{33}d_{3}^{\mathbf{B}}$$
(2.27)

$$R_{31} = \frac{\left[C_3^2 + 4\left(A_3 + B_3 \cos\beta_3\right)\right]^{0.5}}{B_3 \sin\beta_3}$$

$$R_{32} = -2\left[C_3^2 + 4\left(A_3 + B_3 \cos\beta_3\right)\right]^{-1} B_3 \sin\beta_3 R_{31}^2 + \frac{\cos\beta_3}{\sin\beta_3} R_{31}^2$$

$$R_{33} = -\frac{\left[C_3^2 + 4\left(A_3 + B_3 \cos\beta_3\right)\right]^{0.5}}{B_3 \sin\beta_3}$$

 ϕ_3 d_3

$$\phi_3 = a \cos\left[\frac{A_3 x_3 + B_3 y_3}{A_3^2 + B_3^2}\right]$$
(2.28)

$$A_{3} = d_{3} \cos N_{3k} - a_{3} \cos(\alpha_{3} + N_{3k})$$
$$B_{3} = d_{3} \sin N_{3k} - a_{3} \sin(\alpha_{3} + N_{3k})$$

q .

.

2.3.

가 가 . 가 가 . , 가

가 2.9

2.9 F가

가 가 . 2.10

.

,

$$T_a = F \cos\left(\gamma + \beta - \frac{\pi}{2}\right) \times L_3 \cos(\gamma)$$
(2.29)

$$T_{b} = F \cos(\pi - \gamma - \beta) \times L_{3} \sin(\gamma)$$
(2.30)

, $\beta = 80^{\circ} [\text{deg}]$, $L_3 = 0.2 [\text{m}]$, F = 1000 [N].

2.12

3.1.

3.1.1.

1

,

. R 가

. 가

3 7ł 7ł . CCTV

() .

.

28

Emitter

3. 1

	$ \begin{array}{c} \hline T \\ D \\ \hline \end{array} $	7 가 2	ł .
()		T R T R ,	가
()			가 .

()

(2)

$$V = 331.5 + 0.607 \times t \quad [m/s]$$
$$L = \frac{T \times V \times \cos \theta}{2} \quad [m]$$

: $t [^{\circ}C]$: L[m]: T [sec]: V [m/s] $?^{\dagger}$: $\theta [deg]$

(3)

. , ΤR , , 가 () () 가 , , . 가 가 ,

OPAMP가 .

3.1.3.

가			가	가 가	
가				. 가	
가	가				

3.3 가

3.4 가

:	3.4	가				가			
4	가							Ţ	'(MEMS)
가									
							μ m(, 1 <i>µ</i> m
100	1m)	mm						•	
	가		가		가				
	가		10) 1					
가				•	가	-	가		
	가	가							
	가							가	
가									
	•								3
						,			
									가
		4	1						

33

•

3.2.

3.2.1.

가

XYZ Joint Position

.

,

.

Inverse Kinematics Skeleton

(Raw)

가

,

34

,

.

.

,

,

3.2.2.

(1) Prosthetic Motion Capture

Prosthetic Motion	Capture		Data	
Potentiometer	Motion Captu	ire .	Potentiometer	Joint
			(EI	ectromotive
Force)				
Prosthetic Mo	tion Capture	Pot	entiometer가	가.
Prosthetic Motion Cap	ture			
(2) Acoustic Motio	n Capture			
Acoustic Motion Ca	pture		Radio Signal	
(3) Magnetic Motic	on Capture			
Magnetic Motion Ca	apture	(Magnetic	Field)	
,	가	. Acoustic	Magnetic Motion	Capture
	가			

가

Magnetic

.

(4) Optical Motion Capture

,

.

Optical Motion Capture Lights, Cameras, (Reflective Dots) 3 Joint . , 2 , 가 3D . Optical Motion Capture System Magnetic System

.

.

.

가

,

,

3.3.

3.3.1.

					,	
			MUX			
8		PIC16F874	10b	it A/D		
	,		MAX232C	RS232	С	
PC						
3.3.2.						
				1		
		4.1		10Hz		
	R-C	2				
			가	,		OP-
Amp						
	OP - Amp	LM324			가 800µA	
	가					
2			가			,

2 가 , 1(=) 가 가 가 , 가 40dB/decade .

3.5 2

38

3.8

A/D Converter

4

4.1.

