

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Doctorate Dissertation in Department of Logistics

De-Cranking Heuristic Method for
Vehicle Routing Problems

Supervisor Kim Hwan-Seong

August, 2009

Department of Logistics

Graduate School of Korea Maritime University

Tran Ngoc Hoang Son

工學博士 學位論文
A Doctorate Dissertation in Department of Logistics

De-Cranking Heuristic Method for
Vehicle Routing Problems

指導敎授 金 煥 成

2009. 08

韓國海洋大學校 大學院

東北亞物流시스템學科

Tran Ngoc Hoang Son

本本 論論文文을을 工工學學博博士士 學學位位論論文文으으로로 認認准准함함

委員長 工學博士 申 宰 榮 (인)

委員 工學博士 郭 圭 錫 (인)

委員 工學博士 南 奇 燦 (인)

委員 工學博士 許 允 守 (인)

委員 工學博士 金 煥 成 (인)

2009 年 08 月

韓國海洋大學校 大學院

東北亞物流시스템學科

Tran Ngoc Hoang Son

Acknowledgements

I am deeply indebted to my supervisor Prof. Kim Hwan-Seong who has

given freely of his support, time, suggestions, “pressing” and understanding

during my doctorate course in department of Logistics at Korea Maritime

University. Great patient from him made me moving to complete this book.

I am grateful to Prof. Shin Jae-Yeong, Prof. Kwak Kyu-Seok, Prof. Nam

Ki-Chan, department of Logistics; Dr. Hur Yun-Su, Busan Development Institute.

They all helped me immeasurably in detailing comments and clarifying the

presentation of material in different parts of the dissertation.

Closely express my thanks to Korean and Vietnamese friends for their

friendliness and heartiness. Frequently discussion with them has somewhat

maintained and balanced my studying and life: Mr. Kim Hyeon-Hui, Mr Oh Ju-

Hyeon.

It is warmly that I would like to thank my parents and my younger brother

for their constant supports and encouragements.

 Korea Maritime University, Busan, Korea

 July 7, 2009

 Tran Ngoc Hoang Son

 i

De-Cranking Heuristic Method for
Vehicle Routing Problems

Tran Ngoc Hoang Son

Department of Logistics

Graduate School of Korea Maritime University, 2009

Abstract

The field of vehicle routing is currently growing rapidly because of many

actual applications in truckload and less-than-truckload trucking, courier services,

door-to-door services and many other problems that generally hinder the

optimization of transportation costs in a logistics network. The rapidly increasing

number of customers in such a network has caused problems such as difficulty in

cost optimization in terms of getting a global optimum solution in an acceptable

time. Fast algorithms are needed to find sufficient solutions in a limited time that

can be used for real-time scheduling.

This dissertation will discus about heuristics to solve the vehicle routing

problems (VRP) in static and dynamic contexts. The solutions for VRP can be

obtained exact or heuristic ways. Specially, an introduction to De-Cranking

heuristic method, which is an effective improvement of the problem solving

method to solve the VRP, will be drawn out. The goal is to minimize the

 ii

transportation cost for motor-elements fleet such as vehicles, truck, lorry, train,

AGV and etc. moving inside warehouses or touring around a planed ordered list of

locations; crews, waiters/waitresses in large custom “Phở” restaurant and etc.

moving to server guests; data frames moving on networks and etc. by rerouting

and re-dispatching at any time occurring new requests, and/or changing overtime

traffic condition on the itineraries.

As any heuristic methods for the VRP, a started solution should be

initialized before applying any adjustment procedures from the methods. That

solution may be taken from random or reasonable methods. Even with random

methods need also some reasonable ones to generate out which related to

something called Monte Carlo Methods. This dissertation will not investigate to

random methods but will introduce some useful and effective heuristic methods

(reasonable ones) for the VRP.

Beginning with the nearest neighbor method, which is classical immediate

selecting one next location with lowest cost through all solution until shaping a

complete route solution, and then, developing an algorithm in which generalizing

the string of location involving in checking lowest cost selection with a given

length . It is called nearest L -neighbor method (NLNM). This method is

utilized to obtain the first stage route solution.

L

In second stage, De-Cranking procedure will release the “cranky energy”

if any appearing in the partial route of the first-stage solution, but conserving

complete routing to all locations, to get a better route which may not be global

optimal solution but near or sometime coincide to it.

 iii

The dissertation also gives elements, processes and simulation methods

such as lexicographic ordering, traversal the multi-branch tree and so on, from

which some exact methods and heuristic method could be developed base on

dependently or separately, to solve a class of combinatorial optimization problems

which VRP is a representative one.

