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Abstract 

The field of vehicle routing is currently growing rapidly because of many 

actual applications in truckload and less-than-truckload trucking, courier services, 

door-to-door services and many other problems that generally hinder the 

optimization of transportation costs in a logistics network. The rapidly increasing 

number of customers in such a network has caused problems such as difficulty in 

cost optimization in terms of getting a global optimum solution in an acceptable 

time. Fast algorithms are needed to find sufficient solutions in a limited time that 

can be used for real-time scheduling. 

This dissertation will discus about heuristics to solve the vehicle routing 

problems (VRP) in static and dynamic contexts. The solutions for VRP can be 

obtained exact or heuristic ways. Specially, an introduction to De-Cranking 

heuristic method, which is an effective improvement of the problem solving 

method to solve the VRP, will be drawn out. The goal is to minimize the 
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transportation cost for motor-elements fleet such as vehicles, truck, lorry, train, 

AGV and etc. moving inside warehouses or touring around a planed ordered list of 

locations; crews, waiters/waitresses in large custom “Phở” restaurant and etc. 

moving to server guests; data frames moving on networks and etc. by rerouting 

and re-dispatching at any time occurring new requests, and/or changing overtime 

traffic condition on the itineraries.  

As any heuristic methods for the VRP, a started solution should be 

initialized before applying any adjustment procedures from the methods. That 

solution may be taken from random or reasonable methods. Even with random 

methods need also some reasonable ones to generate out which related to 

something called Monte Carlo Methods. This dissertation will not investigate to 

random methods but will introduce some useful and effective heuristic methods 

(reasonable ones) for the VRP.  

Beginning with the nearest neighbor method, which is classical immediate 

selecting one next location with lowest cost through all solution until shaping a 

complete route solution, and then, developing an algorithm in which generalizing 

the string of location involving in checking lowest cost selection with a given 

length . It is called nearest L -neighbor method (NLNM). This method is 

utilized to obtain the first stage route solution.  

L

In second stage, De-Cranking procedure will release the “cranky energy” 

if any appearing in the partial route of the first-stage solution, but conserving 

complete routing to all locations, to get a better route which may not be global 

optimal solution but near or sometime coincide to it.  

 iii



The dissertation also gives elements, processes and simulation methods 

such as lexicographic ordering, traversal the multi-branch tree and so on, from 

which some exact methods and heuristic method could be developed base on 

dependently or separately, to solve a class of combinatorial optimization problems 

which VRP is a representative one.  

 

Keywords: De-Cranking Heuristic Method, Nearest -Neighbor Method, 

Vehicle Routing Problem, Dynamic Vehicle Routing Problem, Lexicographic 

Ordering 

L
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Chapter 1 Introduction 

 

 

 

1.1 Introduction 

People are living in a dynamic world where the moving and exchanging of 

goods or commodities are processing every day, every hours, even every seconds 

from places to places (arranging products in a warehouse), from place to people 

(delivery services or goods from supermarket, store or post office to customers) 

and from people to each others.  

To get better and faster services, people create vehicles to support moving 

or exchanging processes. At the first thought, it could serve for individual or 

personal purposes, and that vehicle serving operations could be simple which may 

not necessary to plan for working. But when the services provide for many 

individuals and industry, there is a vital need to plan and schedule the operations, 

routes of vehicles in constraints such as limited resources, restricted time 

operating and space.  The goal is to minimize the time on goods transition, and as 

a result, reducing the cost. 
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In recent three decade, the vehicle routing problem (VRP) and the more 

practical version of VRP, the dynamic vehicle routing problem (DVRP), have 

been studied with much interests because of the importance of those in logistics 

networks, as reviewed in (Gendreau et al, 1996; Ichoua et al., 2003; Haghani and 

Jung, 2005; Hashimoto et al., 2006; Fabri and Recht, 2006; Hanshar and Ombuki-

Berman, 2007). The VRP has had important points in the scheduling of the routes 

of vehicles that carry materials, goods, products in a logistics network or chain of 

suppliers – manufacturers – warehouses and distribution centers – customers 

(Simchi-Levi et al., 2003), such as door-to-door services, courier services, full 

truckload (FTL) and less-than-truckload (LTL) services, etc. Recent applications 

of VRP in the fields of container terminals have been applied to the delivery of 

containers (Shin and Oh, 2008) or to the planning of a real-time location system 

(RTLS) (Shin et al., 2008), and so on. 

With the increasing of applicable and low-cost modern technologies on 

precise positioning and communication like as the GPS (Global Positioning 

System), the GIS (Geographical Information System), traffic flow sensors and 

cellular telephones that make the VRP and DVRP easier to apply to real-life 

indoor and outdoor applications (see Ghiani et al. (2003); Taniguchi et al. (2004)). 

In 21st century, numerous papers and monographs have been researching 

and developing efficient exact algorithms and heuristics for the VRP and the 

DVRP as in Larsen (2000); Ichoua et al. (2000); Toth and Vigo (2002); Branke et 

al. (2005); Hvattum et al. (2006, 2007); The trend have been turning to develop 

fast and efficient heuristics methods for VRPs. 
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The planning routes for vehicles can be scheduled off-line for long term 

business or on-line for tactical business. We can see that more than 80 per cent of 

the operations of a logistics network are related to vehicle movements, such as 

vehicles traveling between stages of supply chain and vehicles moving inside each 

stage of the supply chain. The control of these movements can enormously affect 

total cost. Consequently, a strategy in giving routes solution in VRPs is very 

important. 

This planning step is similar to control rules applied to a fleet of vehicles, 

such as actuators, in stages of the supply chain or logistics network, similar to a 

controlled system. The purpose is to find an optimal control rule that minimizes 

the operating cost of actuators or minimizes the transportation cost of vehicles in 

the VRP. The control rules should change over the operating time to react with the 

changes in environment (events, traffic condition, etc.) and generate suitable 

decisions that optimize vehicle operation. 

However, it has been known that VRPs is NP-hard. Because of its 

characteristics, VRPs require many techniques in finding an exact solution, 

especially by heuristic means. Differences in meta-heuristic methods are discussed 

by Michalewicz (1996); Toth and Vigo (2002); Chitty et al. (2004); Zeimpekis et 

al. (2005); Montemanni et al. (2005), and Fan et al. (2006).  

Generally, the exact methods are used to exploring all solution space by 

enumerating techniques (ex. brute force, backtracking, branch and bound etc.), see 

Horowitz and Sahni (1978), whereas the (meta-)heuristic methods are used to 
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exploring partially solution space by random or/and reasonable rules of selection, 

see Martello et al. (1987); Ball et al. (1995a, b). 

In real applications, the enumerating all the solution space may not 

practical because of the enormous solutions having to check for feasible. And if 

the space is multi-dimension, there is an obsession called “curse of dimension” 

which the examining all the space to find the best solution would take years even 

with a simple problem. For example, in the vehicle routing problem with just one 

vehicle touring around N  locations and each location just visited one time, the 

question is which route should be to minimize the time touring all that locations. 

The exact answer could be gotten if we checked -factor ( ) possible routes of 

solution space. It may not too hard for an industrious man with N <6 (6!=720), 

but in real application, number of locations may greater than hundreds in small 

business, and thousands to millions in large and very large business in which 

currently strongest sequence computers could not count. 

N !N

To solve real applications which the exact methods can not give an answer 

in acceptable time, some heuristic methods have been developed. The progress of 

developing heuristic method is shown as in Fig. 1.1. The heuristics have been 

developing in two directions concurrently. These are random methods and 

reasonable methods. The algorithms in which induced from reasonable statements 

indicate the level of robust intelligent of the methods. At first level, the heuristics 

may have involved some contingencies such as random selecting, or producing a 

random space of population. However, in more robust intelligent systems, the 
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contingency is replaced by reasonable elements of selecting or/and sampling 

or/and producing. This dissertation has been going to that trend. 
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Fig. 1.1 Developing of heuristic methods 

 

For example, producing first solution of the VRP not by random way, but 

by reasonable fact of nearest L -neighbor method (NLNM) which forming the 

route by adding continuously a string of length  locations with lowest cost until 

there is no remain locations. Consequently, the output route from the NLNM is 

refined by de-cranking procedure, another reasonable one, to produce a better 

solution. 

L
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1.2 Outline of the Dissertation 

The purpose of this dissertation will introduce some heuristic methods to 

solve the VRPs in statics and dynamics context. The nearest L -neighbor method 

is used to select an initial solution with various values s at first. And second, the 

de-cranking procedure to “pluck off” the route to decrease cost value of an 

objective function. Structuring of dissertation is as following. 

L

Chapter 2 will discuss and analyze about the static VRP with time window. 

The VRP will be formulated mathematically. Analyzing the objective function, 

detailing several serving cases and costing for each case will be provided clearly. 

Also, the context of the DVRP will be introduced with degree of dynamics and 

some modeling of dynamic traffic times. 

Chapter 3 will present some mathematical concepts such as set, order 

relation, mapping, traversal on multi-branch tree for sorting or searching which 

are helpful to present, manage and solve (programming) the combinatorial 

optimization problems analytically and computationally. The end of this section 

will be discussing heuristic methods used to solve the VRPs. Nearest -neighbor 

method, simple ideal of de-crossing and philosophy of de-cranking procedure will 

be detailed clearly. 

