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Abstract 

 

In this thesis, an estimating damage on external surface of container using 

Capsize-Gaussian-Function (be called CGF) is presented. Estimation of the 

damage size can be get directly from two parameters of CGF, these are the depth 

and the flexure, also the direction of damage. The performance of the present 

method has been illustrated using an image of damage container, which had been 

taken from Hanjin Port in Pusan, Korea, after using image processing techniques 

to do preprocessing of the image, especially, the main used technique is Canny 

edge detecting that is widely used in computer vision to locate sharp intensity and 

to find object boundaries in the image, then correlation between the edge image 
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from the preprocessing step and the CGF with three parameters (direction, depth, 

flexure), as a result, we get an image that perform damage information, and these 

parameters is an estimator directly to the damage. 
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Chapter 1: Introduction 

 

 

 

1.1 Thesis overview 

Estimating quality of containers is an important problem in a Port System. 

Automation of this process is one of needs of improvement and modernization 

Port Management Technology. This thesis presents a research about recognition 

and estimating the size of damage on external surface of container. The damage is 

alteration in the shape of dimensions of container as a result of the application or 

accident of stress to it. Information of the damage could be obtained by using 

camera or capture devices. Some of automatic applications are used to recognize 

and estimate the rate of damage. In order to detect and estimate the damage shape, 

first of all, the image could be preprocessed and detected edges using Canny edge 

detector or another edge detection methods, and second step, we need to extract 

interesting features which could describe the characteristics of problem. In chapter 

two, we have briefly described some of image processing procedures used in the 

preprocessing data, and addressed detail to Canny edge detector which is used to 

extract the boundary of the image. In chapter three, an feature extracting method 
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by using Capsize-Gaussian-Function in the directly estimating the damage will be 

introduced. Chapter four will introduce the correlation operators which be used to 

match between original image and sets of capsize-gaussian function, and the 

simple threshold method which be used to recognize deformation points. In the 

following chapter five, we will show the implementation and results of our 

research. In chapter six will be discussion and conclusion.  

 

1.2 Introduction to image processing-base detection damage-

container system 

Figure 1.2.1 is a illustration an automatic checking container system. 

There are three cameras mounted on three side of container-checking gate to get 

image data around three sides of container when a container carrying truck goes in 

to the gate. These data will be sent to Central Monitoring, Diagnosing, and 

Controlling System. In there, the images will be processed and analyzed to make 

quantitative measurements about size and direction of deformation on container 

and use these to make a decision, such as controlling the switch gate to choose 

path (or accept or reject) for the truck going out.  
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Fig. 1.2.1 Container checking and sorting at gate. 
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1.3 Implementation and limit of thesis 

This thesis have researched about a method of detecting and estimating 

deformation or damage along the edges of container, that is a let of Capsize-

Gaussian Function (CGF) in approximating of function of deformation at a point 

on the edge. From three parameters of CGF:  direction, depth and flexure, we can 

get an image that performing damage information, and these parameters are an 

estimator directly to the damage. 
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Chapter 2: Image Processing 

 

 

 

2.1 Introduction 

The important of images in the development of human civilization is 

evident. Even in the ancient times images have played a significant role. Today, 

image technologies develop rapidly, and we may expect that in future the 

important of images will increase progressively. Apart from spiritual or artistic 

connotations, the significance of images is especially found in information 

systems.  Images are used to improve or assist human visual perception. 

Thermograph, for instance, helps us to perceive heat sources that are hard to 

observe with the naked eye.  Magnetic resonance imaging (MRI) devices can 

sense materials in the interior of 3D objects which may be used for patient 

screening and monitoring or for detection of tumors or other disease in patients. 

Images acquired by satellites are useful in tracking of earth resources, geographic 

mapping, prediction of agricultural crops, urban growth, and weather, flood and 

fire control, and many other environmental applications. In visual information 

systems images are the physical carriers of information. Images can easily be 
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brought in a form suitable for further processing. Therefore, another application of 

images is in automated information systems , i.e. image based measurement 

systems. A rudimentary example is an infrared detector equipped with only one 

sensor. These detectors are used, for instance, to open doors automatically as soon 

as a person wants to enter a building. Its output is a symbol with two possible 

states: one indicating that there is a heat source in its vicinity; the other that there 

isn’t. An example of a more complex image based measurement system that reads 

the images on three sides of container and measures parameters describing the 

qualities of container. Here, the output consists of command to accept or reject a 

container. 