Keywords: De-Cranking Heuristic Method, Nearest -Neighbor Method,

Vehicle Routing Problem, Dynamic Vehicle Routing Problem, Lexicographic

Ordering

L

 iv

Contents

Acknowledgements i

Abstract ii

Contents v

Figure Listing vii

Table Listing x

Chapter 1 Introduction 1

1.1 Introduction 1

1.2 Outline of the Dissertation 6

Chapter 2 Vehicle Routing Problem: Static and Dynamic 8

2.1 Introduction 8

2.2 Static VRP 8

2.3 Dynamic VRP 16

2.3.1 Dynamic of Unknown Customers 17

2.3.2 Dynamic of Travel Times 18

Chapter 3 Solving the VRPs 21

3.1 Introduction 21

3.2 Set Theory and Order Relation 22

3.3 Mapping 23

3.4 Permutation and Combination 25

3.5 Multi-branch Tree and Traversal 27

3.6 Exact Methods 28

 v

3.7 Heuristics 28

3.7.1 Nearest -Neighbor Method L 28

3.7.2 De-Crossing 31

3.7.3 De-Cranking 34

Chapter 4 Simulation 39

4.1 Simulation Conditions 39

4.1.1 Solomon Data 39

4.1.2 Define Conditions 41

4.2 Simulation Results 42

4.2.1 VRP 43

4.2.2 DVRP 56

4.3 Comments and Remarks 68

Chapter 5 Conclusions 71

Published Papers 72

Appendix 73

a. Solomon Data 73

b. MATLAB Codes 75

Bibliography 83

 vi

Figure Listing

Fig. 1.1 Developing of heuristic methods 5

Fig. 2.1 Vehicle routing problem 10

Fig. 2.2 Serving situations: waiting case 14

Fig. 2.3 Serving situations: normal case 15

Fig. 2.4 Serving situations: delaying case 1 16

Fig. 2.5 Serving situations: delaying case 2 16

Fig. 2.6  continuously changing overtime 20

Fig. 2.7  average value in each link to customer location 20

Fig. 2.8 Uniform pdf of  20

Fig. 3.1 Multi-branch Tree 27

Fig. 3.2 Solution of NNM 29

Fig. 3.3 Solution of NLNM with L=2 29

Fig. 3.4 Cross in the route from NLNM 31

Fig. 3.5 Crossing  4321 ,,, VVVV and de-crossing  4231 ,,, VVVV 32

Fig. 3.6 De-crossing of example in Fig. 3.4 33

Fig. 3.7 Algorithm for de-cranking 34

Fig. 3.8 Example of cranking and de-cranking 37

Fig. 3.9 Steps of de-cranking for the example 37

Fig. 4.1 The arrangement of customer locations and one depot 40

Fig. 4.2 The order of customer request along the working day 40

Fig. 4.3 Simulation results of NLNM 43

 vii

Fig. 4.4 Simulation results of NLNM with de-cranking 44

Fig. 4.5 VRP without de-cranking of sample R101 with N=100, K=1 and

 L=1, case 1 45

Fig. 4.6 VRP with de-cranking of sample R101 with N=100, K=1 and

 L=1, case 1 45

Fig. 4.7 VRP without de-cranking of sample R101 with N=100, K=1 and

 L=1, case 2 46

Fig. 4.8 VRP with de-cranking of sample R101 with N=100, K=1 and

 L=1, case 2 46

Fig. 4.9 VRP without de-cranking of sample R101 with N=100, K=1 and

 L=1, case 3 47

Fig. 4.10 VRP with de-cranking of sample R101 with N=100, K=1 and

 L=1, case 3 47

Fig. 4.11 VRP with sample R101 with N=100, K=3 and L=1, case 1 48

Fig. 4.12 VRP with de-crossing of sample R101 with N=100, K=3 and

 L=1, case 1 48

Fig. 4.13 NLNM with de-cranking, case 1 51

Fig. 4.14 NLNM with de-cranking, case 2 53

Fig. 4.15 NLNM with de-cranking, case 3 55

Fig. 4.16 NLNM (L=1) with de-cranking for DVRP, case 1 57

Fig. 4.17 NLNM (L=1) with de-cranking for DVRP, case 2 59

Fig. 4.18 NLNM (L=1) with de-cranking for DVRP, case 3 61

 viii

Fig. 4.19 NLNM (L=2) with de-cranking for DVRP, case 1 63

Fig. 4.20 NLNM (L=2) with de-cranking for DVRP, case 2 65

Fig. 4.21 NLNM (L=2) with de-cranking for DVRP, case 3 67

 ix

Table Listing

Table 4.1 Simulation cases 41

Table 4.2 Simulation results of VRP 43

Table 4.3 Simulation results of VRP with de-cranking 44

Table 4.4 Simulation results of VRP with single vehicle 49

Table 4.5 Simulation results of VRP with multi vehicles 49

Table 4.6 NLNM with de-cranking, case 1 50

Table 4.7 NLNM with de-cranking, case 2 52

Table 4.8 NLNM with de-cranking, case 3 54

Table 4.9 NLNM (L=1) with de-cranking for DVRP, case 1 56

Table 4.10 NLNM (L=1) with de-cranking for DVRP, case 2 58

Table 4.11 NLNM (L=1) with de-cranking for DVRP, case 3 60

Table 4.12 NLNM (L=2) with de-cranking for DVRP, case 1 62

Table 4.13 NLNM (L=2) with de-cranking for DVRP, case 2 64

Table 4.14 NLNM (L=2) with de-cranking for DVRP, case 3 66

 x

Chapter 1 Introduction

1.1 Introduction

People are living in a dynamic world where the moving and exchanging of

goods or commodities are processing every day, every hours, even every seconds