L

Chapter 4 is simulation results for VRP and DVRP. Testing the nearest - 

neighbor method (NLNM) with different values of length , and enhancing the 

route solutions with the de-cranking procedure to choose the best VRP solutions 

are presented. The results will show that NLNM with the support of the de-

crossing procedure gives a better solution than applying only NLNM, and in many 

L

L
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tests, it even reached an approximate or exact solution. Also, computational 

results providing an indication of the benefits associated with the de-cranking 

procedure will be detailed.  

Chapter 5 is conclusions about the methods and the obtained results. 

The appendix included a sample of Solomon data and all MATLAB codes 

for heuristics methods presented in the end of chapter 3.   
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Chapter 2 Vehicle Routing Problem:  

………………         Static and Dynamic 

 

 

 

2.1 Introduction 

VRP is the generalization of the traveling salesman problem (TSP), which 

is to find the shortest possible tour to make exact single visits to each location. 

The VRP searches plausible paths or routes from a depot to customer locations for 

a fleet of capacitated vehicles to serve customers (pick up or/and delivery of 

goods or commodities) based on optimizing objective functions that indicate 

benefits (to maximize) or total cost and time (to minimize) of services. 

In section 2.2, the mathematical formulations of the static VRP are 

presented. Section 2.3 discusses some respects of dynamic VRP. 

 

2.2 Static VRP 

The basic formulation of objective function for VRP might be referred to 

Ahuja et al. (1993). Another formulation has been suitable for binary linear 
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programming referred by Haghani et al. (2005). The former is very general but it 

does not consider the operational statuses of vehicles. The latter contains too 

many variables needed to be inputted in the decision solutions, and additionally it 

is very complex in formulating the problem and not suitable for VRP with a large 

number of customers. With the consideration of the operational vehicle’s status 

and simple objective function, in this chapter, the following simple objective 

function will be suggested intuitively. 

The vehicle routing problem is formally considered as a complete 

graph where  EVG ,    ,0   NiiV   is the vertexes set and 

  ,0,,0( NjNiE  ,  ), ijij   is the edges set. 

Vertices Ni ,1  are corresponding to customers with  as number of 

customers, whereas vertex 0 is the depot. A non-negative travel time  is 

associated with the each edge

N

ijt

),( ji  E . 

Each customer i  is characterized by a pickup location, a service time , a 

time window [ , ] and a vehicle planned arrival time . If < , the vehicle 

has to wait up to  before servicing the customer and if > , the penalty is 

incurred in the objective. 

is

ie il

ie

it it

il

ie

it

The depot is characterized by a location, a time window [ , ] for vehicle 

arrivals an departures, as well as the vehicle return time  for each vehicle

oe ol

k
ot k  K , 

where K  is the set of vehicles. The service time at the depot is assumed to be 
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0os . Each vehicle travels along a single route that starts and ends at the depot. 

The depiction of VRP is shown in Fig. 2.1. 
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Fig. 2.1 Vehicle routing problem 

 

The notation  is the customer in k
ji j th location the serviced k th vehicle. 

[ , ] is the time window, and  is the service time of customer  in the 

serving list of the vehicle k . And  is the number of customers that vehicle k  

will have been serving. 

k
ji

s

km

k
jik

ji
e k

ji
l

The objective of VRP is to minimize the weighted summation of travel 

time, sum of waiting time at customer locations, sum of delay time at customer 
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locations and delay time to return to the depot, which formulated in Eq. (2.1) for 

over all vehicles. 

Assume the solution , where 
Kk

kSS


  k
m

kk
o

k
k

iiiS ,...,, 1

0 k
m

k
o k

ii

 is the sequence 

of customer locations visited by vehicle with , then the objective 

function can be expressed as follows: 

k
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where, 

1a , , ,   2a 3a 4a Weighting parameters. 

     ,0max         yxyx   ,0max  

a

ik
j

t  Arriving time to customer i  of vehicle . k
j k

k
ji

t  Finished time at customer i  of vehicle and 

ready to move to next customer. 

k
j k
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lst  Sum of delay time at customer locations. 

 )( o
k
o lt  Delay time to come back 

 

If there is no waiting cost of vehicles to depot, then (  or 

. Also the ready time in time windows at depot for all vehicles will be 

zero ( ), and the travel time of each vehicle is always non-negative value 

( ).  
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Moreover, if the waiting cost of vehicles on their return to depot and on 

servicing are identical ( ), then the objective function can be reduced as 

follows: 

4a  3a
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There are three serving situations at a customer of each vehicle that makes 

the change in the cost: waiting, normal and delay cases. A detailed objective 

function of each case will be expressed based on Eq. (2.2) as follows: 

 

a) Waiting case 

When the vehicle arrives at the customer location before the ready time 

(the time the customer needs to be served), then the vehicle has to wait for the 

right time (the customer accepts the receiving service), as shown in Fig. 2.2. The 

real total time serving this customer, , and the cost for this link, , in 

this case will be given as follows: 

k
j

k
j ii

T
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ttT
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k
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                                                                              (2.3)  
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Fig. 2.2 Serving situations: waiting case 

 

b) Normal case 

Normal case or the right time case is shown in Fig. 2.3. There is no penalty 

in the cost link. The real total spent servicing time of the customer and the cost 

function for this link will be calculated as follows: 
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Fig. 2.3 Serving situations: normal case 

 

c) Delay cases 

Slowing cases are showed in Figs. 2.4 and 2.5, respectively. In Fig. 2.4, 

the vehicle arrives in a valid period time, but the servicing time exceeds the due 

time. In Fig. 2.5, the vehicle reaches the customer totally late. There is a penalty 

for this lateness. The real total time servicing this customer, , and the cost for 

this link, , in this case will be calculated as follows: 

k
j

k
j ii

T
,1

)( k
jSg

 

k
j

k
j

k
j

k
j iiii

ttT
11 , 

      

                                                                                        (2.7)  k
j

k
j

k
j ii

a

i
stt 

1

                                                                     (2.8)  )()( 3,1
1

k
j

k
j

k
j

k
j

k
j ii

a

iii

k
j lstataSg 



 

 15



k
ji

t
1

k
ji

t

time
k
ji

e k
ji

l

k
ji

s

a
ik

j
t

k
ji

 

Fig. 2.4 Serving situations: delaying case 1 
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Fig. 2.5 Serving situations: delaying case 2 

 

2.3 Dynamic VRP 

Dynamic vehicle routing problem are defined base on static vehicle 

routing problem adding with a number of changing elements during operating 

time of vehicles fleet in which a rearrangement all or an adjustment partially of 

the current routes in real time to adapt with the changing. The changing elements 

could be previously unknown such as stochastic customers whose requests and 

locations randomly occur at anytime, dynamics of travel time because of unknown 
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traffic condition affecting the velocity moving of fleet, and dynamics of vehicle 

dispatching, or the changing of policies online. 

In this section, we will discuss about dynamics of unknown customers and 

dynamics of travel times. 

 

2.3.1 Dynamics of Unknown Customers 

The VRP mentioned in previous chapter is static because of its input data 

(travelling time, total demand) are known in advance, all data are known when 

designing vehicles routes. The DVRP are different in different ways as discussed 

in Hvattum et al. (2006).  

It is significant to recall the dynamic degree of DVRP in Larsen (2000). 

Assume that the planning interval is . Let and  be the number of static 

and dynamic requests, respectively. Let t

],0[ T sn

,0[ T

dn

]i   be the occurrence time of 

service request i  with earliest time   and latest time . Larsenian degree of 

dynamics is defined as: 

ie il

 

 

ds

nn

i

ii

nn

T
lTtds









1                                                                                     

 

If the latest times  are far from the finished working time il T  , this case is 

strongly dynamics, whereas if s near il T  , it is weakly dynamics. 
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This dissertation will study and simulate the dynamics of customers with 

various degrees. The dynamic degree of customers in this dissertation is the 

number of customer requests per a period of rerouting during the operations of 

vehicles.  

The nearest L-neighbor method is used to predict the routes for each of 

vehicles consequently, and applying de-cranking procedure to reduce the cost 

before selecting the next customers to serve. One customer is chosen for each 

vehicle to serve next until there is no more the changing of the inputs. 

 

2.3.2 Dynamics of Travel Times 

When the vehicle is ready to depart from its current customer location, the 

travel time to its next destination is sum of scheduled average time, and variable 

time amount. This changeable time amount may positive (e.g. high traffic density, 

accident, bad conditions or downgrading on road) or negative (e.g. low traffic 

density, good conditions on road) change might be due to unforeseen events that 

may occur along the current travel section and represents the truly dynamic 

component of the travel time. Totally, the travel time is fluctuated and it is 

considered a rescheduling of the planned routes. We model dynamic travel time as 

follows: 
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                                                                                  (2.9)  
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where: 

jj iid ,1
  Distance between two customer locations. 

av       General velocity of vehicles, planed speed. 

         Unknown stochastic coefficient related to traffic condition. 

  o , 

 o        Goodness factor of traffic condition. 

01  o , 

 

Some special cases: 

  1       Best traffic condition could not support the vehicle go at 

infinite speed, so this is impossible case.  

  0           Normal traffic condition as planned. 

          Serious traffic, so the vehicle can not move. 