Observed image, which is included of informative edge of deformation 

shapes and another unwanted edges, should be decreasing uninteresting variations 

or suppressing noise and detecting the edges. These processes are called 

conditioning. There are many kinds of techniques used in this step, refer [8][9], 

such as noise cleaning, sharpening, edge detection, line detection. In section two, 

we have just presented Canny edge detector which is widely used in computer 

vision to locate sharp intensity changes and to find object boundaries in an image 

[1]. 
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2.2 Image Processing, Computer Vision, and Applications of 

Image Based Measurement Systems  

Image processing and computer vision are all processes that deal with 

images. The difference between these processes is in the representation of the 

input and output data. The inputs of image processing are images and the outputs 

of it are images. The inputs of computer vision are images and the outputs of it are 

descriptions of scene.  

Our processing objects are digital images. A digital image ),( nmI  is 

described in a tow-dimensional discrete space which is derived from an analog 

image ),( yxI  in a tow-dimensional continuous space through a sampling process. 

Digital image processing  has a broad spectrum of applications, such as 

remote sensing via satellites and other spacecraft, image transmission and storage 

for business applications, medical processing, radar, sonar, and acoustic image 

processing, robotics, and automated inspection of industrial parts, or automated 

control bases on extracted characteristic information in an image.  

Computer vision  is the science that develops the theoretical and 

algorithmic basis by which useful information about the world can be 

automatically extracted and analyzed from an observed image, image set, or 

image sequence from computations made by special-purpose or general-purpose 

computers. Such information can be related to the recognition of a generic object, 

the there –dimensional description of an unknown object, the position and 

orientation of the observed object, or the measurement of any spatial property of  
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an object, such as the distance between two of its distinguished points or the 

diameter of a circular section. Applications of the technology range from vision-

guided robot assembly to inspection tasks involving mensuration,  verification 

that all parts are present, or determination that surfaces have no defects (example : 

container surface). 

Image based measurement is a process that assigns meaningful numbers 

and symbols to objects in an imaged scene. This information may concern: a 

simple detection of an object (Is there a certain object in the scene), classification 

of objects (To what class does an object belong), parameter estimation (What is 

the size, position and orientation of an object), shape analysis (What is the shape 

and geometry of the objects), scene description (What are the objects in the scene, 

and how are they related to each other). 

Image based measurement systems find wide applications in various kinds 

of scientific areas. But also in various industrial, medical and agricultural 

environments the applications are rapidly growing. The first scientific discipline 

that discovered the power of computer vision was astronomy. In the sixties, 

pictures of the moon were processed by computers. Initially, these techniques 

were developed to improve the quality of the images, i.e. restoration. Later, 

scientists found out that similar techniques could be applied to take over the 

manual, time consuming  procedures needed to extract the desired information 

from these images, other scientific disciplines that use computer vision nowadays 

include: photogrammetry, particle physics, biology, medical science, geology and 

oceanology, science of material, industry, security. In the industrial and 
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agricultural area, the main application of image based measurement is quality 

control. In many production lines, for instance in the food industry, the quality of 

products must be guaranteed. Manual inspection is laborious an unreliable, and 

thus expensive. However, the quality control often involves a visual task. 

Therefore, in these branches, the application of computer vision is fruitful. 

 

2.3 Recognition Methodology 

Computer recognition and inspection of objects is, in general, a complex 

procedure requiring a variety of steps that successively transform the iconic data 

to recognition information. Handling unconstrained environments is often difficult 

for today’s computer vision and recognition technology because the existing 

algorithms are specialized and do not develop one or more of the necessary 

transformation steps to a high enough degree. This thesis is that there are no 

shortcuts. A recognition methodology must pay substantial attention to each of the 

following of six steps: image formation, conditioning, labeling, grouping, 

extracting, and matching. 

Image formation occurs when a sensor resisters radiation that has 

interacted with physical objects. The mathematical model of imaging has several 

different components: an image function is the fundamental abstraction of an 

image; An geometrical model describes how three dimensions are projected into 

two; A radio-metrical model shows how the imaging geometry, light sources, and 

reflectance properties of objects affect the light measurement at the sensor; A 

spatial frequency model describes how different spectral measurements are related 
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to image colors; A digitizing  model describes the process of obtaining discrete 

samples. 

Conditioning is based on a model that suggests that the observed image is 

composed of an information pattern modified by uninteresting variations that 

typically add to or multiply the informative pattern. Conditioning estimates the 

informative pattern on the basic of the observed image. Thus conditioning 

suppresses noise, which can be thought of as random un-patterned variations 

affecting all measurements. Conditioning can also perform background 

normalization by suppressing uninteresting systematic or patterned variations. 

Conditioning is typically applied uniformly and is context independent. 

Labeling is based on a model that suggests that the informative pattern has 

structure as a spatial arrangement of events, each spatial event being a set of 

connected pixels. Labeling determines in what kinds of spatial events each pixel 

participates. For example, if the interesting spatial events of the informative 

pattern are events only of high-valued and low-valued pixels, then the 

thresholding operations include edge detection, corner finding, an identification of 

pixels that participate in various shape primitives. 