from places to places (arranging products in a warehouse), from place to people

(delivery services or goods from supermarket, store or post office to customers)

and from people to each others.

To get better and faster services, people create vehicles to support moving

or exchanging processes. At the first thought, it could serve for individual or

personal purposes, and that vehicle serving operations could be simple which may

not necessary to plan for working. But when the services provide for many

individuals and industry, there is a vital need to plan and schedule the operations,

routes of vehicles in constraints such as limited resources, restricted time

operating and space. The goal is to minimize the time on goods transition, and as

a result, reducing the cost.

 1

In recent three decade, the vehicle routing problem (VRP) and the more

practical version of VRP, the dynamic vehicle routing problem (DVRP), have

been studied with much interests because of the importance of those in logistics

networks, as reviewed in (Gendreau et al, 1996; Ichoua et al., 2003; Haghani and

Jung, 2005; Hashimoto et al., 2006; Fabri and Recht, 2006; Hanshar and Ombuki-

Berman, 2007). The VRP has had important points in the scheduling of the routes

of vehicles that carry materials, goods, products in a logistics network or chain of

suppliers – manufacturers – warehouses and distribution centers – customers

(Simchi-Levi et al., 2003), such as door-to-door services, courier services, full

truckload (FTL) and less-than-truckload (LTL) services, etc. Recent applications

of VRP in the fields of container terminals have been applied to the delivery of

containers (Shin and Oh, 2008) or to the planning of a real-time location system

(RTLS) (Shin et al., 2008), and so on.

With the increasing of applicable and low-cost modern technologies on

precise positioning and communication like as the GPS (Global Positioning

System), the GIS (Geographical Information System), traffic flow sensors and

cellular telephones that make the VRP and DVRP easier to apply to real-life

indoor and outdoor applications (see Ghiani et al. (2003); Taniguchi et al. (2004)).

In 21st century, numerous papers and monographs have been researching

and developing efficient exact algorithms and heuristics for the VRP and the

DVRP as in Larsen (2000); Ichoua et al. (2000); Toth and Vigo (2002); Branke et

al. (2005); Hvattum et al. (2006, 2007); The trend have been turning to develop

fast and efficient heuristics methods for VRPs.

 2

The planning routes for vehicles can be scheduled off-line for long term

business or on-line for tactical business. We can see that more than 80 per cent of

the operations of a logistics network are related to vehicle movements, such as

vehicles traveling between stages of supply chain and vehicles moving inside each

stage of the supply chain. The control of these movements can enormously affect

total cost. Consequently, a strategy in giving routes solution in VRPs is very

important.

This planning step is similar to control rules applied to a fleet of vehicles,

such as actuators, in stages of the supply chain or logistics network, similar to a

controlled system. The purpose is to find an optimal control rule that minimizes

the operating cost of actuators or minimizes the transportation cost of vehicles in

the VRP. The control rules should change over the operating time to react with the

changes in environment (events, traffic condition, etc.) and generate suitable

decisions that optimize vehicle operation.

However, it has been known that VRPs is NP-hard. Because of its

characteristics, VRPs require many techniques in finding an exact solution,

especially by heuristic means. Differences in meta-heuristic methods are discussed

by Michalewicz (1996); Toth and Vigo (2002); Chitty et al. (2004); Zeimpekis et

al. (2005); Montemanni et al. (2005), and Fan et al. (2006).

Generally, the exact methods are used to exploring all solution space by

enumerating techniques (ex. brute force, backtracking, branch and bound etc.), see

Horowitz and Sahni (1978), whereas the (meta-)heuristic methods are used to

 3

exploring partially solution space by random or/and reasonable rules of selection,

see Martello et al. (1987); Ball et al. (1995a, b).