  5.0    Vehicle runs at double planned speed. 

 

  is related mainly to traffic density and fluctuated during day time. It 

changes continuously as in Fig 2.6. For testing purposes we can set an identical 

average value for each link that the vehicle running, in Fig. 2.7. And we assume 

the distribution of   is uniform. The value of   spans from [ 5.0 , 8 ] and has 

uniform probability distribution function )(pdf as in Fig. 2.8. 

This modeling of travelling time would significant because it transforms 
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Fig. 2.6  continuously changing overtime 
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Fig. 2.7  average value in each link to customer location 
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Fig. 2.8 Uniform pdf of   

 

the local travelling time to a realistic global statistical measurable quantity k
j

k
j ii

t
,1

  which is useful in prediction purposes. 
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Chapter 3 Solving the VRPs 

 

 

 

3.1 Introduction 

To solve the VRPs on computer, we need some knowledge to present 

elements of solution space and relation to assess or elements to be arranged on 

which is important to define a method to search an elements in general space. That 

is about set theory, order relation, mapping, combination sets, permutation sets, or 

tree concept and method to examine all tree branches to get exact solutions. 

But in real problems, the exploring totally the space solutions is 

impractical, it may need months, years, or even generations to search real 

optimum solution for a problem need to be decided in bound time. A fast problem 

solving ideal may not obtain a best one, but currently solve the problems in a 

simple way quickly and satisfy the need in acceptable time is a right choice. We 

call that be heuristic methods. 

Some of the basic mathematical concepts with exact methods and 

heuristics methods will be discussed over promptly and end with detailed 
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introduction to three heuristic methods: Nearest L-Neighbor Method, De-crossing 

and De-cranking. 

  

3.2 Set Theory and Order Relation 

A set is a collection of objects. The objects in a set are also called the 

elements, or members of the set. We use braces ,  to indicate a set and 

parentheses  to indicate an ordered set or sequence. A sequence of indexing 

locations from which constructs the route of vehicle 

 ,

 k
m

kk
o

k
k

iii ,...,, 1S  is an 

example closely to the subject of VRP. 

A subset of the set S  is a set  
kS such that every element of  is also a 

member of S . This relationship is denoted by ( )   (

kS

kSs Ss ); or ; 

or . 

SS k 

kSS 

Union of  and  is denoted as 1S 2S 1S   2S  . The union of the sets , 

, … , , denoted in short by . 

1S

2 KS S 
K

k

kS
1

Intersection of  and  is denoted by  or . 1S 2S 21 SS  21 \ SS

The Cartesian product of the sets , , … , , denoted by 

, is the set of n -tuples 

1S 2S nS

nSSS  21  nsss , 21 ,, , where  belongs to  for 

. We can write it as 

is iS

ni ,,2,1    niSssS ii ,, ,2
1   sn,s1S nS . ,12 
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If the sets , , … ,  are all equal to a set , then we have -fold Cartesian 

product of  which is denoted by . 

1S

S

2S

)(nS

nS S

nS

n

)(21 nSSS  

 )(nS

S

Lexicographic ordering “ ” of  is a set of all n -tuples of elements of 

, in which S  is the n -fold Cartesian product of . Let  nss ,,2 s ,1s   and 

, . Then  if either  nt,tt ,, 21t  ), ts  (nS ts  ts   or there is some k , 

, such that nk 1 ,  1k ksitis  ,1i  and kt . 

 

Example 3.1 

 ,6,5,S  9,8,7

9,8,7

4,3,2

6,3,2

,1

9

,1

n  

 ,4,5,s  

 

            4k

7,3,2

4

 

 

 6,5,

6 

4,9,8,t  ,1

k 3,1, its ii , so that s  tAt  , 744  ts , and 

 

3.3 Mapping 

Let  and S T  be given sets. A function  consists of two sets  

and 

TS f : S

T  together with a rule that assigns to each Ss  a specific element of T , 
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denoted , or s  is mapped to the element )(sf )(sf  T . We say that S  is the 

domain of , and f T  is the co-domain of . f

1s

Function  is said to be injective (one-to-one) if and only if 

 implies that  for all  and  in the domain of . 

f

f

)( 2sf f)( 1sf  21 ss  2s

Function  is surjective (onto) if and only if for every element of S , 

, there is an element of Ss T , , with Tt  f ts )( . 

Function  is bijective (one-to-one correspondent), if it is both injective 

and surjective. 

f

R

 

Example 3.2 

A distance function on the set of locations S on a axis as 

SxS:   

 
21

s
21

, ss

S n:

s   

 Or mapping a lexicographical ordering to integer set as 

  N

 

 This mapping is very useful in searching solution of combinatorial 

problem. It maps n-dimensional space to well-order-one-dimensional structure of 

integer field N, so it is easier to move and count through the domain solution 

space.  
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3.4 Permutation and Combination 

A permutation of a set distinct object is an ordered arrangement of these 

objects. 

Given N objects distinctly, number of arrangement is: 

 

!)1(321)( NNNNP    

!01)0( P  

 

A k-combination of elements of a set is an unordered selection of k 

element from the set, then the number of k-combination is: 

 

)()(
)(

kNPkP
NP

C N

k    

 

Example 3.3 

 3,2,1S  

Permutation set             1,2,3,2,1,3,1,3,2,3,1,2,2,3,1,3,2,1SP  

 

                                                                6!3321)3( P  elements 
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1-Combination set        3,2,1
1

3









SC

 

                                                     3
)2()1(

)3(3

1


PP
P

C  elements 

2-Combination set        3,1,3,2,2,1
2

3









SC

 

                                                        3
)1()2(

)3(3

2


PP
P

C  elements 

3-Combination set    3,2,1
3

3









SC

 

                                                 1
)0()3(

)3(3

3


PP
P

C  elements 

 

 An algorithm to generate a permutation of set  n,...,2,1  can be based on a 

procedure to construct a next order (forward or backward) of a lexicographic order 

following a given permutation . The MATLAB codes to implement 

next or previous permutation and next k-combination could be referred to 

appendix. 

 nsss ,,, 21  
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3.5 Multi-branch Tree and Traversal 

Start from a root with multi branches which denote switch decisions. Each 

branch goes to a node and sniping to decision directions (branching) until an end 

node which defines a characteristic to stop the branching process. There are two 

basic methods to search in multi-branch tree, those are depth first search and 

breadth first search, which is the core of exact methods to solve the VRP. Details 

of these could be referred to Horowitz et al.(1978) and Russell et al.(2003). 

Fig. 3.1 illustrates a example of multi-branch tree. Start node is the root, it 

is assigned with value from an evaluating function of current state. Finished node 

 

 0f

 1f

 2f

 nf

 

Fig. 3.1 Multi-branch Tree 
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is the node which the state satisfies every conditions of a problem. The dot lines 

with arrow indicate the route for a solution. 

 

3.6 Exact Methods 

Backtracking, branch and bound, branch and cut, set-covering integer 

programming are the kinds of called exact methods. “Exact” that means there is a 

mechanism that visits all the significant elements of searching space. A smart 

exact method is the one can eliminate unnecessary elements, and just relevant 

ones to confirm feasibleness and use that information to trim others. Details of 

back tracking algorithm and branch and bound could be refer to Horowitz et 

al.(1978). The branch and cut and set-covering integer programming and many 

others could be referred to Toth et al.(2002).  

The next section will present nearest L-neighbor method and from de-

crossing to de-cranking procedure that be useful to get the solutions in vehicle 

routing problems. Other Heuristics could be referred to Ball et al.(1995a,b) and 

Michalewicz et al.(2004) 

 

3.7 Heuristics 

3.7.1 Nearest -Neighbor Method L

The nearest neighbor method (NNM) is known as a technique for finding 

the closest point in metric spaces (Arya et al., 1994). A generalization of the 

nearest neighbor method (NNM) is used to plan vehicular routes. In the nearest 
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neighbor method, at the current step, only one nearest customer location in all 

remaining un-served customers is chosen, whereas in nearest  -neighbor method 

(NLNM), a sequence of  customers is selected to ensure the least total cost.  

L

L

As an example, Figs. 3.2 and 3.3 show the solutions of NNM and NLNM 

with , respectively, for five customers located in Euclidean space. The 

solution in Fig. 3.3 looks smoother and shorter than that in Fig. 3.2. 

2L

Therefore, NNM is a special case of NLNM when 1L  along selecting  

 

1

2
3

4

5  

Fig. 3.2 Solution of NNM 

 

 

1

3

4

5

2

 

Fig. 3.3 Solution of NLNM with L=2 
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progress. When L  equals to the total number of customers, then NLNM gives an 

exact solution. However, when the number of customers is sufficiently large as in 

real applications, the time to get the exact solution is unacceptable. At a time we 

plan a solution for a group of customers, and continuously we plan for other 

groups until all the locations are considered. 

For a graph of N  vertexes, NNM needs 2/)1(  NNC  comparison 

steps to get a suboptimum solution. 

In case of NLNM, it needs: 

 

)!(
)!(

)!)1((
 

)!2(

)!(

)!(

!
nLN

nLN

LnN

LN

LN

LN

N
C 











                   (3.1) 











L

N
n                                                                                                 (3.2) 

where 12)1(!  MMM and  * means the greatest integer in the 

argument. 