The labeling operation labels pixels with the kinds of primitive spatial 

events in which the pixel participates. The grouping operation identifies the events 

by collecting together or identifying maximal connected sets of  pixels 

participating in the same kind of event. If the labels are symbolic, then the 

grouping is really a connected components operation. If the labels are gray levels, 

then the grouping operation is what the vision literature call a segmentation. If the 
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labels are step edges, then the grouping operation constitutes edge linking, and so 

on. The grouping operation involves a change of logical data structure. The 

observed image, the conditioned image, and the labeled image are all digital 

image data structures. Depending on the implementation, the grouping operation 

can produce either an image data structure in which each pixel is given an index 

associated which the spatial event to which it belongs or a data structure that is a 

collection of sets. Each set corresponds to a spatial event and contains the pairs of 

(row, column) positions that participate in the event. In either case a change 

occurs in the logical data structure. The entities of interest before the grouping 

step are pixels. The entities of interest after the grouping step are sets of pixels. 

The grouping operation determines the new set of entities. But after the 

grouping step the new entities are naked. The only thing they possess is their 

identity. The extracting operation computes for each group of pixels a list of its 

properties. Example properties might include its centroid, its area, its orientation, 

its spatial moments, its gray tone moments, its spatial-gray tone moments, it 

circumscribing circle, it inscribing circle, and so on. Other properties might 

depend on whether the group is considered a region or an arc. If the group is a 

region then number of holes might be a useful property. If the group is an arc, 

then average curvature might be a useful property. Extracting also can measure 

topological or spatial relationships between two or more groupings. For example, 

an extracting operation may make explicit that two groupings touch or are 

spatially close or that one grouping is above another. 
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After the completion of the extracting operation, the events occurring on 

the image have been identified and measured. But the events in and of themselves 

have no meaning. The meaning of the observed spatial events emerges when a 

perceptual organization has occurred such that a specific set of spatial events in 

the observed spatial organization clearly constitutes an imaged instance of some 

previously known object, such as a chair or the letter A. Once an object or set of 

objects parts has been recognized, then measurements such as the distance 

between two parts, the angle between two lines, or the area of an object part can 

be made and related to the allowed tolerance, for instance, in an inspection 

scenario. It is the matching operation that determines the interpretation of some 

related set of image events, associating these events with some given three-

dimensional object or two-dimensional shape. The association determined by 

matching establishes a correspondence between each spatial event in the related 

set of events on the image with some spatial event on the three-dimensional object 

or two-dimensional shape. The association is one that in some sense best matches 

both the character of the spatial events and the stand in some spatial relationships. 

Thus, after matching, two primitive image events that stand in some spatial 

relationship will have associated with them two object events that stand in a 

similar relationship. 

A wide variety of image operations are matching operations, the classic 

one is template matching, which is effective only if the variety of instances 

expected to be encountered is limited. For example, rotation and size variations 
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must be very small, the background must be nearly uniform. Random shape 

deformations must be minimal. 

Simple shapes will correspond to primitive spatial event, and the property 

measurement form the primitive spatial event will often be adequate to permit 

recognition of the shape. In this case the matching operation amounts to matching 

the vector of propertied measured from the image spatial event with the vector of 

properties of a prototype representative. Such matching constitutes statistical 

pattern recognition. Complex shapes will correspond to a set of primitive spatial 

event as well as the spatial relationships between the events. In this case the 

matching amounts to determining a relational homomorphism with unary 

constraints established by the required matching of the property vectors of the 

observed image events with the property vectors of the prototype primitives. Such 

a matching is what constitutes structural pattern recognition. 

 

2.4 Canny Edge Detector 

Canny edge detector determined edges by an optimization process, refer to 

[1][12], to ensure three criteria is that low error rate, the edge points be well 

localized (minimize the actual edge), and have a only one response to a single 

edge. Based on these criteria, a typical implementation of the Canny edge detector 

follows steps below. 
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Fig. 2 Illustrating Canny edge detector. 

 

1. Smooth the image to eliminate the noise and reduce desired image 

details by using an appropriate Gaussian mask (filter) convolute with the 

origin image. (Refer to Fiter_Gaussian function in the appendixes) 

2. Determine gradient magnitude and gradient direction at each pixel from 

the smoothed image. (Refer to Gradient_Sobel function in the appendixes) 

3. Non-maximum suppression is used to be  applied to trace along the edge 

in the gradient direction and suppress any pixel value that is not 

considered to be an edge. If the gradient magnitude at a pixel is larger than 

those at its two neighbors in the gradient direction, mark the pixel as an 

edge. Otherwise, mark the pixel as the background. (Refer to 

NonMaximum_Supression function in the appendixes) 

4. Remove the weak edges by hysterisis thresholding.  
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Chapter 3:  Capsize-Gaussian Function 

 

 

 

3.1 Define types of damage or deformation 

Damage or deformation on container is caused by collision, so the shape 

of deformation can be figured in  Fig. 3.1.1. 