In real applications, the enumerating all the solution space may not

practical because of the enormous solutions having to check for feasible. And if

the space is multi-dimension, there is an obsession called “curse of dimension”

which the examining all the space to find the best solution would take years even

with a simple problem. For example, in the vehicle routing problem with just one

vehicle touring around N locations and each location just visited one time, the

question is which route should be to minimize the time touring all that locations.

The exact answer could be gotten if we checked -factor () possible routes of

solution space. It may not too hard for an industrious man with N <6 (6!=720),

but in real application, number of locations may greater than hundreds in small

business, and thousands to millions in large and very large business in which

currently strongest sequence computers could not count.

N !N

To solve real applications which the exact methods can not give an answer

in acceptable time, some heuristic methods have been developed. The progress of

developing heuristic method is shown as in Fig. 1.1. The heuristics have been

developing in two directions concurrently. These are random methods and

reasonable methods. The algorithms in which induced from reasonable statements

indicate the level of robust intelligent of the methods. At first level, the heuristics

may have involved some contingencies such as random selecting, or producing a

random space of population. However, in more robust intelligent systems, the

 4

contingency is replaced by reasonable elements of selecting or/and sampling

or/and producing. This dissertation has been going to that trend.

...

Le
ve

l o
f R

ob
us

t I
nt

el
lig

en
t

Fig. 1.1 Developing of heuristic methods

For example, producing first solution of the VRP not by random way, but

by reasonable fact of nearest L -neighbor method (NLNM) which forming the

route by adding continuously a string of length locations with lowest cost until

there is no remain locations. Consequently, the output route from the NLNM is

refined by de-cranking procedure, another reasonable one, to produce a better

solution.

L

 5

1.2 Outline of the Dissertation

The purpose of this dissertation will introduce some heuristic methods to

solve the VRPs in statics and dynamics context. The nearest L -neighbor method

is used to select an initial solution with various values s at first. And second, the

de-cranking procedure to “pluck off” the route to decrease cost value of an

objective function. Structuring of dissertation is as following.

L

Chapter 2 will discuss and analyze about the static VRP with time window.

The VRP will be formulated mathematically. Analyzing the objective function,

detailing several serving cases and costing for each case will be provided clearly.

Also, the context of the DVRP will be introduced with degree of dynamics and

some modeling of dynamic traffic times.

Chapter 3 will present some mathematical concepts such as set, order

relation, mapping, traversal on multi-branch tree for sorting or searching which

are helpful to present, manage and solve (programming) the combinatorial

optimization problems analytically and computationally. The end of this section

will be discussing heuristic methods used to solve the VRPs. Nearest -neighbor

method, simple ideal of de-crossing and philosophy of de-cranking procedure will

be detailed clearly.

L

Chapter 4 is simulation results for VRP and DVRP. Testing the nearest -

neighbor method (NLNM) with different values of length , and enhancing the

route solutions with the de-cranking procedure to choose the best VRP solutions

are presented. The results will show that NLNM with the support of the de-

crossing procedure gives a better solution than applying only NLNM, and in many

L

L

 6

tests, it even reached an approximate or exact solution. Also, computational

results providing an indication of the benefits associated with the de-cranking

procedure will be detailed.

Chapter 5 is conclusions about the methods and the obtained results.

The appendix included a sample of Solomon data and all MATLAB codes

for heuristics methods presented in the end of chapter 3.

 7

Chapter 2 Vehicle Routing Problem:

……………… Static and Dynamic

2.1 Introduction

VRP is the generalization of the traveling salesman problem (TSP), which

is to find the shortest possible tour to make exact single visits to each location.

The VRP searches plausible paths or routes from a depot to customer locations for

a fleet of capacitated vehicles to serve customers (pick up or/and delivery of

goods or commodities) based on optimizing objective functions that indicate

benefits (to maximize) or total cost and time (to minimize) of services.

In section 2.2, the mathematical formulations of the static VRP are

presented. Section 2.3 discusses some respects of dynamic VRP.

2.2 Static VRP

The basic formulation of objective function for VRP might be referred to

Ahuja et al. (1993). Another formulation has been suitable for binary linear

 8

programming referred by Haghani et al. (2005). The former is very general but it

does not consider the operational statuses of vehicles. The latter contains too

many variables needed to be inputted in the decision solutions, and additionally it

is very complex in formulating the problem and not suitable for VRP with a large

number of customers. With the consideration of the operational vehicle’s status

and simple objective function, in this chapter, the following simple objective

function will be suggested intuitively.

The vehicle routing problem is formally considered as a complete

graph where  EVG ,    ,0 NiiV  is the vertexes set and

  ,0,,0(NjNiE  ,), ijij  is the edges set.