4.2.

, 가

4.3.

4.4.3

β $q_1, q_2 q_3, q_4 q_5, q_6$

Denavit-Hartenberg

.

β d

4.4 Matlab

4.5 *d*

4.6 Inventor

4.7

4.4.1. Open Inventor

Open Inventor Ir	nteractive						
, So	olution					가	3D
Developer Toolkit	3D Sce	ene datab	base				
. Open	Inventor				Open	GL	
Interactive 3D App	olication F	Program	가				
Open Inventor	3D	Viewer		3			
		OpenGL			C++		
C++ 가				. 3	3		
View	/er						,
Library	,	가	, 3				
Object							
Direct 3D maninpula	ator			가	На	ndle Box	Track
Ball 3				가	Lig	ht Source	Color
Editor		Light	Source	7	ł	가	
가			가		3		
OpenO	GL					가	

•

4.4.2. Nodes Scene Graphs

Scene G	Graph	Object	Node				,
Node		Method, Field,	File	Forn	nat	,	
Method	Node가	Fi	eld n	ode			
	,	File Format					
Nodo		Crown Non grown			Group		aroup
Node		Group, Non-group			, Group		group,
seperator		가	Node	9	, Non-group		
가		shape, properties, ca	ameras,	ligh	its	가	node

4.4.3. Open Inventor Engine

Open Inventor	Engine	3D Modeling	Inventor Source	가		
	3	Modeling				
shape, properties, cameras, lights .						
				3		

가 가

.

4.10 Open Inventor Engine

4.4.4.3

	가	AutoCAD
3		Open Inventor
		node Open Inventor

Engine

4.11

3

4.12

3

3

4.14

3

4.5.

가 , 가 가 Controller가 . MMC-PV8 , 4.16 Adlink , NuPRO770 . 4.15 PC Backplane VGA I/O Port , 가 FlashROM Type 4.18 . 4.18 , 4.17 R/F .

PCB .

(CPU) I/O Port

4.17

가 Flash Drive

DC

MMC Motion Controller 2 가 . Drive

Motor

4

4.19 Motor

4.20 Motor

Motion Board Motor Drive

	Homing Position	Initial Position	S/W Limit Position
0	0	0	10000
1	80,000	0	400,000
2	20,000	0	350,000
3	200,000	0	500,000
4	0	0	10000
5	80,000	0	400,000
6	20,000	0	350,000
7	200,000	0	500,000

4. 1 S/W Limit Encorder Data

4.6.

Processor Socket	Socket-370 connector		
Processor	Intel Celeron and Pentium III FC-PGA CPU		
Secondary Cache	Built in CPU		
Bus Speed	66/100MHz		
Chipset	Intel i82810		
Memory Sockets	Two 168-pin DIMM Sockets (Max. 512MB SDRAM)		
	Memory type : PC-100 un-buffered SDRAM		
Integrated Graphics	3D Graphics Visual Enhancement		
Controller	24-bit 230MHz RAMDAC, DDC2B compliant		
	Up to 1600×1200 in 8-bit color at 85Hz refresh		
BIOS	Award BIOS, support PNP, DMI BIOS Support		
CRT	On-board VGA Controller Built-in AGP2X standards		
PCI Bus Ethernet	Intel 82559 chipset		
Interface	10/100Mbps PCI local bus Ethernet controller		
Super I/O Chipset	WinbondW83627HF		
Parallel Port	One high-speed parallel port, SSP/EEP/ECP mode		
	ESD protection to 4KV		
Serial Port	One 16550 UART compatible ports with RS-232		
	interface		
	One 16550 UART compatible ports with RS-		
	232/422/485 ESD protection to 2KV		
USB Interface	Two USB pin-header connectors, compliant with USB		
	Specification Rev.1.1		
Power supply	ΑΤ/ΑΤΧ		
Dimension	338mm × 122mm		

4. 2 NuPRO 770

4.7.

β 3 Open Inventor

User Control Computer

가

User Control Computer

Inventor Engine

가

4.22

walking position 1

standing position 1

4.25

4.27

bending position 1

4.28

bending position 2

ア・ , , , 3 3 Open Inventor ア

5

User Control Computer

, User Control Computer

, 3

.

.

,

,

59

가

,

.