 

 

 

 

 

 

Fig. 3.1.1 Types of deformation shape 

Furcation points 
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These deformation shapes have a general feature that is furcation point 

from which there are several branch starting. 

From the shape of  these, a ideal of using capsized Gaussian function to 

match with the deformation shape at furcation point for estimation the 

deformation was founded. Shape of the Capsize-Gaussian Function (CGF) will be 

introduced below. 

 

3.2 Shape of CGF in recognition curves of deformation 

First of all, a quote from beginning of chapter twelve in [11] makes me 

interesting and pleasure. That is: “One of the most interesting of the word is that it 

can be considered to be made up of patterns. A pattern is essentially an 

arrangement. It is characterized by the order of the elements of which it is made, 

rather than the intrinsic nature of these elements”, Norbert Wiener. So a 

deformation can be recognized by a function or a class of function which can 

describe the deformation shape. An ideal uses Capsize-Gaussian Function (CGF) 

(1) to match with embossment-lines from the deformation image. Fig. 3.2.1 

illustrates the shape of CGF.  

 

Fig. 3.2.1 Capsize-Gaussian Function 
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The difference of depth and flexure level of deformation at a point can be 

measured through changing of two parameters  a (depth) and σ (flexure), 

respectively, Fig. 3.2.2. 
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Fig. 3.2.2 Changing of depth and flexure levels of CGF 
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Fig. 3.2.3 Rotate CGF an angle θ  about )0,0(O  

 

But deformation has arbitrary shapes, so we need one more parameter θ   

for rotating CGF like (2). Fig.3.2.3 shows the CGF of rotating an angle θ  about 

the origin O(0,0). 
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where ( )σθ ,,,, ayxW  is a window containing CGF at angle θ . 

A function ),( yxf of deformation shape can be analyzed as a linear 

combination of expansion functions of CGF windows 
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                                   ( )∑∑∑=
i j k

kjikji ayxWdyxf σθ ,,,,),( ,,                            (3) 

 

where kji ,,  are integer indexes of the finite sum, the kjid ,,  are real-valued 

expansion coefficients or called correlation coefficients which those values will be 

estimated in chapter four. Fig. 3.2.4 illustrates vector integrated information of 

deformation at point (x,y). 

The code listing in the appendixes of Gauu_Draw functions is used to 

determine a CGF with its three parameters of depth, flexure and direction. 
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Fig. 3.2.4 Vector Integrated information of deformation  at a point (x,y) 
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Chapter 4:  Analysis tools 

 

 

 

4.1 Matching by correlation 

Recognition techniques based on matching represent each class by a 

prototype pattern vector. An unknown pattern is assigned to the class to which it 

is closest in terms of a predefined metric. The simplest approach is the minimum-

distance classifier, which, as its name implied, computes the Euclidean distance 

between the unknown and each of the prototype vectors. It chooses the smallest 

distance to make a decision. Here. We just discuss an approach based on 

correlation, which can be formulated directly in terms of images and is quite 

intuitive. 

Correlation coefficient of two functions ),( yxI , deformation image, and 

),,,,( σθ ayxW , CGF window mask, is defined as both continuous and discrete 

case as : 
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                        ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

++= dxdyyxIanymxWanmd ,,,,,,,,, σθσθ                          (4) 

                         ( ) ( ) ( )∑∑
∞

∞−

∞

∞−

++= yxIanymxWanmd ,,,,,,,,, σθσθ                              (5) 

 

Correlation function measures the relative matching of two functions for 

different shifts given by m, n. In matching, ),( yxI  is an image containing shapes 

of deformation. If we want to determine whether ),( yxI  contains a shape of 

deformation, we just do correlate between ),( yxI  and CGF window mask. Then, 

if there is a match, the correlation of the two functions will be maximum at the 

location where ),,,,( σθ ayxW  finds a correspondence in ),( yxI . 

An example to illustrate the effect of correlation operation is shown in Fig. 

4.1.1. An edge image with array of line form the Capsize-Gaussian-Function after 

rotate -90 degree will be correlate with a mask 






 − σπ
,,

2
,, ayxW , and the result 

will appear white points (called centers of shape deformation) in the horizontal 

line. As expected, we can see the highest value (white points) of the correlation 

function occurs at the point where the image is exactly on the top of the mask 

image. 