In Eq. (3.1), let , then . This is the total number of 

elements in solution space. Theoretically, we could check all the elements of this 

space to get the exact solution. 

NL  !NC 

Actually, when L  reaches all existent requests N  at the first step and if 

 is sufficiently large (>30), it might take much computational time to sort out 

from  possible permutations in order to obtain the best route solution (exact 

solution). 

N

!N
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Let us give a set V customers and define that is all sets of  

customers in set V , and is set of customers served or will be served of vehicle 

 at time  by NLNM. Then, we have: 

)(VAL L

kSu

k u

 







 ))](([minarg)(

)(
min VAfVA L

VA

L

L
                                                         (3.3) 

  SVASS Lkuku  
min

)1(                                                                   (3.4)  

 

Eqs. (3.3) and (3.4) are useful in updating the routes in static VRP and 

DVRP. 

 

3.7.2 De-Crossing 

NLNM sometimes gives a solution with crosses, as shown for example in  

 

 

Fig. 3.4 Cross in the route from NLNM 

 31



Fig. 3.4 which makes the route look like a bad solution. The de-crossing 

procedure in the next subsection is to remove the crosses and reduce the length of 

the route. Therefore, it enhances the quality of the solution. 

Assume a crossing situation as a part of a solution called 

 which is shown in Fig. 3.5.   4321 ,,, VVVVScross  

 

1V

2V3V

4V

C

1V

2V3V

4V

C

 

Fig. 3.5 Crossing  and de-crossing  4321 ,,, VVVV   4231 ,,, VVVV  

 

The intersect point is      CVVVV  4321 ,, . 

In Fig. 3.5, the following inequality equations are induced 

 

3131 ,,, VVVCCV ddd                                                                                   (3.5) 

4242 ,,, VVVCCV ddd                                                                                   (3.6) 

  

By adding Eq. (3.5) and Eq. (3.6), we have 

 

42314231 ,,,,,, VVVVVCCVVCCV dddddd                                                 (3.7) 
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Also by reducing Eq. (3.7), Eq. (3.8) will be obtained 

 

42314,321 ,,,,, VVVVVVVV dd                                                                              (3.8) 

 

Inequality Eq. (3.8) implies that the changing order of   4321 ,,, VVVV  to 

 by swapping (or de-crossing as in Fig. 3.6)  4231 ,,, VVVV   2  3VV  and  that 

reduces the distance from   to  , and consequently, it reduces cost. That is 

the effect of the de-crossing procedure. 

1V 4V

By applying the de-crossing procedure in Fig. 3.4, we have a de-crossing 

result route as shown in Fig. 3.6. 

In general, the  in inequality Eq. (3.8) is not only the distance 

from  to  in Euclidian space but also is the value from the objective 

function to the set 

4,1 ,, VVVV yx
d

 1V  4V

 4,, VVV yx1,V . The continuous exchange or release cranky  

 

 

Fig. 3.6 De-crossing of example in Fig. 3.4 
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energy of partial route to all the route is called de-cranking procedure. 

 

3.7.3 De-Cranking 

The ideal of de-cranking based on the act of straightening a bundle messy 

long wire. At first, two hands hold at one side of the wire. Second, slide one hand 

along the wire while the second hand keeps and stretches the line. This action will 

make the wire straight and release crosses. Third, reach gradually the second hand 

to the first hand position and do same actions on second step. Forth, repeat from 

first to third step until is straight satisfactorily.  That is called de-cranking process, 

and the “stretching” operation is equivalent to exchange a partial route. We apply 

this procedure to exist routes which generated from nearest L-neighbor method. 

The algorithm in Fig. 3.7 could be presented as pseudo-code below: 

 

 

Fig. 3.7 Algorithm for de-cranking 
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Begin_Function New_route = DE_CRANKING( Old_route ) 

New_route = Old_route; 

L = LENGTH( Old_route ); 

DO{ 

 Old_route = New_route; 

 FOR u = 2 TO L-1 { 

  FOR v = u+1 TO L-1 { 

 Temp_route = New_route; 

 s = u; t = v; 

 WHILE( s < t ) { 

 SWAP( Temp_route, s, t ); 

 s = s +1; t = t – 1; 

} 

IF( COST( Temp_route ) < COST( New_route ) ) 

THEN New_route = Temp_route; 

} 

 } 

}STOP IF( New_route == Old_route ) ; 

RETURN New_route; 

End_Function DE_CRANKING 
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As we see in the algorithm, the cost will go down every loop until no more 

reducing, and the route is converged. The COST function can be seen as potential 

energy of the route state, and the SWAP will release the “cranky energy” if it 

exists in the route state. 

The “cranky” is defined in Merriam-Webster’s 11th Collegiate Dictionary 

as “full of twists and turns”. The “cranky energy” is a kind of potential energy 

which appearing in an un-optimal route with twist-parts (crossing) and turn-parts 

along the route which can be detected by a metric function as the objective 

function. The trick to check twist-parts or/and turn-parts is just a comparison the 

routes before and after exchange the nodes in systematical way that we can see in 

the pseudo-algorithm, or in previous explanation of the idea. 

Let give a simple example to clarify the ideal of de-cranking energy. A 

partial route with twist and turn inside, after de-cranking, the energy of twist and 

turn was cleared away and give a better route as in Figs. 3.8 and 3.9. 

The objective function is kind of evaluated function to the energy state of 

solution set. And as nature of a existing object (biologic-ware or non-biologic-

ware such as people, animal, or things, or routes as the object to this dissertation), 

it should adjust its state energy to the lowest and match with the level “energy of 

environment” around (living place, political status, supported facilities, 

relationships, or position of customer locations to which the dissertation 

concerned as an example), because in this level of energy it can reduce waste 

energy to against unwanted forces generated by the difference of energies. 
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Fig. 3.8 Example of cranking and de-cranking 

 

 

Fig. 3.9 Steps of de-cranking for the example 
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The de-cranking procedure will release the stagnancy of waste energies 

(waste costs) at twisting and turning parts along the route, so that its results will 

set the route with a energy no greater than that route before do de-cranking, that 

mean is reducing the cost. 
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Chapter 4 Simulation 

 

 

 

4.1 Simulation Conditions 

The simulation results will be presented separately the VRP and DVRP. 

But firstly, we mention about the data to use in simulation study, and preparing 

data to simulate. 

 

4.1.1 Solomon data 

To present the results and to show the effectiveness of the NLNN and de-

cranking procedure to the VRP and DVRP, we tested the algorithms on samples of 

Solomon data. One sample includes 100 customers with a different spatial 

distribution of location are selected, where its schedule for serving includes ready 

time, due date, service time, and capacities are considered. Also, Solomon data 

have three kind of samples R, C, and RC. 

R(random) sample distributes the customer location randomly; C 

(clustered) sample clusters the customer location in well-defined geographic  
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Fig. 4.1 The arrangement of customer locations and one depot 

 

Fig. 4.2 The order of customer request along the working day 
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cluster; RC samples consider the customer location of both cases (random and 

clustered) 

One of them is R101 is been using to make intuitive of the results. Fig. 4.1 

figures out the random locations in sample R101 which has 100 customer 

locations and one depot. Fig. 4.2 shows the ordering time window of requests 

during working time with the long blue box indicates the working time, and small 

green boxes are interval request time.  

 

4.1.2 Define Conditions 

Using MATLAB to program on a Pentium Core i7 CPU with 3GB Ram 

and get the results. 

From the objective function in (2), we divided three cases for simulation as 

show in Table 4.1. 

 

       Table 4.1 Simulation cases 

Cases Comments
Case 1 1 0 0 Only consider travel times

Case 2 1 0 1
Consider travel times and cost of
delay serving

Case 3 1 1 1
Consider travel times and cost of
waiting and delay serving

1a 2a 3a

 
 

The  parameter was chosen 1 and 2 to get the simulation for VRP and 

DVRP. 

L
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The maximum number of vehicles involved to simulation is 20 units. 

The highlight boxes in Tables from 4.6 to 4.8 indicate the best results from 

all that cases of simulation, with two values of cost and computation time. In 

DVRP results, we do not include the time calculation with an assumption that the 

calculation time to get the routes is in extent for real-time applications.  

 

4.2 Simulation Results 

Firstly, to verify the NLNM and the effectiveness of de-cranking in 

NLNM in this dissertation, nine customers with single vehicle was considered. 

Tables 4.2 and 4.3 show the results of NLNM and NLNM with de-cranking, 

respectively. The decreased rate of cost is shown by increasing the number of 

neighbor  in Figs. 4.3 and 4.4, respectively.  L

Next, we considered 100 customers random sample (R101) with a single 

vehicle. The simulation results have been given in Figs. 4.5 – 4.10 for three cases 

without/with de-cranking. The cost and computational time of simulation results 

are summarized in Table 4.4. Also, results for the multi vehicles have been 

presented in Figs 4.11 – 4.12   and Table 4.5. 

