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Abstract

In this thesis, an estimating damage on exterrméhael of container using
Capsize-Gaussian-Function (be called CGF) is ptederEstimation of the
damage size can be get directly from two paramete@GF, these are the depth
and the flexure, also the direction of damage. pedormance of the present
method has been illustrated using an image of damagtainer, which had been
taken from Hanijin Port in Pusan, Korea, after usimgge processing techniques
to do preprocessing of the image, especially, tanmsed technique is Canny
edge detecting that is widely used in computeiowigo locate sharp intensity and

to find object boundaries in the image, then catreh between the edge image



from the preprocessing step and the CGF with thegameters (direction, depth,
flexure), as a result, we get an image that perfdamage information, and these

parameters is an estimator directly to the damage.
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Chapter 1. Introduction

1.1 Thesisoverview

Estimating quality of containers is an importarlgem in a Port System.
Automation of this process is one of needs of impmoent and modernization
Port Management Technology. This thesis presemésearch about recognition
and estimating the size of damage on external g container. The damage is
alteration in the shape of dimensions of contaagea result of the application or
accident of stress to it. Information of the damageld be obtained by using
camera or capture devices. Some of automatic aigits are used to recognize
and estimate the rate of damage. In order to datetestimate the damage shape,
first of all, the image could be preprocessed agtéated edges using Canny edge
detector or another edge detection methods, arehdestep, we need to extract
interesting features which could describe the charistics of problem. In chapter
two, we have briefly described some of image proogsprocedures used in the
preprocessing data, and addressed detail to Caigey detector which is used to

extract the boundary of the image. In chapter thaeefeature extracting method



by using Capsize-Gaussian-Function in the diredtymeating the damage will be
introduced. Chapter four will introduce the correlatoperators which be used to
match between original image and sets of capsizesg@u function, and the
simple threshold method which be used to recogné&ferchation points. In the
following chapter five, we will show the implementati@mnd results of our

research. In chapter six will be discussion and lesnn.

1.2 Introduction to image processing-base detection damage-

container system

Figure 1.2.1 is a illustration an automatic chegkitontainer system.
There are three cameras mounted on three sidentdiner-checking gate to get
image data around three sides of container whemtaioer carrying truck goes in
to the gate. These data will be sent to Central Madng, Diagnosing, and
Controlling System. In there, the images will begassed and analyzed to make
quantitative measurements about size and directicseformation on container
and use these to make a decision, such as comgralie switch gate to choose

path (or accept or reject) for the truck going out.



Accept

Reject
e |

Container

Image Analysis system:
feature extraction and
decision making.

Fig. 1.2.1 Container checking and sorting at gate.



1.3 Implementation and limit of thesis

This thesis have researched about a method oftohgfeand estimating
deformation or damage along the edges of contathet, is a let of Capsize-
Gaussian Function (CGF) in approximating of functodrdeformation at a point
on the edge. From three parameters of CGF: direatiepth and flexure, we can
get an image that performing damage informatioml #rese parameters are an

estimator directly to the damage.



Chapter 2: Image Processing

2.1 Introduction

The important of images in the development of hurcaslization is
evident. Even in the ancient times images haveeplay significant role. Today,
image technologies develop rapidly, and we may expeat in future the
important of images will increase progressively. Adaom spiritual or artistic
connotations, the significance of images is esfigcimund in information
systems. Images are used to improve or assist rhuvisual perception.
Thermograph, for instance, helps us to perceiva bearces that are hard to
observe with the naked eye. Magnetic resonanceimga@IRI) devices can
sense materials in the interior of 3D objects whicaynbe used for patient
screening and monitoring or for detection of tumorsther disease in patients.
Images acquired by satellites are useful in tragkihearth resources, geographic
mapping, prediction of agricultural crops, urbaowgth, and weather, flood and
fire control, and many other environmental appilaas. In visual information

systems images are the physical carriers of infoomalmages can easily be



brought in a form suitable for further processiferefore, another application of
images is in automated information systems , neage based measurement
systems. A rudimentary example is an infrared detesquipped with only one
sensor. These detectors are used, for instanopgeto doors automatically as soon
as a person wants to enter a building. Its outpat $ymbol with two possible
states: one indicating that there is a heat sauards vicinity; the other that there
isn’t. An example of a more complex image based nreasent system that reads
the images on three sides of container and meapar@sneters describing the
qualities of container. Here, the output consi$tsammand to accept or reject a
container.