The correlation function given in equation (5) has the disadvantage of 

being sensitive to changes in the amplitude of ),,,,( σθ ayxW  and ),( yxI . For 

example, doubling all values of ),( yxI  doubles the value of ),,,,( σθ ayxd . An 



  22 

approach frequently used to overcome this difficulty is to perform matching via 

the correlation coefficient, which is defined as 

 

[ ][ ]
[ ] [ ]∑∑ ∑∑

∑∑
−++−

−++−
=

22
),,,,(),(),(

),,,,(),(),(
),,,,(

WanymxWyxIyxI

WanymxWyxIyxI
anm

σθ

σθ
σθδ    (6)  

 

Where W  is the average value of the pixels in W , ),( yxI  is the average value of 

),( yxI  in the region coincident with the current location of  W , and the  

2
:

π−rotate

⊗

correlate:⊗

 

Fig. 4.1.1 Illustrate the method to detect points of high deformation 
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summations are taken over the coordinates common to both ),( yxI  and  W  the 

correlation coefficient ),,,,( σθδ anm  is scaled in the range -1 to 1, independent 

of scale changes in the amplitude of ),( yxI  and  W . 

 

4.2 Recognition based on threshold method 

After correlation two the functions, we want to remove the weak points 

where the matching is not clear, so we can reject these point by a threshold, like 

Fig.4.2.1. 

 

 

Fig. 4.2.1 Thresholding transformation 
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Chapter 5: Implementation and Results 

 

 

 

5.1 Assign example problem and implementing tools 

To reduce the time of computation of the integral correlation calculation, 

for the 294x220 origin image of Fig. 5.1.1, we have just chosen a few of elements 

of each parameters, but it has not lost the signification of our method. Values for 

each parameter are given, such as: 

 






−= πππθ
2

0
2

 

 

[ ]20105=a  

 

[ ]28157=σ  
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Fig. 5.1.1 Origin image 

 

All the calculations and results have been programmed using Microsoft 

Visual C++ 6.0 compiler. 

 

5.2 Results 

First of all is result in edge image: Sobel amplitude image in Fig. 5.2.1, 

Sobel direction image in Fig. 5.2.2, Canny edge image in Fig. 5.2.3. 
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Fig. 5.2.1 Sobel amplitude image                    Fig. 5.2.2 Sobel direction Image 

 

 

Fig 5.2.3 Canny edge image 

 

Second results are list of images from correlating between origin image 

and CGF with given values of parameters above. 
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                           a=5, s=7                                               threshold image 

Fig. 5.2.4.a Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 7,5,
2

,,
πσθ a  

 

-pi/2 

   

                           a=5, s=15                                              threshold image 

Fig. 5.2.4.b Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 15,5,
2

,,
πσθ a  
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                           a=5, s=28                                              threshold image 

Fig. 5.2.4.c Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 28,5,
2

,,
πσθ a  
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                           a=10, s=7                                              threshold image 

Fig. 5.2.4.d Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 7,10,
2

,,
πσθ a  
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                           a=10, s=15                                             threshold image 

Fig. 5.2.4.e Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 15,10,
2

,,
πσθ a  
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                           a=10, s=28                                             threshold image 

Fig. 5.2.4.f Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 28,10,
2

,,
πσθ a  
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                           a=20, s=7                                              threshold image 

Fig. 5.2.4.g Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 7,20,
2

,,
πσθ a  
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                           a=20, s=15                                             threshold image 

Fig. 5.2.4.h Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 15,20,
2

,,
πσθ a  
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                           a=20, s=28                                             threshold image 

Fig. 5.2.4.i Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 28,20,
2

,,
πσθ a  

 

Zero pi 

   

                           a=5, s=7                                               threshold image 

Fig. 5.2.5.a Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,5,0,, =σθ a  
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Zero pi 

   

                           a=5, s=15                                              threshold image 

Fig. 5.2.5.b Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,5,0,, =σθ a  

 

Zero pi 

   

                           a=5, s=28                                              threshold image 

Fig. 5.2.5.c Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,5,0,, =σθ a  
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Zero pi 

   

                           a=10, s=7                                              threshold image 

Fig. 5.2.5.d Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,10,0,, =σθ a  

 

Zero pi 

   

                           a=10, s=15                                             threshold image 

Fig. 5.2.5.e Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,10,0,, =σθ a  
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Zero pi 

   

                           a=10, s=28                                             threshold image 

Fig. 5.2.5.f Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,10,0,, =σθ a  

 

Zero pi 

   

                           a=20, s=7                                              threshold image 

Fig. 5.2.5.g Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,20,0,, =σθ a  
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Zero pi 

   

                           a=20, s=15                                             threshold image 

Fig. 5.2.5.h Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,20,0,, =σθ a  

 

Zero pi 

   