Lastly, the de-cranking heuristic method and NLNM have applied to 

DVRP in considering five levels of degree of dynamic. The results are showed in 

Tables 4.9 – 4.14. 
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4.2.1 VRP 

 

Table 4.2 Simulation results of VRP 

L cost time(s) cost time(s) cost time(s)
1 158 0.01 1086 0.01 1182 0.02
2 176 0.04 967 0.04 1351 0.03
3 158 0.14 1197 0.14 992 0.14
4 146 0.68 1104 0.68 1079 0.68
5 146 3.71 954 3.58 984 3.57
6 158 15.12 940 15.02 969 15.05
7 158 48.18 835 48.57 895 48.55
8 161 103.76 714 103.26 732 103.40
9 146 110.24 667 110.11 685 110.26

N=9
Case 1 Case 2 Case 3

Simulation cases

 

 

Fig. 4.3 Simulation results of NLNM 

 43



 

 

 Table 4.3 Simulation results of VRP with de-cranking 

L cost time(s) cost time(s) cost time(s)

1 146 0.03 771 0.02 795 0.02

2 151 0.05 819 0.05 852 0.05

3 146 0.14 902 0.15 795 0.15

4 146 0.70 737 0.71 851 0.70

5 146 3.58 667 3.64 685 3.58

6 146 15.22 667 15.24 685 15.25

7 146 49.08 737 49.10 732 49.00

8 149 104.65 714 104.30 732 104.34

9 146 111.30 667 111.58 685 110.77

N=9
Case 1 Case 2 Case 3

Simulation cases

 

 

Fig. 4.4 Simulation results of NLNM with de-cranking 
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Fig. 4.5 VRP without de-cranking of sample R101 with N=100, K=1 and L=1,  
case 1 

 

 

Fig. 4.6 VRP with de-cranking of sample R101 with N=100, K=1 and L=1, case 1 
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Fig. 4.7 VRP without de-cranking of sample R101 with N=100, K=1 and L=1, 
case 2 
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Fig. 4.8 VRP with de-cranking of sample R101 with N=100, K=1 and L=1, case 2 
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Fig. 4.9 VRP without de-cranking of sample R101 with N=100, K=1 and L=1, 
case 3 
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Fig. 4.10 VRP with de-cranking of sample R101 with N=100, K=1 and L=1,  
case 3 
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Fig. 4.11 VRP with sample R101 with N=100, K=3 and L=1, case 1 

 

 

Fig. 4.12 VRP with de-crossing of sample R101 with N=100, K=3 and L=1,  
case 1 
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          Table 4.4 Simulation results of VRP with single vehicle 

cost time(s) cost time(s) cost time(s)

without 808    1.14     93,205  1.02    200,100   1.01    

with de-cranking 678    33.03   76,699  28.50  81,091     37.91  

N=100 Case 1 Case 2 Case 3

Simulation cases

 

 

Table 4.5 Simulation results of VRP with multi vehicles 

cost time(s) cost time(s) cost time(s)

without 808        1.14         93,205     1.02        200,100    1.01          

with de-cranking 678        33.03       76,699     28.50      81,091      37.91        

without 624        1.09         134,360   0.98        204,250    0.98          

with de-cranking 555        57.14       116,980   98.88      120,350    98.69        

without 556        1.19         177,090   1.00        241,010    0.99          

with de-cranking 509        164.91     155,430   143.80    161,530    250.48      

N=100
Case 1 Case 2 Case 3

Simulation cases

3

k

1

2
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Table 4.6 NLNM with de-cranking, case 1 

L=1 L=2 L=1 L=2
1 678.035 685.472 8.9492 24.0634
2 550.599 625.937 2.4602 19.7876
3 509.361 482.076 2.3239 20.4968
4 495.389 491.368 1.418 19.7459
5 422.428 392.935 1.2105 17.7639
6 439.267 341.659 2.6854 18.312
7 418.574 432.645 1.2025 17.7689
8 419.134 460.214 1.7907 17.9893
9 364.9 465.565 0.9603 20.3855

10 364.642 367.92 0.9468 17.4402
11 414.098 377.779 1.0881 22.2366
12 378.182 460.095 1.3801 18.7346
13 332.175 370.38 4.1263 31.4744
14 423.602 362.844 1.1566 27.6806
15 375.03 397.568 5.158 20.5543
16 370.941 447.828 1.7467 18.0479
17 305.709 286.122 12.5557 70.1792
18 334.451 313.86 6.037 58.3791
19 360.977 349.976 1.8087 48.2011
20 289.361 364.193 0.6033 40.2694

NLNM with total de-cranking

Vehicles
Case 1

cost time(s)
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Fig. 4.13 NLNM with de-cranking, case 1 
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                        Table 4.7 NLNM with de-cranking, case 2 

L=1 L=2 L=1 L=2
1 7.6699 7.9564 9.5428 27.2364
2 3.6582 3.4235 3.8253 21.2531
3 2.1846 2.3721 2.9591 22.1382
4 1.4352 1.9221 2.7764 19.5542
5 1.0301 1.033 1.7481 18.2923
6 1.1541 1.0954 2.3151 19.6413
7 0.7708 0.8149 2.2661 19.1046
8 0.849 0.798 2.1326 20.2376
9 0.4248 1.2931 1.7051 22.0297

10 0.2357 0.2643 1.2057 17.9264
11 0.2969 1.8085 1.3721 24.5302
12 0.5569 0.5568 2.0351 18.6155
13 1.1865 4.4533 4.8966 40.8315
14 0.3395 2.7841 1.532 33.5581
15 1.3995 1.4938 7.5675 22.898
16 0.566 0.4161 2.4024 18.6891
17 2.4105 9.5105 15.4802 103.663
18 1.4896 7.7354 6.0711 85.3255
19 0.524 6.2626 2.2725 58.2623
20 0.0668 4.575 0.6736 52.8186

NLNM with total de-cranking

Vehicles
Case 2

cost time(s)
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Fig. 4.14 NLNM with de-cranking, case 2 
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Table 4.8 NLNM with de-cranking, case 3 

L=1 L=2 L=1 L=2
1 8.1091 7.7574 11.6959 32.3558
2 3.5885 3.5879 6.5484 23.138
3 2.2216 2.3999 3.9412 20.4269
4 1.5125 1.6833 2.4247 19.8097
5 1.1419 0.9988 2.011 18.1762
6 1.1244 0.9313 2.3239 18.9247
7 0.7778 0.5902 2.0043 18.3404
8 0.7636 0.6106 1.7986 18.3663
9 0.3942 1.0601 1.4119 21.4881

10 0.2982 0.2853 0.6826 17.9081
11 0.3145 1.166 0.8877 26.1126
12 0.377 0.3779 1.4603 17.6651
13 0.866 3.4091 4.0198 37.5516
14 0.3001 2.0996 0.9557 25.3536
15 0.9593 1.0464 6.3958 19.3937
16 0.3956 0.3744 1.4025 17.6562
17 2.1249 8.5678 6.7622 69.3687
18 1.159 6.941 7.4689 44.1398
19 0.5272 5.5331 1.9583 37.2734
20 0.2736 4.1551 0.4799 31.8757

NLNM with total de-cranking

Vehicles
Case 3

cost time(s)

 

]10[ 4
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Fig. 4.15 NLNM with de-cranking, case 3 
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4.2.2 DVRP 

 

 

     Table 4.9 NLNM (L=1) with de-cranking for DVRP, case 1 

1….. 2 3 4 5
1 0.7999* 792.547 744.891 704.476 694.252
2 0.8673 638.518* 634.12 674.929 557.479
3 1.0505 707.356 601.738 664.42 583.989
4 1.1606 669.149 526.406 520.805 530.316
5 1.1221 663.453 423.410* 492.380* 453.745*
6 0.9315 760.063 504.241 501.639 492.354
7 1.115 787.466 571.434 463.121 489.873
8 0.9158 719.746 580.241 525.235 440.616
9 1.1599 771.062 600.365 488.605 426.865
10 1.1387 692.937 621.858 594.162 481.424
11 0.8145 663.569 548.229 552.947 449.609
12 0.891 690.205 546.242 474.807 481.232
13 1.1512 686.542 521.893 528.724 580.306
14 0.8883 583.587 559.923 526.175 469.59
15 0.8781 674.48 611.909 614.785 511.787
16 0.9475 632.034 528.398 487.031 462.748
17 1.1341 622.312 558.825 488.493 475.631
18 0.8566 667.652 477.512 539.408 468.119
19 0.7357 620.602 546.507 506.93 426.456
20 0.8707 610.13 470.786 476.716 447.74

Vehicle 
No.

NLNM with L=1 and total de-cranking, case 1
Degree of dynamics (DoD)
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 56



 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
400

500

600

700

800

900

1000

1100

1200

vehicles

co
st

 

 

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

 

Fig. 4.16 NLNM (L=1) with de-cranking for DVRP, case 1 
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    Table 4.10 NLNM (L=1) with de-cranking for DVRP, Case 2 

1…. 2…. 3…. 4…. 5….
1 1.7909 1.4497 1.1995 1.0503 1.007
2 0.8031 0.6183 0.6019 0.5045 0.5228
3 0.8887 0.4198 0.3793 0.3638 0.3325
4 0.8705 0.3259 0.2627 0.2303 0.2377
5 0.8954 0.3563 0.1677 0.1852 0.1931
6 1.146 0.3689 0.2275 0.1769 0.1523
7 1.0794 0.379 0.2005 0.1086 0.1196
8 1.3416 0.48 0.1696 0.1607 0.1016
9 1.3481 0.5204 0.3213 0.2501 0.0773
10 1.578 0.6314 0.3468 0.2582 0.0791
11 1.7025 0.8221 0.414 0.3 0.1304
12 1.8769 0.9227 0.2597 0.3228 0.1263
13 1.9619 1.0167 0.4836 0.5176 0.1525
14 2.1785 1.2298 0.7437 0.349 0.3477
15 2.2812 1.1563 0.4885 0.6805 0.2174
16 2.5611 1.2931 0.5264 0.4036 0.1803
17 2.4697 1.2007 0.9426 0.3113 0.1871
18 2.7974 1.8623 0.9644 0.878 0.1823
19 3.0317 1.7084 0.5765 0.8247 0.6834
20 3.1948 2.0381 0.6897 0.5802 0.5614

Vehicle 
No.