Observed image, which is included of informative ed§aleformation
shapes and another unwanted edges, should be slagreainteresting variations
or suppressing noise and detecting the edges. Theseesses are called
conditioning. There are many kinds of techniquesduis this step, refer [8][9],
such as noise cleaning, sharpening, edge detediiengetection. In section two,
we have just presented Canny edge detector whichdslyused in computer

vision to locate sharp intensity changes and td fibject boundaries in an image

[1].



2.2 Image Processing, Computer Vision, and Applications of

| mage Based M easurement Systems

Image processing and computer vision are all psaseshat deal with
images. The difference between these processestigimepresentation of the
input and output data. The inputs of image proogsare images and the outputs
of it are images. The inputs of computer visioniarages and the outputs of it are
descriptions of scene.

Our processing objects are digital images. A digitahge | (m,n ) is
described in a tow-dimensional discrete space wlsatterived from an analog
image | (x,y )in a tow-dimensional continuous space throughapsiag process.

Digital image processing has a broad spectrum pficgtions, such as
remote sensing via satellites and other spaceansge transmission and storage
for business applications, medical processing, rragtanar, and acoustic image
processing, robotics, and automated inspectiomadistrial parts, or automated
control bases on extracted characteristic inforomatn an image.

Computer vision is the science that develops theoretical and
algorithmic basis by which useful information abotlie world can be
automatically extracted and analyzed from an olezkervnage, image set, or
image sequence from computations made by specipbpe or general-purpose
computers. Such information can be related to ¢leegnition of a generic object,
the there —dimensional description of an unknowneabjthe position and

orientation of the observed object, or the measargrof any spatial property of



an object, such as the distance between two of #snduished points or the
diameter of a circular section. Applications of teehnology range from vision-
guided robot assembly to inspection tasks involvingnsuration, verification
that all parts are present, or determination thetases have no defects (example :
container surface).

Image based measurement is a process that assearsngful numbers
and symbols to objects in an imaged scene. Thmnmdtion may concern: a
simple detection of an object (Is there a certdiject in the scene), classification
of objects (To what class does an object belonggmeter estimation (What is
the size, position and orientation of an objedigpe analysis (What is the shape
and geometry of the objects), scene descriptionafvére the objects in the scene,
and how are they related to each other).

Image based measurement systems find wide appheaitiovarious kinds
of scientific areas. But also in various industriahedical and agricultural
environments the applications are rapidly growinige Tirst scientific discipline
that discovered the power of computer vision wasoaetny. In the sixties,
pictures of the moon were processed by computerigally, these techniques
were developed to improve the quality of the images, restoration. Later,
scientists found out that similar techniques colbd applied to take over the
manual, time consuming procedures needed to éxinacdesired information
from these images, other scientific disciplined thge computer vision nowadays
include: photogrammetry, particle physics, biologedical science, geology and

oceanology, science of material, industry, security the industrial and



agricultural area, the main application of imagedsh measurement is quality
control. In many production lines, for instancethie food industry, the quality of
products must be guaranteed. Manual inspectioakerious an unreliable, and
thus expensive. However, the quality control oftenoimes a visual task.

Therefore, in these branches, the application ofpader vision is fruitful.

2.3 Recognition M ethodology

Computer recognition and inspection of objectsrisgeneral, a complex
procedure requiring a variety of steps that suéeelystransform the iconic data
to recognition information. Handling unconstrainedieonments is often difficult
for today’'s computer vision and recognition teclngyl because the existing
algorithms are specialized and do not develop anenore of the necessary
transformation steps to a high enough degree. ffasis is that there are no
shortcuts. A recognition methodology must pay sutigtbattention to each of the
following of six steps: image formation, conditiogjnlabeling, grouping,
extracting, and matching.

Image formation occurs when a sensor resisters tiagiahat has
interacted with physical objects. The mathematicatleh of imaging has several
different components: an image function is the amdntal abstraction of an
image; An geometrical model describes how three démwes are projected into
two; A radio-metrical model shows how the imaging getwy light sources, and
reflectance properties of objects affect the liglgasurement at the sensor; A

spatial frequency model describes how different spemeasurements are related



to image colors; A digitizing model describes thhegess of obtaining discrete
samples.

Conditioning is based on a model that suggeststhigabbserved image is
composed of an information pattern modified by temesting variations that
typically add to or multiply the informative patterConditioning estimates the
informative pattern on the basic of the observedgen Thus conditioning
suppresses noise, which can be thought of as randepatterned variations
affecting all measurements. Conditioning can alserfqggm background
normalization by suppressing uninteresting systemat patterned variations.
Conditioning is typically applied uniformly and éentext independent.