Vertices Ni ,1 are corresponding to customers with as number of

customers, whereas vertex 0 is the depot. A non-negative travel time is

associated with the each edge

N

ijt

),(ji  E .

Each customer i is characterized by a pickup location, a service time , a

time window [,] and a vehicle planned arrival time . If < , the vehicle

has to wait up to before servicing the customer and if > , the penalty is

incurred in the objective.

is

ie il

ie

it it

il

ie

it

The depot is characterized by a location, a time window [,] for vehicle

arrivals an departures, as well as the vehicle return time for each vehicle

oe ol

k
ot k  K ,

where K is the set of vehicles. The service time at the depot is assumed to be

 9

0os . Each vehicle travels along a single route that starts and ends at the depot.

The depiction of VRP is shown in Fig. 2.1.

k
j

k
j iid ,1

k
ji 1

k
ji

kS

k
ji

s

],[
k
jik

ji
le

1
11




k

kmi

1kS

1kS

1
1
k

i
1

2
k

i

1
1
k

i

1
11




k

kmi

1
21




k

kmi

k
i1

k

)1(k

)1(k

0......
1

00
1

0
1
0   kkk

iiii

k)1(k

)1(k

Fig. 2.1 Vehicle routing problem

The notation is the customer in k
ji j th location the serviced k th vehicle.

[,] is the time window, and is the service time of customer in the

serving list of the vehicle k . And is the number of customers that vehicle k

will have been serving.

k
ji

s

km

k
jik

ji
e k

ji
l

The objective of VRP is to minimize the weighted summation of travel

time, sum of waiting time at customer locations, sum of delay time at customer

 10

locations and delay time to return to the depot, which formulated in Eq. (2.1) for

over all vehicles.

Assume the solution , where 
Kk

kSS


  k
m

kk
o

k
k

iiiS ,...,, 1

0 k
m

k
o k

ii

 is the sequence

of customer locations visited by vehicle with , then the objective

function can be expressed as follows:

k





Kk

kSfSf)()(

 (2.1)  































































Kk

o
k
o

m

j
ii

a
i

m

j

a
ii

m

j
ii

lta

lsta

tea

ta

k

k
j

k
j

k
j

k

k
j

k
j

k

k
j

k
j

)(

)(

)(

4

1
3

1
2

1
,1

1

1

1

where,

1a , , , 2a 3a 4a Weighting parameters.

     ,0max    yxyx   ,0max

a

ik
j

t Arriving time to customer i of vehicle . k
j k

k
ji

t Finished time at customer i of vehicle and

ready to move to next customer.

k
j k

 11

k
j

k
j

k
j

k
j i

a

iii
ttt

11 , 







k

k
j

k
j

m

j
ii

t
1

,1
 Sum of travel time.







1

1

)(
k

k
j

k
j

m

j

a

ii
te Sum of waiting time at customer locations.







1

1

)(
k

k
j

k
j

k
j

m

j
ii

a

i
lst Sum of delay time at customer locations.

)(o
k
o lt Delay time to come back

If there is no waiting cost of vehicles to depot, then (or

. Also the ready time in time windows at depot for all vehicles will be

zero (), and the travel time of each vehicle is always non-negative value

().

0)  
k

km
k

km ii
te

k
km

k
km ii

te 

k
kmi

e

0k
kmi

t

0

Moreover, if the waiting cost of vehicles on their return to depot and on

servicing are identical (), then the objective function can be reduced as

follows:

4a  3a

 12





Kk

kSfSf)()(

 




 Kk

m

j

k
j

k

Sg
1

)(

 (2.2) 
 































Kk

m

j

ii

a

i

a

ii

ii
k

k
j

k
j

k
j

k
j

k
j

k
j

k
j

lsta

tea

ta

1

3

2

,1

)(

)(

1

There are three serving situations at a customer of each vehicle that makes

the change in the cost: waiting, normal and delay cases. A detailed objective

function of each case will be expressed based on Eq. (2.2) as follows:

a) Waiting case

When the vehicle arrives at the customer location before the ready time

(the time the customer needs to be served), then the vehicle has to wait for the

right time (the customer accepts the receiving service), as shown in Fig. 2.2. The

real total time serving this customer, , and the cost for this link, , in

this case will be given as follows:

k
j

k
j ii

T
,1

)(k
jSg

 k
j

k
j

k
j

k
j iiii

ttT
11 , 



 k
j

k
j

k
j iii

ste 
1

 (2.3)