NLNM with L=1 and total decranking, case 2
Degree of dynamics (DoD)
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Fig. 4.17 NLNM (L=1) with de-cranking for DVRP, case 2 
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    Table 4.11 NLNM (L=1) with de-cranking for DVRP, case 3 

1…. 2…. 3…. 4…. 5….
1 1.7074 1.29 1.1622 1.028 1.0941
2 0.884 0.719 0.6644 0.5596 0.5569
3 0.939 0.4559 0.4444 0.377 0.3803
4 0.9689 0.3416 0.2791 0.2643 0.269
5 0.9766 0.3656 0.1948 0.1891 0.1923
6 1.2494 0.3954 0.1739 0.1957 0.1807
7 1.124 0.3806 0.2428 0.1384 0.1244
8 1.6161 0.366 0.1889 0.1947 0.1171
9 1.2995 0.4127 0.2638 0.2112 0.0746
10 1.6907 0.4772 0.2992 0.1561 0.0991
11 2.2704 0.6867 0.2512 0.1594 0.1139
12 2.0806 0.8098 0.3525 0.1774 0.1189
13 1.8676 0.7933 0.5976 0.2541 0.1683
14 2.9503 0.5548 0.495 0.4124 0.1049
15 2.7797 1.1246 0.7713 0.2305 0.1813
16 2.6446 0.9826 0.7405 0.6618 0.1411
17 2.5027 0.8393 0.6744 0.5145 0.2757
18 4.3154 1.529 0.4034 0.3554 0.2701
19 4.2971 1.3349 1.2315 0.2632 0.1678
20 4.2139 1.3078 1.0794 1.0211 0.6979

Vehicle 
No.

NLNM with L=1 and total de-cranking, case 3
Degree of dynamics (DoD)
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Fig. 4.18 NLNM (L=1) with de-cranking for DVRP, case 3 
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    Table 4.12 NLNM (L=2) with de-cranking for DVRP, case 1 

1…. 2 3 4 5
1 0.8549 783.412 738.746 721.272 745.886
2 0.7897* 667.019 665.731 635.265 659.701
3 0.9281 648.876 658.791 607.575 591.6
4 0.9036 574.693* 557.599 546.03 519.611
5 0.8586 629.435 539.809* 517.472* 489.482*
6 0.8059 710.936 566.959 513.634 519.553
7 0.855 626.407 524.082 508.452 443.273
8 0.8071 587.392 531.586 467.939 432.383
9 0.7244 598.242 543.549 501.253 436.463
10 0.8365 583.762 482.4 467.868 414.792
11 0.718 646.608 533.979 480.3 408.362
12 0.7344 528.683 511.414 430.208 465.858
13 0.6761 563.974 410.996 408.763 432.339
14 0.7763 528.133 493.224 470.221 396.624
15 0.7874 540.789 442.006 486.158 358.545
16 0.7571 588.636 442.869 444.184 392.029
17 0.6434 539.21 478.764 399.817 399.338
18 0.6712 552.888 427.028 359.067 369.756
19 0.7251 504.627 473.313 432.514 380.835
20 0.6855 509.49 432.306 394.342 356.022

Vehicle 
No.

NLNM with L=2 and total de-cranking, case 1
Degree of dynamics (DoD)
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Fig. 4.19 NLNM (L=2) with de-cranking for DVRP, case 1 
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    Table 4.13 NLNM (L=2) with de-cranking for DVRP, case 2 

1…. 2…. 3…. 4…. 5….
1 1.6738 1.2264 1.0835 1.0524 0.9899
2 0.8886 0.7118 0.6226 0.5475 0.5003
3 0.9418 0.4339 0.3534 0.3596 0.3403
4 0.9839 0.3717 0.2764 0.2315 0.2258
5 1.11 0.415 0.2204 0.2494 0.2373
6 1.2034 0.4516 0.3302 0.2377 0.235
7 1.5962 0.6572 0.3068 0.0916 0.1498
8 1.6974 0.8038 0.3722 0.2584 0.2314
9 2.0214 0.8475 0.5403 0.1161 0.2633
10 1.9603 0.9618 0.6131 0.4088 0.3725
11 2.3633 1.2967 0.8437 0.6812 0.5096
12 2.4354 1.1366 0.917 0.6881 0.6762
13 3.1755 1.7489 0.9006 0.9015 0.694
14 3.317 1.2494 0.2888 0.7548 0.7296
15 3.7307 1.4485 1.1387 1.3199 0.8862
16 3.5939 2.623 1.1302 1.0904 1.0711
17 4.5277 2.6717 0.3529 0.9707 0.7584
18 4.6362 1.8478 1.6203 1.6591 0.9849
19 5.0597 2.1007 1.6371 1.4789 1.4479
20 5.099 2.2736 1.8613 1.559 1.4296

Vehicle 
No.

NLNM with L=2 and total de-cranking, case 2
Degree of dynamics (DoD)
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Fig. 4.20 NLNM (L=2) with de-cranking for DVRP, case 2 
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    Table 4.14 NLNM (L=2) with de-cranking for DVRP, case 3 

1…. 2…. 3…. 4…. 5….
1 1.7316 1.3173 1.1333 1.1391 0.9933
2 0.9079 0.6718 0.5771 0.5665 0.5128
3 1.0453 0.4889 0.4303 0.384 0.3384
4 1.1676 0.4087 0.2741 0.2435 0.251
5 1.4192 0.4278 0.2698 0.234 0.2453
6 1.5078 0.5777 0.3124 0.2658 0.251
7 1.8232 0.5607 0.3664 0.3013 0.2039
8 1.9352 0.7714 0.1918 0.3555 0.2405
9 2.583 0.6944 0.4901 0.3167 0.256
10 2.4263 0.8207 0.5271 0.4937 0.2879
11 3.1427 1.2431 0.6784 0.6914 0.3197
12 3.1269 1.0495 0.9232 0.8118 0.4252
13 4.2559 1.5439 1.2137 0.6278 0.6432
14 4.3813 1.2052 0.9479 0.9977 0.5291
15 4.462 1.9724 0.9932 0.8249 0.9859
16 4.3829 2.0976 0.3342 0.9359 1.1114
17 6.7284 2.0286 1.9866 1.8218 0.9411
18 6.9354 1.802 1.7313 1.6741 1.6208
19 7.0952 3.2489 1.5991 1.5752 1.3694
20 7.3089 3.3211 0.383 1.5461 1.4135

Vehicle 
No.

NLNM with L=2 and total de-cranking, case 3
Degree of dynamics (DoD)
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Fig. 4.21 NLNM (L=2) with de-cranking for DVRP, case 3 
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4.3 Comments and Remarks 

As shown in Table 4.2 and Fig. 4.3, the costs decrease when increasing the 

number  of neighbors. The exact solution is not guaranteed to be obtained by 

NLNM. However, NLNM with de-cranking can quickly find a near-exact solution 

as shown in Table 4.3 and Fig. 4.4. 

L

Figs. 4.5, 4.7 and 4.9 show the results of NLNM without de-cranking for 

100 customers. Figs. 4.6, 4.8 and 4.10 show the results of NLNM with de-

cranking. 

Fig. 4.5 shows a completely free cranking in the case in which the vehicle 

visits all customers and returns to depot. In Figs. 4.8 and 4.10, crankies appear in 

the routes because the re-arrangement depended on the objective function in 

consideration of penalties. So, the de-cranking can reduce the cost space, not in 

ordinary Euclidean space.  

In Table 4.4, the cost of NLNM with de-cranking is reduced more than 

that of NLNM. So, the NLNM with de-cranking is a more powerful means to get a 

better solution than NLNM. However, the comparison results with exact solution 

could not be shown in this dissertation because the computer took a long time in 

the calculation of simulation. 

The simulation of multiple vehicles is applied to 100 customers. To show 

the effectiveness of NLNM with de-cranking in the multi-vehicle situation (case 

1),  = 1 is considered and the results are shown in Figs 27 and 28. Moreover, the 

cost and computational time of simulation results with multiple vehicles are 

summarized in Table 4.5 for three cases with changing number of vehicles. 

L
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As a result, the cost of the objective function can be reduced by using the 

NLNM with de-cranking more than NLNM, but the computation of NLNM with 

de-cranking takes a longer time than that of NLNM.  It is certain because time 

operation of two heuristic procedures takes more time than just one. But if we 

compare the computation time of NLNM with  = 1,2 plus de-cranking operation 

time with the highest time in the cases of just nine locations as in Tables 4.2 and 

4.3, they has shorter computation time. These results are important and 

remarkable to think about applying the de-cranking heuristic method and NLNM 

with short length of . 