Labeling is based on a model that suggests thahtbenative pattern has
structure as a spatial arrangement of events, spahal event being a set of
connected pixels. Labeling determines in what kiofispatial events each pixel
participates. For example, if the interesting spaéivents of the informative
pattern are events only of high-valued and low-edlupixels, then the
thresholding operations include edge detectiomeawoifinding, an identification of
pixels that participate in various shape primitives

The labeling operation labels pixels with the kirafsprimitive spatial
events in which the pixel participates. The groupmpgration identifies the events
by collecting together or identifying maximal cowterl sets of pixels
participating in the same kind of event. If the dmbare symbolic, then the
grouping is really a connected components operalidhe labels are gray levels,

then the grouping operation is what the vision ditere call a segmentation. If the

10



labels are step edges, then the grouping operatiostitutes edge linking, and so
on. The grouping operation involves a change ofckigdata structure. The
observed image, the conditioned image, and thelddbenage are all digital
image data structures. Depending on the implementaihe grouping operation
can produce either an image data structure in wdah pixel is given an index
associated which the spatial event to which it bedomga data structure that is a
collection of sets. Each set corresponds to aapatent and contains the pairs of
(row, column) positions that participate in the dven either case a change
occurs in the logical data structure. The entibésnterest before the grouping
step are pixels. The entities of interest aftergtwiping step are sets of pixels.
The grouping operation determines the new set dfientBut after the
grouping step the new entities are naked. The dmhgtthey possess is their
identity. The extracting operation computes forhegooup of pixels a list of its
properties. Example properties might include itsti®d, its area, its orientation,
its spatial moments, its gray tone moments, itdigpgray tone moments, it
circumscribing circle, it inscribing circle, and sm. Other properties might
depend on whether the group is considered a regi@n arc. If the group is a
region then number of holes might be a useful ptygpdf the group is an arc,
then average curvature might be a useful prop&yracting also can measure
topological or spatial relationships between two arengroupings. For example,
an extracting operation may make explicit that twougings touch or are

spatially close or that one grouping is above agroth

11



After the completion of the extracting operationg #vents occurring on
the image have been identified and measured. Bug\tknts in and of themselves
have no meaning. The meaning of the observed smatéats emerges when a
perceptual organization has occurred such thateaifspset of spatial events in
the observed spatial organization clearly cong#wtn imaged instance of some
previously known object, such as a chair or theeteft Once an object or set of
objects parts has been recognized, then measurensech as the distance
between two parts, the angle between two lines, oarba of an object part can
be made and related to the allowed tolerance, fetamte, in an inspection
scenario. It is the matching operation that deteesithe interpretation of some
related set of image events, associating theseteweith some given three-
dimensional object or two-dimensional shape. Theo@ason determined by
matching establishes a correspondence between patihl £vent in the related
set of events on the image with some spatial evetih® three-dimensional object
or two-dimensional shape. The association is oneithsome sense best matches
both the character of the spatial events and #redsh some spatial relationships.
Thus, after matching, two primitive image eventstte@and in some spatial
relationship will have associated with them two objegents that stand in a
similar relationship.

A wide variety of image operations are matching of@na, the classic
one is template matching, which is effective onlythe variety of instances

expected to be encountered is limited. For exanmplation and size variations

12



must be very small, the background must be neanmijonm. Random shape
deformations must be minimal.

Simple shapes will correspond to primitive spatizrg, and the property
measurement form the primitive spatial event willeof be adequate to permit
recognition of the shape. In this case the matchpgration amounts to matching
the vector of propertied measured from the imageisipevent with the vector of
properties of a prototype representative. Such Imvajc constitutes statistical
pattern recognition. Complex shapes will corresptmnd set of primitive spatial
event as well as the spatial relationships betwéenewents. In this case the
matching amounts to determining a relational homgmem with unary
constraints established by the required matchinghefproperty vectors of the
observed image events with the property vectoth@®prototype primitives. Such

a matching is what constitutes structural pattecogaition.

2.4 Canny Edge Detector

Canny edge detector determined edges by an optionzarocess, refer to
[1][12], to ensure three criteria is that low errate, the edge points be well
localized (minimize the actual edge), and have lg one response to a single
edge. Based on these criteria, a typical implentiemaf the Canny edge detector

follows steps below.

13



Amplitude image

_ : Nonmaximum-
Gaussian- Sabel suppression and | Edge image
Mask operator remove the weak

edges

Direction image

Fig. 2 lllustrating Canny edge detector.