 13

)()(2,1
1

a

iiii

k
j k

j
k
j

k
j

k
j

teataSg 


 (2.4)

k
ji

t
1

k
ji

e k
ji

l

k
ji

s

time

k
ji

t

a
ik

j
t

k
ji

Fig. 2.2 Serving situations: waiting case

b) Normal case

Normal case or the right time case is shown in Fig. 2.3. There is no penalty

in the cost link. The real total spent servicing time of the customer and the cost

function for this link will be calculated as follows:

k
ji

k
j

k
j

k
j

k
j iiii

ttT
11 , 



 (2.5) k
j

k
j

k
j ii

a

i
stt 

1

 (2.6) k
j

k
j ii

k
j taSg

,1
1

)(




 14

k
ji

t
1

k
ji

t

time
k
ji

e k
ji

l

k
ji

s

a
ik

j
t

k
ji

Fig. 2.3 Serving situations: normal case

c) Delay cases

Slowing cases are showed in Figs. 2.4 and 2.5, respectively. In Fig. 2.4,

the vehicle arrives in a valid period time, but the servicing time exceeds the due

time. In Fig. 2.5, the vehicle reaches the customer totally late. There is a penalty

for this lateness. The real total time servicing this customer, , and the cost for

this link, , in this case will be calculated as follows:

k
j

k
j ii

T
,1

)(k
jSg

k
j

k
j

k
j

k
j iiii

ttT
11 , 



 (2.7) k
j

k
j

k
j ii

a

i
stt 

1

 (2.8))()(3,1
1

k
j

k
j

k
j

k
j

k
j ii

a

iii

k
j lstataSg 



 15

k
ji

t
1

k
ji

t

time
k
ji

e k
ji

l

k
ji

s

a
ik

j
t

k
ji

Fig. 2.4 Serving situations: delaying case 1

k
ji

t
1

k
ji

t

time
k
ji

e k
ji

l

k
ji

s

k
ji

a
ik

j
t

Fig. 2.5 Serving situations: delaying case 2

2.3 Dynamic VRP

Dynamic vehicle routing problem are defined base on static vehicle

routing problem adding with a number of changing elements during operating

time of vehicles fleet in which a rearrangement all or an adjustment partially of

the current routes in real time to adapt with the changing. The changing elements

could be previously unknown such as stochastic customers whose requests and

locations randomly occur at anytime, dynamics of travel time because of unknown

 16

traffic condition affecting the velocity moving of fleet, and dynamics of vehicle

dispatching, or the changing of policies online.

In this section, we will discuss about dynamics of unknown customers and

dynamics of travel times.

2.3.1 Dynamics of Unknown Customers

The VRP mentioned in previous chapter is static because of its input data

(travelling time, total demand) are known in advance, all data are known when

designing vehicles routes. The DVRP are different in different ways as discussed

in Hvattum et al. (2006).

It is significant to recall the dynamic degree of DVRP in Larsen (2000).

Assume that the planning interval is . Let and be the number of static

and dynamic requests, respectively. Let t

],0[T sn

,0[T

dn

]i  be the occurrence time of

service request i with earliest time and latest time . Larsenian degree of

dynamics is defined as:

ie il

 

ds

nn

i

ii

nn

T
lTtds









1

If the latest times are far from the finished working time il T , this case is

strongly dynamics, whereas if s near il T , it is weakly dynamics.

 17

This dissertation will study and simulate the dynamics of customers with

various degrees. The dynamic degree of customers in this dissertation is the

number of customer requests per a period of rerouting during the operations of

vehicles.

The nearest L-neighbor method is used to predict the routes for each of

vehicles consequently, and applying de-cranking procedure to reduce the cost

before selecting the next customers to serve. One customer is chosen for each

vehicle to serve next until there is no more the changing of the inputs.

2.3.2 Dynamics of Travel Times

When the vehicle is ready to depart from its current customer location, the

travel time to its next destination is sum of scheduled average time, and variable

time amount. This changeable time amount may positive (e.g. high traffic density,

accident, bad conditions or downgrading on road) or negative (e.g. low traffic

density, good conditions on road) change might be due to unforeseen events that

may occur along the current travel section and represents the truly dynamic

component of the travel time. Totally, the travel time is fluctuated and it is

considered a rescheduling of the planned routes. We model dynamic travel time as

follows:

  


1

,

,

1

1
a

ii

ii v

d
t jj

k
j

k
j

 (2.9)

 18

where:

jj iid ,1
 Distance between two customer locations.

av General velocity of vehicles, planed speed.

 Unknown stochastic coefficient related to traffic condition.

  o ,

 o Goodness factor of traffic condition.

01  o ,

Some special cases:

  1 Best traffic condition could not support the vehicle go at

infinite speed, so this is impossible case.

  0 Normal traffic condition as planned.

   Serious traffic, so the vehicle can not move.