L

L

More results with multi vehicle shown in here with total de-crossing to the 

routes in Tables 4.6 – 4.8. It shows that the longer L  might not effective in the 

cases. With L  = 1, we can get acceptable solution in a very short time. For 

example, for VRP, in case 1 (Table 4.1), cost = 289.361 with computing time of 

0.6 second in somewhat better the cost = 286.122 with computing time of 70.2 

second. Case 2 and case 3 show the absolute advantageousness of NLNN with  

= 1 combined with de-cranking procedure. 

L

These methods also has effectiveness in dynamic context, and suitable for 

high degree of dynamics. We can see the results highlighted from Tables 4.9 – 

4.14 that the good solutions can get with number of vehicles less than 10 units 

with both L  = 1 and L  = 2 and in all degree of dynamics. Except Table 4.9 and 

4.12 to the case 1, with L  = 1 and L  = 2, which is just touring around the 

locations without any costing but traveling cost, the require of vehicles is greater 

than 12 units to get the good solutions, but these are minor cases and near the 
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good solutions (indicated with star * beside the value) can be gotten with no 

greater than 5 units. 
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Chapter 5 Conclusions 

 

 

 

In this dissertation, the de-cranking heuristic methods and NLNM have 

been proposed to find a suboptimal routing solution for the vehicle routing 

problem involving multiple vehicles. The de-cranking procedure applied to 

solution routes from NLNM gives a better solution and takes a shorter 

computation time than solutions involving long string neighbors from NLNM.  

The proposed methods have been useful for adaptation to real VPR with 

real-time scheduling. Also, the methods have been suitable for the DVRP with 

multi-vehicles and high degree of dynamics. 

In future, applying these methods to other combinatorial optimization 

problems should do more tests. 
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Appendix: 

a. Solomon Data  

 
R101 
 
VEHICLE 
NUMBER     CAPACITY 
  25                      200 
 
CUSTOMER 
CUST NO.   XCOORD.   YCOORD.    DEMAND   READY TIME   DUE DATE   SERVICE TIME 
  
    0                     35                35                   0                      0                       230                     0 
    1                     41                49                  10                   161                     171                    10 
    2                    35                17                   7                     50                       60                     10 
    3                     55                45                  13                   116                     126                    10 
    4                     55                20                  19                   149                     159                    10 
    5                     15                30                  26                    34                       44                     10 
    6                     25                30                   3                     99                      109                    10 
    7                     20                50                   5                     81                       91                     10 
    8                     10                43                   9                     95                      105                    10 
    9                     55                60                  16                    97                      107                    10 
   10                    30                60                  16                   124                     134                    10 
   11                    20                65                  12                    67                       77                     10 
   12                    50                35                  19                    63                       73                     10 
   13                    30                25                  23                   159                     169                    10 
   14                    15                10                  20                    32                       42                     10 
   15                    30                 5                    8                     61                       71                     10 
   16                    10                20                  19                    75                       85                     10 
   17                     5                 30                   2                    157                     167                    10 
   18                    20                40                  12                    87                       97                     10 
   19                    15                60                  17                    76                       86                     10 
   20                    45                65                   9                    126                     136                    10 
   21                    45                20                  11                    62                       72                     10 
   22                    45                10                  18                    97                      107                    10 
   23                    55                 5                   29                    68                       78                     10 
   24                    65                35                   3                    153                     163                    10 
   25                    65                20                   6                    172                     182                    10 
   26                    45                30                  17                   132                     142                    10 
   27                    35                40                  16                    37                       47                     10 
   28                    41                37                  16                    39                       49                     10 
   29                    64                42                   9                    63                        73                     10 
   30                    40                60                  21                   71                        81                     10 
   31                    31                52                  27                   50                        60                     10 
   32                    35                69                  23                  141                      151                    10 
   33                    53                52                  11                   37                        47                     10 
   34                    65                55                  14                  117                      127                    10 
   35                    63                65                   8                   143                      153                    10 
   36                     2                 60                   5                    41                        51                     10 
   37                    20                20                   8                   134                      144                    10 
   38                     5                  5                   16                   83                        93                     10 
   39                    60               12                   31                   44                        54                     10 
   40                    40               25                    9                    85                        95                     10 
   41                    42                7                     5                    97                       107                    10 
   42                    24               12                    5                    31                        41                     10 
   43                    23                3                     7                   132                      142                    10 
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   44                    11               14                   18                   69                        79                     10 
   45                     6                38                   16                   32                        42                     10 
   46                     2                48                    1                   117                      127                    10 
   47                     8                56                   27                   51                        61                     10 
   48                    13               52                   36                  165                      175                    10 
   49                     6                68                   30                  108                      118                    10 
   50                    47               47                   13                  124                      134                    10 
   51                    49               58                   10                   88                        98                     10 
   52                    27               43                    9                    52                        62                     10 
   53                    37               31                   14                   95                       105                    10 
   54                    57               29                   18                  140                      150                    10 
   55                    63               23                    2                   136                      146                    10 
   56                    53               12                    6                   130                      140                    10 
   57                    32               12                    7                   101                      111                    10 
   58                    36               26                   18                  200                      210                    10 
   59                    21               24                   28                   18                        28                     10 
   60                    17               34                    3                   162                      172                    10 
   61                    12               24                   13                   76                        86                     10 
   62                    24               58                   19                   58                        68                     10 
   63                    27               69                   10                   34                        44                     10 
   64                    15               77                    9                    73                        83                     10 
   65                    62               77                   20                   51                        61                     10 
   66                    49               73                   25                  127                      137                    10 
   67                    67                5                    25                   83                        93                     10 
   68                    56               39                   36                  142                      152                    10 
   69                    37               47                    6                    50                        60                     10 
   70                    37               56                    5                   182                      192                    10 
   71                    57               68                   15                   77                        87                     10 
   72                    47               16                   25                   35                        45                     10 
   73                    44               17                    9                    78                        88                     10 
   74                    46               13                    8                   149                      159                    10 
   75                    49               11                   18                   69                        79                     10 
   76                    49               42                   13                   73                        83                     10 
   77                    53               43                   14                  179                      189                    10 
   78                    61               52                    3                    96                       106                    10 
   79                    57               48                   23                   92                       102                    10 
   80                    56               37                    6                   182                      192                    10 
   81                    55               54                   26                   94                       104                    10 
   82                    15               47                   16                   55                        65                     10 
   83                    14               37                   11                   44                        54                     10 
   84                    11               31                    7                   101                      111                    10 
   85                    16               22                   41                   91                       101                    10 
   86                     4               18                   35                    94                       104                    10 
   87                    28              18                   26                    93                       103                    10 
   88                    26              52                    9                     74                        84                     10 
   89                    26              35                   15                   176                      186                    10 
   90                    31              67                    3                     95                       105                    10 
   91                    15              19                    1                    160                      170                    10 
   92                    22              22                    2                     18                        28                     10 
   93                    18              24                   22                   188                      198                    10 
   94                    26              27                   27                   100                      110                    10 
   95                    25              24                   20                    39                        49                     10 
   96                    22              27                   11                   135                      145                    10 
   97                    25              21                   12                   133                      143                    10 
   98                    19              21                   10                    58                        68                     10 
   99                    20              26                    9                     83                        93                     10 

100                  18              18                   17                   185                      195                    10 
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b. MATLAB Codes 

%================================================================% 
%                Coded by Tran Ngoc Hoang Son                    % 
%                 Korea Maritime University                      % 
%                  Department of Logistics                       % 
%                           2009                                 % 
%================================================================% 
%----------------------------------------------------------- 
function newSERVE=decranking(CUSLIST,SERVE,a,v,gamma) 
    tempSERVE=SERVE; 
    newSERVE=pluckingoff(CUSLIST,tempSERVE,a,v,gamma); 
    
    while sumsqr(tempSERVE~=newSERVE)>0 
        tempSERVE=newSERVE; 
        newSERVE=pluckingoff(CUSLIST,tempSERVE,a,v,gamma); 
    end 
    newSERVE; 
end 
%----------------------------------------------------------- 
function newSERVE=pluckingoff(CUSLIST,SERVE,a,v,gamma) 
    newSERVE=SERVE; 
    [r c]=size(SERVE); 
    for i=1:c 
        u=2;v=3; 
        while u<r 
            for v=u+1:r-1 
                tempSERVE=newSERVE; 
                s=u;t=v; 
                while s<t 
                tt=tempSERVE(s,i); 
                tempSERVE(s,i)=tempSERVE(t,i); 
                tempSERVE(t,i)=tt; 
                s=s+1;t=t-1; 
                end 
                [newtime 
newcost]=calculatetimeandcost4(CUSLIST,newSERVE,a,v,gamma); 
                [temptime 
tempcost]=calculatetimeandcost4(CUSLIST,tempSERVE,a,v,gamma); 
                if tempcost(i)<newcost(i) 
                    newSERVE=tempSERVE; 
                end 
            end 
            u=u+1; 
        end 
    end 
     
end 
%----------------------------------------------------------- 
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%Nearest L-Neighbor Method 
function [SERVE]=multivehiclerouting4(CUSLIST,a,v,k,L) 
    UNSERVE=CUSLIST(2:length(CUSLIST),1)'; 
    SERVE=zeros(1,k);indexes=ones(1,k); 
    len=length(UNSERVE); 
    kth=1; 
    while len>0 
        if len>L 
            [list time cost remain]=selectroutes5(CUSLIST, UNSERVE, 
SERVE(indexes(kth),kth),a,v, L); 
        else 
            [list time cost remain]=selectroutes5(CUSLIST, UNSERVE, 
SERVE(indexes(kth),kth),a,v, len); 
        end 
  