1. Smooth the image to eliminate the noise andacediesired image
details by using an appropriate Gaussian maskrffitenvolute with the
origin image. (Refer t&iter _Gaussian function in the appendixes)

2. Determine gradient magnitude and gradient doacit each pixel from
the smoothed image. (Refer@adient_Sobel function in the appendixes)
3. Non-maximum suppression is used to be appliéte along the edge
in the gradient direction and suppress any pixduesathat is not
considered to be an edge. If the gradient magniati@depixel is larger than
those at its two neighbors in the gradient directimark the pixel as an
edge. Otherwise, mark the pixel as the backgroundefe(R to
NonMaximum_Supression function in the appendixes)

4. Remove the weak edges by hysterisis thresholding.

14



Chapter 3: Capsize-Gaussian Function

3.1 Define types of damage or defor mation

Damage or deformation on container is caused bysawil so the shape

of deformation can be figured in Fig. 3.1.1.

Furcation points

Fig. 3.1.1 Types of deformation shape

15



These deformation shapes have a general featurdsttiarcation point
from which there are several branch starting.

From the shape of these, a ideal of using capsgaassian function to
match with the deformation shape at furcation poiot estimation the
deformation was founded. Shape of the Capsize-GauBsiaction (CGF) will be

introduced below.

3.2 Shape of CGF in recognition curves of defor mation

First of all, a quote from beginning of chapter tveein [11] makes me
interesting and pleasure. That is: “One of the nmastesting of the word is that it
can be considered to be made up of patterns. A rpatte essentially an
arrangement. It is characterized by the order efelements of which it is made,
rather than the intrinsic nature of these element¢drbert Wiener. So a
deformation can be recognized by a function orassclof function which can
describe the deformation shape. An ideal uses Gay&aaissian Function (CGF)
(1) to match with embossment-lines from the deforomaimage. Fig. 3.2.1

illustrates the shape of CGF.

=3 o, 0y 3w X

Fig. 3.2.1 Capsize-Gaussian Function

16



(1)

The difference of depth and flexure level of defation at a point can be
measured through changing of two parametess(depth) ando (flexure),

respectively, Fig. 3.2.2.

Decrease flexure

Increase depth

10

Fig. 3.2.2 Changing of depth and flexure levels of CGF

17



Fig. 3.2.3 Rotate CGF an angl€ aboutO (0,0)

But deformation has arbitrary shapes, so we needname parameteé
for rotating CGF like (2). Fig.3.2.3 shows the CGKaihting an angl& about
the origin O(0,0).

0(8,a,0) =1(xy) - = ()
m:_?n(e) codo) M
1 if (x,y)00(6,a,0)
0, otherwise

W(x y,8,a,0) :{

whereW(x, y,8,a,0) is a window containing CGF at angfe
A function f(x,y)of deformation shape can be analyzed as a linear

combination of expansion functions of CGF windows

18



f(X’y)zzzzdi,j,kw(xiy’ei’ajiak) (3

where i, j,k are integer indexes of the finite sum, tg, are real-valued

expansion coefficients or called correlation caséints which those values will be
estimated in chapter four. Fig. 3.2.4 illustratestor integrated information of
deformation at point (X,y).

The code listing in the appendixes@&uu_Draw functions is used to

determine a CGF with its three parameters of dd{ethyre and direction.

Fig. 3.2.4 Vector Integrated information of deformation giant (x,y)

19



Chapter 4. Analysistools

4.1 Matching by correlation

Recognition techniques based on matching represaoh class by a
prototype pattern vector. An unknown pattern iggmed to the class to which it
is closest in terms of a predefined metric. Thepsast approach is the minimum-
distance classifier, which, as its name impliednpates the Euclidean distance
between the unknown and each of the prototype r&clbchooses the smallest
distance to make a decision. Here. We just disarssapproach based on
correlation, which can be formulated directly imnte of images and is quite
intuitive.

Correlation coefficient of two functionk(x,y , deformation image, and

W(x,y,68,a,0), CGF window mask, is defined as both continuous discrete

case as .

20



00 00

d(mn,8,a,0)= J' [W(x+m,y+n,6,a0)(x y)dxdy 4)

—00—00

o 00

d(mn,8,a,0)=> > W(x+my+n,6,a0)(xy) 5)

—00 —00

Correlation function measures the relative matctlohgwo functions for
different shifts given by m, n. In matchinp(x, y is)an image containing shapes
of deformation. If we want to determine whethdx,y contains a shape of
deformation, we just do correlate betwddn,y angd CGF window mask. Then,
if there is a match, the correlation of the twodiions will be maximum at the
location whereW(x, y,68,a,0 )finds a correspondence Irfx,y . )

An example to illustrate the effect of correlatimperation is shown in Fig.