,

,

가

- [1] David A.Winter, Biomechanics of Human Movements, John Wiley & Sons, 1979
- [2] C. Leslie Golliday, Hooshang Hemami, "An Approach to Analyzing Biped Locomotion Dynamics and Designing Robot Locomotion Controls" IEEE, Transactions on Automatic Control, vol.AC-22, No.6, pp.963-972, 1977
- [3] A.Takanishi, M.Ishida, Y.Yamazaki, I.Kato, "The Realization of Dynamic Walking by The Biped Walking Robot WL-10RD" Journal of the Robotics Society of Japan, Vol.3 No.4 pp.325-336, 1985
- [4] Kenneth J.Waldron, "Realization of Dynamic Biped Walking Stabilized with Trunk Motion under Known External Force", Advanced Robotics, pp.299-310, 1989
- [5] Kawamura S.et al. "Realization of Biped Locomotion by Motion Pattern Learing" (In Japanese) Joural of Robot Society of Japan vol.3, No.3, .177-180, 1985
- [6] J. Furusho, A.Sano, "Sensor-Based Control of a Nine-Link Biped" Int.J.Robot.Res., vol.9,No.2, pp.83-98, 1990
- [7] Qinghua Li, Astuo Takanishi, and ichiro Kato, "Learning Control for a Biped Walking Robot with a Trunk", IEEE/RSJ Internal Conference on Intelligent Robots and System, pp.1771-1777, 1993
- [8] Josie Wernecke, "The Inventor Mentor : Programming Object-Oriented3D Graphics With Open Inventor", Addison-Wesley, 1994

- [9] Eric R. Dunn, Robert D.Howe, "Toward Smooth Biped Dynamic Walking", IEEE, pp.2489-2494, 1994
- [10] Y.Fujimoto, A.Kawamura, "Three Dimensional Digital Simulation and Autonomous Walking Control for Eight-Axis Biped Robot", IEEE International Conference on Robotics & Automaion, pp.2877-2884, 1995
- [11] Richard S. Wright JR & Michael Sweet, OpenGL Superbible, The Waite Group, 1996
- [12] Silicon Graphics, "Open Inventor Programming", Silicon Graphics, 1996
- K.Ohnishi, M.Shibata & T.Murakami, "Motion Control for Advanced Mechatronics", IEEE.ASME Trans. On Mechatronics, Vol.1, No.1, pp56-67, 1996
- [14] S. Kajita and K.Tani, "Experimental Study of Biped Dynamic Walking", IEEE Control System Magazine, Vol.16, No.1, pp.13-19, 1996
- [15] Keon Young Yi, "Walking of a Biped Robot with Compliant Ankle Joints", KACC, pp.245-250, 1998
- [16] Jin'ichi Yamaguchi, Daisuke Nishino, Atsuo Takanishi, "Realization of Dynamic Biped Walking Varying Joint Stiffness Using Antagonistic Driven Joints", International Conference on Robotics & Automatioin Proc. Of IEEE, pp.2022-2029, 1998
- [17] , "",

, 1998

[18] Kazuo Hirai, Masato Hirose, Yuji Haidawa, Toru Takenaka, "The Development of HOnda Humnoid Robot", International Conference on Robotics & Automation Proc. Of IEEE, pp.1321-1326, 1998 [19] , , "

15 3, pp.157-167, 1998

",

- [20] Jin'ichi Yamaguchi, Daisuke Nishino, Atsuo Takanishi, "Realization of Dynamic Biped Walking Varying Joint Stiffness Using Antagonistic Driven Joints", International Conference on Robotics & Automation Proc. Of IEEE, pp.2022~2029, 1998
- [21] Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, OpenGL Programming Guide, Third Edition", Addison-Wesley, 1999
- [22] , , "3 Link 2 ",

, pp. 213-218, 1999

[23] , " IWR-III

, 1999

[24] , , , "

, pp. 583-585, 2000

- [25] , "MR ", , KSME , pp.630-635, 2000
- [26] , , , , " ", KACC,
- pp.267-271, 2000
- [27] , , , , , " 7ŀ ", , , , , , pp. 432, 2000
- [28] , , "4 3 2 ", , pp. 523-528, 2000
 - , pp. 020 020, 2000
- [29] , , , " ", KSPE
 - , pp.583-587, 2000

[30]	,	,	,	
			", KSPE	, pp.292-295, 2001
[31]	,	,	, ,	, "Open Inventor
			", KSPE	, pp.296-299, 2001