                           a=20, s=28                                             threshold image 

Fig. 5.2.5.i Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,20,0,, =σθ a  
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                           a=5, s=7                                               threshold image 

Fig. 5.2.6.a Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 7,5,
2

,,
πσθ a  

 

pi/2 

   

                           a=5, s=15                                              threshold image 

Fig. 5.2.6.b Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 15,5,
2

,,
πσθ a  
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                           a=5, s=28                                              threshold image 

Fig. 5.2.6.c Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 28,5,
2

,,
πσθ a  
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                           a=10, s=7                                              threshold image 

Fig. 5.2.6.d Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 7,10,
2

,,
πσθ a  
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                           a=10, s=15                                             threshold image 

Fig. 5.2.6.e Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 15,10,
2

,,
πσθ a  

 

pi/2 

   

                           a=10, s=28                                             threshold image 

Fig. 5.2.6.f Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 28,10,
2

,,
πσθ a  
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                           a=20, s=7                                              threshold image 

Fig. 5.2.6.g Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 7,10,
2

,,
πσθ a  
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                           a=20, s=15                                             threshold image 

Fig. 5.2.6.h Feature Images after applied correlation and thresholding 

transformations at ( ) 






= 15,20,
2

,,
πσθ a  
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                           a=20, s=28                                             threshold image  

Fig. 5.2.6.i Feature Images after applied correlation and thresholding 

transformations at ( ) 






−= 28,20,
2

,,
πσθ a  

 

pi 

   

a=5, s=7                                                               threshold image 

Fig. 5.2.7.a Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,5,,, πσθ =a  
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                           a=5, s=15                                              threshold image 

Fig. 5.2.7.b Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,5,,, πσθ =a  

 

pi 

   

                           a=5, s=28                                              threshold image 

Fig. 5.2.7.c Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,5,,, πσθ =a  

 



  42 

pi 

   

                           a=10, s=7                                              threshold image 

Fig. 5.2.7.d Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,10,,, πσθ =a  

 

pi 

   

                           a=10, s=15                                             threshold image 

Fig. 5.2.7.e Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,10,,, πσθ =a  
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                           a=10, s=28                                             threshold image 

Fig. 5.2.7.f Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,10,,, πσθ =a  

 

pi 

   

                           a=20, s=7                                              threshold image 

Fig. 5.2.7.g Feature Images after applied correlation and thresholding 

transformations at ( ) ( )7,20,,, πσθ =a  
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                           a=20, s=15                                             threshold image 

Fig. 5.2.7.h Feature Images after applied correlation and thresholding 

transformations at ( ) ( )15,20,,, πσθ =a  

 

pi 

   

                           a=20, s=28                                             threshold image 

Fig. 5.2.7.i Feature Images after applied correlation and thresholding 

transformations at ( ) ( )28,20,,, πσθ =a  
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The deformation can be detected from white points in the feature images 

Fig. 5.2.4.a,b,f correspond to the parameters: 

 

( )















−






−






−= 28,10,
2

,15,5,
2

,7,5,
2

,,
πππσθ a  

 

This set of parameters is a estimator of damage of the container in image. 

Estimating the deformation area is in Fig. 5.2.8. Fig.5.2.8(a) displays the center of 

damage with the green cross (green +) sign in the edge image. Fig.5.2.8(b) 

displays the area of damage with three lets of gaussian masks correspond to three 

color of red, green and blue in the edge image. And Fig5.2.8(c) shows the damage 

area in the original image.  
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(a)                                                                  (b) 

 

(c) 

Fig. 5.2.8 Recognizing and Estimating the deformation: (a) Center of deformation 

in the edge image, (b) and (c) Size and orientation of deformation in edge image 

and origin image, respectively. 
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Chapter 6: Conclusion 

 

 

 

To ensure that the clear image of damages is obtained, Canny edge 

detector has been implemented. However, some of strict corner of some texts or 

marks on surface of container might be generate fault or error decisions, 

especially, when the processes are automatic. 

If the distribution of the white points is not spread, high density or high the 

group’s width of meaning, these points may be not considered as damage or 

deformation, we might be guess these points are belong to a particular region. 

Inside  of Fig. 5.2.5.a,d,g has a group of white points, but that is the text region 

correspondingly in the origin image. And these groups have just occurred from 

the set of parameters ( ) ( ) ( ) ( ){ }7,20,0,7,10,0,7,5,0,, =σθ a , we have a attention that 

if spreads greater than a threshold, there is not exist white group points. So we 

should limit the range for spread parameter and also another parameter depends 

on the application.  

Although the correlation operation can be normalized for amplitude 

changes via the correlation coefficient, obtaining normalization for changes in size 
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and rotation can be hard. Because, in the real systems, the nature of size and 

rotation of deformation is unknown, so looking for the best match requires 

exhaustive changes of size and rotations of the mask. 