4.1.1. An edge image with array of line form thg€lae-Gaussian-Function after

rotate -90 degree will be correlate with a mm%x, y,—g,a, aj, and the result

will appear white points (called centers of shapéodnation) in the horizontal
line. As expected, we can see the highest valuédwioints) of the correlation
function occurs at the point where the image iscéyan the top of the mask
image.

The correlation function given in equation (5) hihe disadvantage of
being sensitive to changes in the amplitudéMik,y,6,a,0 andll(x,y). For

example, doubling all values ¢{x,y doubles the value dd(x,y,8,a,0 .)An
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approach frequently used to overcome this difficigtto perform matching via

the correlation coefficient, which is defined as

ZZ['(X y) = I(x, y)]M(x+m y+n,6,a,0)- W]
\/ZZ[W( y)—T(x, Y)] ZZ[\N(X+m y+n,0,a,0)- W]

o(mn,6,a,0) = (6)

WhereW is the average value of the pixelsWih, 1(x,y) is the average value of

[ (x,y) in the region coincident with the current locatainW , and the

[1:correlate

T
rotate: ——
2

Fig. 4.1.1 lllustrate the method to detect points of highodefation
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summations are taken over the coordinates commbattol (x,y ) and W the
correlation coefficienv(m,n,6,a,0 )s scaled in the range -1 to 1, independent

of scale changes in the amplitudeldk,y and W.

4.2 Recognition based on threshold method
After correlation two the functions, we want to @re the weak points
where the matching is not clear, so we can refextd point by a threshold, like

Fig.4.2.1.

Fig. 4.2.1 Thresholding transformation
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Chapter 5: Implementation and Results

5.1 Assign example problem and implementing tools

To reduce the time of computation of the integkarelation calculation,
for the 294x220 origin image of Fig. 5.1.1, we haws chosen a few of elements
of each parameters, but it has not lost the sigatifin of our method. Values for

each parameter are given, such as:

0:[—5 0
2

Ny

7
a=[5 10 20|

o=[7 15 29
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Fig. 5.1.1 Origin image

All the calculations and results have been prograthmsing Microsoft

Visual C++ 6.0 compiler.

5.2 Results

First of all is result in edge image: Sobel ampléumage in Fig. 5.2.1,

Sobel direction image in Fig. 5.2.2, Canny edgegena Fig. 5.2.3.
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Fig. 5.2.1 Sobel amplitude image Fig. 5.2.2 Sobel direction Image

Fig 5.2.3 Canny edge image

Second results are list of images from correlatiatyveen origin image

and CGF with given values of parameters above.
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a=5, s=7 threshold image

Fig. 5.2.4.a Feature Images after applied correlation and tiwleing

transformations afg, a, o) = (—g ,5,7j

-pi/2

a=5, s=15 threshold image

Fig. 5.2.4.b Feature Images after applied correlation and timegg

transformations afg, a, o) = (—7—2-[ ,515]
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-pil2

a=h, s=28 threshold image

Fig. 5.2.4.c Feature Images after applied correlation and kimegg

transformations afg, a, o) = (—7—27 ,5,28)

-pi/2

a=10, s=7 threshold image

Fig. 5.2.4.d Feature Images after applied correlation and timegg

transformations afg, a, o) = (—7—27 10,7j
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-pil2

a=10, s=15 threshold image

Fig. 5.2.4.e Feature Images after applied correlation and himeig

transformations afg, a, o) = (—g ;LO;LSJ

-pi/2

a=10, s=28 threshold image

Fig. 5.2.4.f Feature Images after applied correlation and timiegng

transformations afg,a, o) = (—7—27 1028}
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-pil2

a=20, s=7 threshold image

Fig. 5.2.4.g Feature Images after applied correlation and tiwleing

transformations afg,a, o) = (_7_21 20,7)

-pi/2

a=20, s=15 threshold image

Fig. 5.2.4.h Feature Images after applied correlation and timegg

transformations afg,a, o) = (_7_21 2015}
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-pil2

a=20, s=28 threshold image

Fig. 5.2.4.i Feature Images after applied correlation and timeig

transformations afg,a, o) = (_7_27 2028}

Zero pi

a=5, s=7 threshold image

Fig. 5.2.5.a Feature Images after applied correlation and tiwleing

transformations af,a,g) = (057)
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Zero pi

a=5, s=15 threshold image
Fig. 5.2.5.b Feature Images after applied correlation and timiegg

transformations afg,a,g) = (0515)