        SERVE=[SERVE;zeros(length(list),k)];                
        SERVE(indexes(kth)+1:indexes(kth)+length(list),kth)=list; 
        indexes(kth)=indexes(kth)+length(list); 
        for u=1:k 
            if u==kth 
                continue; 
            end 
SERVE(indexes(u)+1:indexes(kth),u)=[SERVE(indexes(u),u)*ones(index
es(kth)-indexes(u),1)]; 
            indexes(u)=indexes(kth); 
            end 
            UNSERVE=remain; 
            len=length(UNSERVE); 
            kth= mod(kth,k)+1; 
        end 
end 
%----------------------------------------------------------- 
function [list time cost remain]=selectroutes5(CUSLIST, UNSERV, 
cuscode, a,v,L) 
    [row,col]=size(CUSLIST); 
    %----initialize----- 
    serve_time=0; 
    serve_cost=0; 
     
    x=2; 
    gamma=[]; 
  
    len=length(UNSERV); 
     
    if (len<L) 
        % we can control this case by using this function with len 
    end 
  
    len=length(UNSERV); 

 76



  
    mode=0;%dynamic travelling time mode =1 
    [gammanextlist x]=gammagentor(x,L,mode); 
    gamma=[gamma gammanextlist]; 
 
    index=[1:len]; 
  
    SERVE=[cuscode]; 
    k=1; 
    r=L; 
    seq=index(1:r); 
    seq_index=[1:length(seq)]; 
    
SERVE_temp=addlist(SERVE,getvaluefromsequence(UNSERV,getvaluefroms
equence(seq,seq_index)),k,L); 
%     a=[1 0 0];v=1; 
    [time 
cost]=calculatetimeandcost4(CUSLIST,[SERVE_temp],a,v,[gamma]); 
       
    OPTLIST=SERVE_temp; 
    optlistcost=cost; 
    optlisttime=time; 
    optseq=seq;%should store for eliminating the served customers 
  
    ff=1; 
    while ff==1 
        seq_index=[1:length(seq)]; 
         
        f=1; 
        while f==1 
SERVE_temp=addlist(SERVE,getvaluefromsequence(UNSERV,getvaluefroms
equence(seq,seq_index)),k,L); 
            [time 
cost]=calculatetimeandcost4(CUSLIST,[SERVE_temp],a,v,[gamma]); 
            if sum(optlistcost)>sum(cost) 
                OPTLIST=SERVE_temp; 
                optlistcost=cost; 
                optlisttime=time; 
                optseq=seq; 
            end 
             
            [seq_index f]=permutation_next(seq_index); 
        end 
        [seq ff]=next_r_combination(seq,len); 
    end 
 
    %update SERVE list 
    SERVE=OPTLIST; 
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    %eliminate the served list in UNSERV 
    for i=1:length(optseq) 
        UNSERV(optseq(i)-i+1)=[]; 
    end 
  
    remain=UNSERV; 
  
    list=SERVE(2:length(SERVE)); 
     
    [time 
cost]=calculatetimeandcost4(CUSLIST,[SERVE],a,v,[gamma]); 
  
end 
%----------------------------------------------------------- 
function serve_next=addlist(serve,seqlist,k,L) 
    serve_next=serve; 
    for u=1:L  
        serve_next=[serve_next;seqlist((u-1)*k+1:u*k)];%[x1y1z1 
x2y2z2 xyz] 
    end 
end 
%----------------------------------------------------------- 
function [gamma x]=gammagentor(xo,step,mode) 
    gamma_array=[-0.5:0.5:8];%planed speed 
    if mode==0%planned speed 
        x=2; 
        for u=1:step  
            gamma(u)=gamma_array(x); 
        end      
        return 
    end 
    m=17; 
    a=3; 
    x=xo; 
    %gamma(1)=mod((a*x0),m); 
    for u=1:step  
        %x=mod((anpha*x),m);%case of dynamic travel time 
        %x=2;%case of planned speed 
        x=mod(a*x,m); 
        gamma(u)=gamma_array(x); 
    end 
end 
%----------------------------------------------------------- 
function s=getvaluefromsequence(seq,seqindex) 
    for k=1:length(seqindex) 
        s(k)=seq(seqindex(k)); 
    end 
     %return s;
end 
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%----------------------------------------------------------- 
function [time 
cost]=calculatetimeandcost4(cuslist,serve,a,v,gamma) 
%a=[1 1 1 1]; %weighting parameters 
%V=1;% assume average velocity of vehicle, planned speed 
%t=s/v, T=Tij(1+gamma), -0.5<=gamma<=inf. gamma=-0.5: goood 
conditions, gamma=inf: bad conditions on road 
     
    [row col]=size(serve);%rows contain sequence of served 
customers 
    cost=zeros(1,col); 
    time=zeros(1,col); 
    for u=2:row %along customers sequence 
        for v=1:col %for each vehicle 
            arrivetime=v\norm([(cuslist(serve(u,v)+1,2)-
cuslist(serve(u-1,v)+1,2)) ... 
                (cuslist(serve(u,v)+1,3)-cuslist(serve(u-
1,v)+1,3))])*(1+gamma(u-1));%+variant time gamma 
            %update x at each link->need to save sequence of x's 
values for 
            %comparasion between  
            waitingtime=max( 0, cuslist(serve(u,v)+1,5)-
(time(v)+arrivetime) ); 
            servicetime=cuslist(serve(u,v)+1,7); 
            time(v)=time(v)+arrivetime+waitingtime+servicetime; 
            delaytime=max(0, time(v)-cuslist(serve(u,v)+1,6)); 
  
            cost(v)=cost(v)+... 
                a(1)*arrivetime+... 
                a(2)*waitingtime+... 
                a(3)*delaytime; 
        end 
    end 
end 
 
%-----------------------------------------------------------     
%find the next r combination 
function [pnext f]=next_r_combination(p,n) 
    l=length(p); 
  
    pnext=n-l+1:n; 
    if pnext==p 
        f=0; 
        return 
    end 
  
    k=l; 
    while p(k)==n-l+k 
        k=k-1; 
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    end 
    p(k)=p(k)+1; 
    for s=k+1:l 
        p(s)=p(k)+s-k; 
    end 
    f=1; 
    pnext=p; 
end 
%-----------------------------------------------------------     
%find the next permutation 
function [pnext f]=permutation_next(p) 
    n=length(p); 
    if (p==sort([1:n],'descend')) %check last permutation n,n-
1,...,1 
        f=0; 
        pnext=p; 
        return; 
    end 
  
    pcheck=sort(p); 
    if (pcheck~=[1:n]) %check last permutation n,n-1,...,1 
        f=0; 
        pnext=p  ;
        return; 
    end 
  
    pnext=p; 
  
    j=length(p)-1; 
    while ((p(j)>p(j+1)) && (j>0) ) 
        j=j-1; 
    end 
  
    if j==0 
        j=1; 
    end 
  
    k=n; 
    while p(j)>p(k) 
        k=k-1; 
    end 
  
    %swap(j,k); 
    t=p(j); 
    p(j)=p(k); 
    p(k)=t; 
  
    k=n; 
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    m=j+1; 
    while k>m 
        %swap(k,m); 
        t=p(k); 
        p(k)=p(m); 
        p(m)=t; 
  
        k=k-1; 
        m=m+1; 
    end 
  
    pnext=p; 
    f=1; 
end 
%----------------------------------------------------------- 
%find the previous permutation 
function [pnext f]=permutation_prev(p) 
    n=length(p); 
    if (p==[1:n]) %check last permutation n,n-1,...,1 
        f=0; 
        pnext=p; 
       ;  return
    end 
  
    pcheck=sort(p); 
    if (pcheck~=[1:n]) %check last permutation n,n-1,...,1 
        f=0; 
        pnext=p; 
        return; 
    end 
  
    pnext=p; 
  
    j=length(p)-1; 
    while ((p(j)<p(j+1)) && (j>0) ) 
        j=j-1; 
    end 
  
    if j==0 
        j=1; 
    end 
  
    k=n; 
    while p(j)<p(k) 
        k=k-1; 
    end 
  
    %swap(j,k); 
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    t=p(j); 
    p(j)=p(k); 
    p(k)=t; 
  
    k=n; 
    m=j+1; 
    while k>m 
        %swap(k,m); 
        t=p(k); 
        p(k)=p(m); 
        p(m)=t; 
  
        k=k-1; 
        m=m+1; 
    end 
  
    pnext=p; 
    f=1; 
end 
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My wonders of love and life: 

Lost-found-named my Unkyon (은견), is that destiny? 

-No, that is not, that is just a causal progress! 

Do grief and torment blend with recognized long time waiting love? 

-Yes, a lot! Astonishing emotion of love! 

Is that really happy or just a sensation stage people would pass? 

-Maybe both! 

What is a PhD? 

Plagiarist will never be a PhD! If were, shame on you! 

Just original self-finding one could be…  

 

Cảm ơn ba má… 
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