In this thesis, a new ideal, which matching by correlation between edge 

image and Capsize-Gaussian-Function, to extract information of deformation 

shapes and recognize these has been presented. However, in future, we need do 

more experiments and looking for a decision making and measuring the size of 

damage or deformation shapes. And further more, we will design an automatic 

identity check import-export containers system in order to improve and modernize 

port management and technology. 
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Appendixes 

 

Filter_Gaussian function: 
void CTestNewImageClassDlg::Fiter_Gaussian(CxImage* pImage) 
{ 
 if(!pImage) return ; 
 long gauss_kernel[5][5]={ {2,  4,   5,  4,  2}, 
     {4,  9,  12,  9, 4}, 
     {5, 12, 15, 12, 5}, 
     {4,  9,  12,  9, 4}, 
     {2,  4,   5,  4,  2}     }; 
 EX_RGBQUAD color; 
 DWORD x,y; 
 CxImage im; 
 im = *pImage; 
 long sum,sum_elements; 
 int i,j; 
 DWORD width,height; 
 width = im.GetWidth(); 
 height = im.GetHeight(); 
 for(x=0;x<width;x++) 
 for(y=0;y<height;y++) 
 { 
  sum = 0; 
  sum_elements = 0; 
  for(i=-2;i<=2;i++) 
  for(j=-2;j<=2;j++) 
  { 
   if (x+i>=0 && x+i<width && y+j>=0 && y+j<height)  
   { 
    color.rgbqColor = im.GetPixelColor(x+i,y+j); 
  
    sum += gauss_kernel[i+2][j+2]*color.dwValue; 
    sum_elements += gauss_kernel[i+2][j+2]; 
   } 
  } 
  if (sum_elements) 
  { 
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   color.dwValue = Thresholdex(sum/sum_elements); 
  } 
  else 
  { 
   color.dwValue = 0; 
  } 
  pImage->SetPixelColor(x,y,color.rgbqColor); 
 } 
} 
 
Gradient_Sobel function 
void CTestNewImageClassDlg::Gradient_Sobel(CxImage* pImage,int 
magnitude_direction) 
{ 
 if(!pImage) return ; 
 long H[3][3]={ {-1,-2,-1},{ 0,0,0},{ 1,2,1} }; 
 long V[3][3]={ {-1, 0, 1},{-2,0,2},{-1,0,1} }; 
 EX_RGBQUAD color; 
 DWORD x,y; 
 CxImage im; 
 im = *pImage; 
 long** array; 
 DWORD width,height; 
 width = im.GetWidth()+2; 
 height = im.GetHeight()+2; 
 array = new long*[width]; 
 if(!array) return; 
 //Allocate memory 
 for (x=0;x<width;x++) 
 { 
  array[x] = new long[height]; 
  if (!array[x]) 
  { 
   DWORD xt; 
   for (xt=0;xt<x;xt++) 
   { 
    delete[] array[xt]; 
   } 
   delete[] array; 
   return; 
  } 
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 } 
 //Initialization 
 for (x=0;x<width;x++) 
 { 
  ZeroMemory(array[x],height); 
 } 
 
 //Assign the image matrix 
 for(x=1;x<width-1;x++) 
 for(y=1;y<height-1;y++) 
 { 
  color.rgbqColor = im.GetPixelColor(x-1,y-1); 
  array[x][y] = (long)color.dwValue;  
 } 
 long h,v; 
 int i,j; 
 byte gray; 
 long double angle; 
 for(x=1;x<width-1;x++) 
 for(y=1;y<height-1;y++) 
 { 
  h=0; 
  v=0; 
  for(i=-1;i<2;i++) 
  for(j=-1;j<2;j++) 
  { 
   h+= H[i+1][j+1]*array[x+i][y+j]; 
   v+= V[i+1][j+1]*array[x+i][y+j]; 
  } 
  if (!magnitude_direction) 
  { 
   color.dwValue = Thresholdex( long(abs(v)+abs(h)) ); 
   im.SetPixelColor(x-1,y-1,color.rgbqColor); 
  } 
  else 
  { 
   angle = atan2((long double)v,(long double)h); 
   angle = angle>0 ? angle : angle+PI; 
   gray = (byte)( angle/PI * 180 ); 
   if ((gray>=0&&gray<=22.5)||(gray>157.5&&gray<=180)) 
   { 
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    gray = 0; 
   } 
   else if (gray>22.5 && gray <=67.5) 
   { 
    gray = 45; 
   } 
   else if (gray > 67.5 && gray < 112.5) 
   { 
    gray = 90; 
   } 
   else if (gray >= 112.5 && gray <=157.5) 
   { 
    gray =135; 
   } 
   color.rgbqColor.rgbBlue = gray; 
   color.rgbqColor.rgbGreen = gray; 
   color.rgbqColor.rgbRed = gray; 
   im.SetPixelColor(x-1,y-1,color.rgbqColor); 
  } 
 } 
 *pImage = im; 
 //DeAllocate memory 
 for (x=0;x<width;x++) 
 { 
  delete[] array[x]; 
 } 
 delete[] array; 
} 
 