Zero pi

threshold image

Fig. 5.2.5.c Feature Images after applied correlation and timeig

transformations afg,a,o) = (0528)

32



threshold image
Fig. 5.2.5.d Feature Images after applied correlation and timegg

transformations aff,a, ) = (0107)

Zero pi

a=10, s=15 threshold image

Fig. 5.2.5.e Feature Images after applied correlation and timeig

transformations afg,a, o) = (01015)
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Zero pi

a=10, s=28 threshold image
Fig. 5.2.5.f Feature Images after applied correlation and timiegng

transformations afg, a, o) = (010,28)

Zero pi

a=20, s=7 threshold image

Fig. 5.2.5.g Feature Images after applied correlation and tiwleing

transformations afg, a, o) = (020,7)
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Zero pi

a=20, s=15 threshold image
Fig. 5.2.5.h Feature Images after applied correlation and timegg

transformations afg,a,g) = (02015)

Zero pi

a=20, s=28 threshold image

Fig. 5.2.5.i Feature Images after applied correlation and timegng

transformations aff, a, ) = (020,28)
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pi/2

a=5, s=7 threshold image

Fig. 5.2.6.a Feature Images after applied correlation and tiwleing

transformations afg,a, o) = (%T ,5,7}

a=5, s=15 threshold image

Fig. 5.2.6.b Feature Images after applied correlation and timegg

transformations afg, a, o) = (%T ,515)
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pi/2

a=5, s=28 threshold image

Fig. 5.2.6.c Feature Images after applied correlation and timeing

transformations afg, a, o) = (7—27 ,528}

pi/2

a=10, s=7 threshold image

Fig. 5.2.6.d Feature Images after applied correlation and timegg

transformations afg, a, o) = (7—27 10,7)
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pi/2

a=10, s=15 threshold image

Fig. 5.2.6.e Feature Images after applied correlation and timeing

transformations afg,a, o) = (%T 1015)

pi/2

a=10, s=28 threshold image

Fig. 5.2.6.f Feature Images after applied correlation and timiegng

transformations afg,a,o) = (7—27 1028}
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a=20, s=7 threshold image

Fig. 5.2.6.g Feature Images after applied correlation and tiwleing

transformations afg, a, o) = (%T 10,7)

pi/2

a=20, s=15 threshold image

Fig. 5.2.6.h Feature Images after applied correlation and timegg

transformations afg,a,o) = (7—27 2015}
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a=20, s=28 threshold image

Fig. 5.2.6.i Feature Images after applied correlation and timeing

transformations afg,a, o) = (_7_27 2028}

a=5, s=7 threshold image

Fig. 5.2.7.a Feature Images after applied correlation and tiwleing

transformations afg,a, o) = (77,57)
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pi

a=5, s=15 threshold image
Fig. 5.2.7.b Feature Images after applied correlation and timegg

transformations afg, a,g) = (77,515)

a=5, s=28 threshold image

Fig. 5.2.7.c Feature Images after applied correlation and timeig

transformations afg, a, o) = (77,528)
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pi

a=10, s=7 threshold image
Fig. 5.2.7.d Feature Images after applied correlation and timegg

transformations afg, a, o) = (7710,7)

a=10, s=15 threshold image

Fig. 5.2.7.e Feature Images after applied correlation and timeig

transformations afg, a, o) = (771015)
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pi

a=10, s=28 threshold image
Fig. 5.2.7.f Feature Images after applied correlation and timiegng

transformations afg,a, o) = (7710,28)

a=20, s=7 threshold image

Fig. 5.2.7.g Feature Images after applied correlation and tiwleing

transformations afg, a, o) = (77,20,7)
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a=20, s=15 threshold image
Fig. 5.2.7.h Feature Images after applied correlation and timegg

transformations afg, a, o) = (77,2015)

pi

a=20, s=28 threshold image

Fig. 5.2.7.i Feature Images after applied correlation and timieing

transformations afg, a, o) = (77,20.28)
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The deformation can be detected from white pointthe feature images

Fig. 5.2.4.a,b,f correspond to the parameters:

|-} )

This set of parameters is a estimator of damagehefcontainer in image.
Estimating the deformation area is in Fig. 5.2i8.9:2.8(a) displays the center of
damage with the green cross (green +) sign in thge amage. Fig.5.2.8(b)
displays the area of damage with three lets of gJansnasks correspond to three
color of red, green and blue in the edge image. Rig8.2.8(c) shows the damage

area in the original image.
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(©)

Fig. 5.2.8 Recognizing and Estimating the deformation: (a)t€eof deformation

in the edge image, (b) and (c) Size and orientaifateformation in edge image

and origin image, respectively.