  5.0 Vehicle runs at double planned speed.

 is related mainly to traffic density and fluctuated during day time. It

changes continuously as in Fig 2.6. For testing purposes we can set an identical

average value for each link that the vehicle running, in Fig. 2.7. And we assume

the distribution of  is uniform. The value of  spans from [5.0 , 8] and has

uniform probability distribution function)(pdf as in Fig. 2.8.

This modeling of travelling time would significant because it transforms

 19

time



Fig. 2.6  continuously changing overtime



time
k
ji

t
2

k
ji

t
1

k
ji

t k
ji

t
1

 

Fig. 2.7  average value in each link to customer location

5.0 8

5.8
1

)(pdf



Fig. 2.8 Uniform pdf of 

the local travelling time to a realistic global statistical measurable quantity k
j

k
j ii

t
,1

 which is useful in prediction purposes.

 20

Chapter 3 Solving the VRPs

3.1 Introduction

To solve the VRPs on computer, we need some knowledge to present

elements of solution space and relation to assess or elements to be arranged on

which is important to define a method to search an elements in general space. That

is about set theory, order relation, mapping, combination sets, permutation sets, or

tree concept and method to examine all tree branches to get exact solutions.

But in real problems, the exploring totally the space solutions is

impractical, it may need months, years, or even generations to search real

optimum solution for a problem need to be decided in bound time. A fast problem

solving ideal may not obtain a best one, but currently solve the problems in a

simple way quickly and satisfy the need in acceptable time is a right choice. We

call that be heuristic methods.

Some of the basic mathematical concepts with exact methods and

heuristics methods will be discussed over promptly and end with detailed

 21

introduction to three heuristic methods: Nearest L-Neighbor Method, De-crossing

and De-cranking.

3.2 Set Theory and Order Relation

A set is a collection of objects. The objects in a set are also called the

elements, or members of the set. We use braces , to indicate a set and

parentheses to indicate an ordered set or sequence. A sequence of indexing

locations from which constructs the route of vehicle

 ,

 k
m

kk
o

k
k

iii ,...,, 1S is an

example closely to the subject of VRP.

A subset of the set S is a set
kS such that every element of is also a

member of S . This relationship is denoted by ()  (

kS

kSs Ss); or ;

or .

SS k 

kSS 

Union of and is denoted as 1S 2S 1S  2S . The union of the sets ,

, … , , denoted in short by .

1S

2 KS S 
K

k

kS
1

Intersection of and is denoted by or . 1S 2S 21 SS  21 \ SS

The Cartesian product of the sets , , … , , denoted by

, is the set of n -tuples

1S 2S nS

nSSS  21  nsss , 21 ,, , where belongs to for

. We can write it as

is iS

ni ,,2,1    niSssS ii ,, ,2
1   sn,s1S nS . ,12 

 22

If the sets , , … , are all equal to a set , then we have -fold Cartesian

product of which is denoted by .

1S

S

2S

)(nS

nS S

nS

n

)(21 nSSS  

)(nS

S

Lexicographic ordering “ ” of is a set of all n -tuples of elements of

, in which S is the n -fold Cartesian product of . Let  nss ,,2 s ,1s  and

, . Then if either  nt,tt ,, 21t ), ts  (nS ts  ts  or there is some k ,

, such that nk 1 , 1k ksitis  ,1i and kt .

Example 3.1

 ,6,5,S 9,8,7

9,8,7

4,3,2

6,3,2

,1

9

,1

n

 ,4,5,s

 4k

7,3,2

4

 6,5,

6 

4,9,8,t ,1

k 3,1, its ii , so that s tAt , 744  ts , and 

3.3 Mapping

Let and S T be given sets. A function consists of two sets

and

TS f : S

T together with a rule that assigns to each Ss a specific element of T ,

 23

denoted , or s is mapped to the element)(sf)(sf  T . We say that S is the

domain of , and f T is the co-domain of . f

1s

Function is said to be injective (one-to-one) if and only if

 implies that for all and in the domain of .

f

f

)(2sf f)(1sf  21 ss  2s

Function is surjective (onto) if and only if for every element of S ,

, there is an element of Ss T , , with Tt  f ts )(.

Function is bijective (one-to-one correspondent), if it is both injective

and surjective.

f

R

Example 3.2

A distance function on the set of locations S on a axis as

SxS:  

 
21

s
21

, ss

S n:

s 

 Or mapping a lexicographical ordering to integer set as

 N

 This mapping is very useful in searching solution of combinatorial

problem. It maps n-dimensional space to well-order-one-dimensional structure of

integer field N, so it is easier to move and count through the domain solution

space.

 24

3.4 Permutation and Combination

A permutation of a set distinct object is an ordered arrangement of these

objects.