NonMaximum_Suppression 
void CTestNewImageClassDlg::NonMaximum_Suppression(CxImage* pImage) 
{ 
 if(!pImage) return ; 
 EX_RGBQUAD color,color1,color2;; 
 DWORD x,y; 
 CxImage im_amp,im_dir; 
 im_amp = *pImage; 
 im_dir = *pImage; 
 DWORD highThreshold,lowThreshold; 
 highThreshold = 0x00fffff0; 
 lowThreshold  = 0x00efffff; 
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 DWORD width,height; 
 width = im_amp.GetWidth(); 
 height = im_amp.GetHeight(); 
 Gradient_Sobel(&im_dir,1); 
 Gradient_Sobel(&im_amp,0); 
 *pImage = im_amp; 
 int i,j; 
 byte flag; 
 for(x=1;x<width-1;x++) 
 for(y=1;y<height-1;y++) 
 { 
  color.rgbqColor = im_dir.GetPixelColor(x,y); 
  if (color.rgbqColor.rgbRed == 0) 
  { 
   i =  1; 
   j =  0; 
  } 
  else if (color.rgbqColor.rgbRed == 45) 
  { 
   i =  1; 
   j =  1; 
  } 
  else if (color.rgbqColor.rgbRed == 90) 
  { 
   i =  0; 
   j =  1; 
  } 
  else 
  { 
   i = -1; 
   j =  1; 
  } 
  color.rgbqColor = im_amp.GetPixelColor(x,y); 
  color1.rgbqColor = im_amp.GetPixelColor(x+i,y+j); 
  color2.rgbqColor = im_amp.GetPixelColor(x-i,y-j); 
  if (color.dwValue<color1.dwValue 

||color.dwValue<color2.dwValue) 
  { 
   color.dwValue = 0; 
   pImage->SetPixelColor(x,y,color.rgbqColor); 
  } 
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  else  
  { 
   if (color.dwValue > highThreshold) 
   { 
    color.dwValue = 0x00ffffff; 
    pImage->SetPixelColor(x,y,color.rgbqColor); 
   } 
   else if (color.dwValue < lowThreshold) 
   { 
    color.dwValue = 0; 
    pImage->SetPixelColor(x,y,color.rgbqColor); 
   } 
   else 
   { 
    flag=0; 
    for (i=-1;i<=1;i++) 
    for (j=-1;j<=1;j++) 
    { 
     if(i==0&&j==0) continue; 

color.rgbqColor = 
im_amp.GetPixelColor(x+i,y+j); 

     if (color.dwValue > highThreshold) 
     { 
      flag = 1; 
      break; 
     } 
    } 
    if (flag) 
    { 
     color.dwValue = 0x00ffffff; 
     pImage-> 

SetPixelColor(x,y,color.rgbqColor); 
    } 
    else 
    { 
     color.dwValue = 0; 
     pImage-> 

SetPixelColor(x,y,color.rgbqColor); 
    } 
   } 
  } 
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 } 
} 
 
Gauss_Draw function 
void CTestNewImageClassDlg::Gauss_Draw(CxImage* pImage,CPoint 
point,double angle,int a,int spread,DWORD c) 
{ 
 if(!m_pImage) 
  return ; 
 EX_RGBQUAD color; 
 WORD num; 
 num = 2*3*spread; 
 DWORD x,y; 
 DWORD xx,yy; 
 DWORD* array; 
 array = new DWORD[num]; 
 if(!array) return ; 
 ZeroMemory(array,num); 
 color.dwValue = c; 
 for (int i=0;i<num;i++) 
 { 

array[i]= DWORD(a-a*exp(-(i-num/2)*(i-
num/2)/(2.0*spread*spread))) ; 

  x=i;y=array[i]; 
xx= (long)(x*cos(angle)-y*sin(angle) -num/2*cos(angle) + 
point.x); 
yy= (long)(y*cos(angle)+x*sin(angle) -num/2*sin(angle) + 
point.y); 

  if (xx<0||xx>=pImage->GetWidth()||yy<0||yy>=pImage-> 
GetHeight()) 

  { 
   continue; 
  } 
  pImage->SetPixelColor(xx, yy,color.rgbqColor); 
 } 
 delete[] array; 
} 
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