46



Chapter 6: Conclusion

To ensure that the clear image of damages is @mtai€anny edge
detector has been implemented. However, some iof strner of some texts or
marks on surface of container might be generatdt fau error decisions,
especially, when the processes are automatic.

If the distribution of the white points is not spck high density or high the
group’s width of meaning, these points may be rmisdered as damage or
deformation, we might be guess these points arengelo a particular region.
Inside of Fig. 5.2.5.a,d,g has a group of white{® but that is the text region
correspondingly in the origin image. And these gohave just occurred from
the set of paramete(#,a,0) ={(057),(0107),(020,7)}, we have a attention that
if spreads greater than a threshold, there is xigt /hite group points. So we
should limit the range for spread parameter and afsther parameter depends
on the application.

Although the correlation operation can be normalizer amplitude

changes via the correlation coefficient, obtaimegmalization for changes in size
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and rotation can be hard. Because, in the reakmgstthe nature of size and
rotation of deformation is unknown, so looking ftrve best match requires
exhaustive changes of size and rotations of th&kmas

In this thesis, a new ideal, which matching by elation between edge
image and Capsize-Gaussian-Function, to extradrrnmdtion of deformation
shapes and recognize these has been presentedvétpwefuture, we need do
more experiments and looking for a decision making measuring the size of
damage or deformation shapes. And further morewilledesign an automatic
identity check import-export containers systemr den to improve and modernize

port management and technology.
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Appendixes

Filter _Gaussian function:
void CTestNewlmageClassDI§iter Gaussian(Cxlmage* plmage)
{
if(lpImage) return ;
long gauss_kernel[S][5]1={ {2, 4, 5, 4, 2},
{4, 9, 12, 9, 4},
{5, 12, 15, 12, 5},
{4, 9, 12, 9, 4},
{2, 4, 5, 4, 2} ¥}
EX_RGBQUAD color;
DWORD x,y;
CxIlmage im;
im = *plmage;
long sum,sum_elements;
intij;
DWORD width,height;
width = im.GetWidth();
height = im.GetHeight();
for(x=0;x<width;x++)
for(y=0;y<height;y++)
{
sum = 0;
sum_elements = 0;
for(i=-2;i<=2;i++)
for(j=-2;j<=2;j++)

{
if (x+i>=0 && x+i<width && y+j>=0 && y+j<height)
{
color.rgbqColor = im.GetPixelColor(x+i,y+j);
sum += gauss_kernel[i+2][j+2]*color.dwValue;
sum_elements += gauss_kernel[i+2][j+2];
}
}
if (sum_elements)
{
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}

color.dwValue = Thresholdex(sum/sum_elements);

}

else

{

}
plmage->SetPixelColor(x,y,color.rgbgColor);

color.dwValue = 0;

Gradient_Saobel function

void

CTestNewlmageClassDI@Gradient_Sobel(CxImage*

magnitude_direction)

{

if('plmage) return ;
long H[3][3]={ {-1,-2,-1},{ 0,0,0},{ 1,2,1} };
long V[3][3]={ {-1, O, 1},{-2,0,2},{-1,0,1} };
EX_RGBQUAD color;
DWORD x,y;
CxIlmage im;
im = *plmage;
long** array;
DWORD width,height;
width = im.GetWidth()+2;
height = im.GetHeight()+2;
array = new long*[width];
if('array) return;
/[Allocate memory
for (x=0;x<width;x++)
{
array[x] = new long[height];
if ('array[x])
{

DWORD xt;
for (xt=0;xt<x;xt++)

{
}

delete[] array;
return;

delete[] array[xt];
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}

/lInitialization
for (x=0;x<width;x++)

{
}

//Assign the image matrix
for(x=1;x<width-1;x++)
for(y=1;y<height-1;y++)

ZeroMemory(array[x],height);

{
color.rgbqColor = im.GetPixelColor(x-1,y-1);
array[x][y] = (long)color.dwValue;

}

long h,v;

intij;

byte gray;

long double angle;
for(x=1;x<width-1;x++)
for(y=1;y<height-1;y++)

h=0;
v=0;
for(i=-1;i<2;i++)
for(j=-1;j<2;j++)

{
h+= H[i+1][j+1]*array[x+i][y+]];
v+= V[i+1][j+1]*array[x+i][y+]];
}
if (!magnitude_direction)
{
color.dwValue = Thresholdex( long(abs(v)+abs{h))
im.SetPixelColor(x-1,y-1,color.rgbqColor);
}
else
{

angle = atan2((long double)v,(long double)h);

angle = angle>0 ? angle : angle+Pl;

gray = (byte)( angle/P1 * 180 );

if ((gray>=0&&gray<=22.5)||(gray>157.5&&gray<=08
{

53



gray = 0;
else if (gray>22.5 && gray <=67.5)
{

gray = 45;

else if (gray > 67.5 && gray < 112.5)

gray = 90;
}
else if (gray >= 112.5 && gray <=157.5)
{

gray =135;

color.rgbgColor.rgbBlue = gray;
color.rgbqColor.rgbGreen = gray;
color.rgbgColor.rgbRed = gray;
im.SetPixelColor(x-1,y-1,color.rgbgColor);
}

}

*plmage = im;

/IDeAllocate memory

for (x=0;x<width;x++)

delete[] array[x];

}

delete[] array;

}

NonM aximum_Suppression
void CTestNewlmageClassDIfonMaximum_Suppression(Cxlmage* plmage)
{
if('plmage) return ;
EX_RGBQUAD color,colorl,color2;;
DWORD x,y;
CxIlmage im_amp,im_dir;
im_amp = *plmage;
im_dir = *plmage;
DWORD highThreshold,lowThreshold;
highThreshold = 0x0OfffffO;
lowThreshold = 0x00efffff;

54



DWORD width,height;

width = im_amp.GetWidth();
height = im_amp.GetHeight();
Gradient_Sobel(&m_dir,1);
Gradient_Sobel(&m_amp,0);
*plmage = im_amp;

inti,j;

byte flag;
for(x=1;x<width-1;x++)
for(y=1;y<height-1;y++)

{

color.rgbqColor = im_dir.GetPixelColor(x,y);
if (color.rgbgColor.rgbRed == 0)

else if (color.rgbqColor.rgbRed == 45)

else if (color.rgbqColor.rgbRed == 90)

i=1;
j=0;
}
t
= 1;
j= 1
}
{
i=0;
j=1
}
else
L
1=-1;
j=1

color.rgbqColor = im_amp.GetPixelColor(x,y);
colorl.rgbqColor = im_amp.GetPixelColor(x+i,y+j);
color2.rgbqColor = im_amp.GetPixelColor(x-i,y-});
if (color.dwValue<colorl.dwValue

{

||color.dwValue<color2.dwValue)

color.dwValue = 0;
plmage->SetPixelColor(x,y,color.rgbgColor);



else

if (color.dwValue > highThreshold)

{

color.dwValue = 0xOQOffffff;
plmage->SetPixelColor(x,y,color.rgbqColor);

else if (color.dwValue < lowThreshold)

{

else

color.dwValue = 0;
plmage->SetPixelColor(x,y,color.rgbqColor);

flag=0;
for (i=-1;i<=1,i++)
for (j=-1;j<=1;j++)

{
if(i==0&&j==0) continue;
color.rgbgColor =
im_amp.GetPixelColor(x+i,y+j);
If (color.dwValue > highThreshold)
{
flag = 1;
break;
}
}
if (flag)
{
color.dwValue = OxOOffffff;
plmage->
SetPixelColor(x,y,color.rgbgColor);
}
else
{
color.dwValue = 0;
plmage->
SetPixelColor(x,y,color.rgbqColor);
}
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}

Gauss Draw function
void CTestNewlmageClassDIg::Gauss_Draw(CxImage*ggejCPoint
point,double angle,int a,int spread, DWORD c)
{
if(!m_plmage)
return ;
EX_RGBQUAD color;
WORD num;
num = 2*3*spread,;
DWORD x,y;
DWORD xx,yy;
DWORD* array;
array = new DWORD[num];
if(larray) return ;
ZeroMemory(array,num);
color.dwValue = c;
for (int i=0;i<num;i++)
{
array[il= DWORD(a-a*exp(-(I-num/2)*(i-
num/2)/(2.0*spread*spread))) ;
x=i;y=array[i];
xx= (long)(x*cos(angle)-y*sin(angle) -num/2*cos(dep+
point.x);
yy= (long)(y*cos(angle)+x*sin(angle) -num/2*sin(daj +
point.y);
if (xx<0||xx>=plmage->GetWidth()|lyy<O||lyy>=pln&ag
GetHeight())

continue;

}
plmage->SetPixelColor(xx, yy,color.rgbqColor);

}

delete[] array;
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