Given N objects distinctly, number of arrangement is:

!)1(321)(NNNNP  

!01)0(P

A k-combination of elements of a set is an unordered selection of k

element from the set, then the number of k-combination is:

)()(
)(

kNPkP
NP

C N

k 

Example 3.3

 3,2,1S

Permutation set             1,2,3,2,1,3,1,3,2,3,1,2,2,3,1,3,2,1SP

 6!3321)3(P elements

 25

1-Combination set       3,2,1
1

3









SC

 3
)2()1(

)3(3

1


PP
P

C elements

2-Combination set       3,1,3,2,2,1
2

3









SC

 3
)1()2(

)3(3

2


PP
P

C elements

3-Combination set   3,2,1
3

3









SC

 1
)0()3(

)3(3

3


PP
P

C elements

 An algorithm to generate a permutation of set  n,...,2,1 can be based on a

procedure to construct a next order (forward or backward) of a lexicographic order

following a given permutation . The MATLAB codes to implement

next or previous permutation and next k-combination could be referred to

appendix.

 nsss ,,, 21  

 26

3.5 Multi-branch Tree and Traversal

Start from a root with multi branches which denote switch decisions. Each

branch goes to a node and sniping to decision directions (branching) until an end

node which defines a characteristic to stop the branching process. There are two

basic methods to search in multi-branch tree, those are depth first search and

breadth first search, which is the core of exact methods to solve the VRP. Details

of these could be referred to Horowitz et al.(1978) and Russell et al.(2003).

Fig. 3.1 illustrates a example of multi-branch tree. Start node is the root, it

is assigned with value from an evaluating function of current state. Finished node

 0f

 1f

 2f

 nf

Fig. 3.1 Multi-branch Tree

 27

is the node which the state satisfies every conditions of a problem. The dot lines

with arrow indicate the route for a solution.

3.6 Exact Methods

Backtracking, branch and bound, branch and cut, set-covering integer

programming are the kinds of called exact methods. “Exact” that means there is a

mechanism that visits all the significant elements of searching space. A smart

exact method is the one can eliminate unnecessary elements, and just relevant

ones to confirm feasibleness and use that information to trim others. Details of

back tracking algorithm and branch and bound could be refer to Horowitz et

al.(1978). The branch and cut and set-covering integer programming and many

others could be referred to Toth et al.(2002).

The next section will present nearest L-neighbor method and from de-

crossing to de-cranking procedure that be useful to get the solutions in vehicle

routing problems. Other Heuristics could be referred to Ball et al.(1995a,b) and

Michalewicz et al.(2004)

3.7 Heuristics

3.7.1 Nearest -Neighbor Method L

The nearest neighbor method (NNM) is known as a technique for finding

the closest point in metric spaces (Arya et al., 1994). A generalization of the

nearest neighbor method (NNM) is used to plan vehicular routes. In the nearest

 28

neighbor method, at the current step, only one nearest customer location in all

remaining un-served customers is chosen, whereas in nearest -neighbor method

(NLNM), a sequence of customers is selected to ensure the least total cost.

L

L

As an example, Figs. 3.2 and 3.3 show the solutions of NNM and NLNM

with , respectively, for five customers located in Euclidean space. The

solution in Fig. 3.3 looks smoother and shorter than that in Fig. 3.2.

2L

Therefore, NNM is a special case of NLNM when 1L along selecting

1

2
3

4

5

Fig. 3.2 Solution of NNM

1

3

4

5

2

Fig. 3.3 Solution of NLNM with L=2

 29

progress. When L equals to the total number of customers, then NLNM gives an

exact solution. However, when the number of customers is sufficiently large as in

real applications, the time to get the exact solution is unacceptable. At a time we

plan a solution for a group of customers, and continuously we plan for other

groups until all the locations are considered.

For a graph of N vertexes, NNM needs 2/)1( NNC comparison

steps to get a suboptimum solution.

In case of NLNM, it needs:

)!(
)!(

)!)1((

)!2(

)!(

)!(

!
nLN

nLN

LnN

LN

LN

LN

N
C 











  (3.1)











L

N
n (3.2)

where 12)1(!  MMM and  * means the greatest integer in the

argument.

In Eq. (3.1), let , then . This is the total number of

elements in solution space. Theoretically, we could check all the elements of this

space to get the exact solution.

NL  !NC 

Actually, when L reaches all existent requests N at the first step and if

 is sufficiently large (>30), it might take much computational time to sort out

from possible permutations in order to obtain the best route solution (exact

solution).

N

!N

 30

Let us give a set V customers and define that is all sets of

customers in set V , and is set of customers served or will be served of vehicle

 at time by NLNM. Then, we have:

)(VAL L

kSu

k u







))](([minarg)(

)(
min VAfVA L

VA

L

L
 (3.3)

  SVASS Lkuku  
min

)1((3.4)

Eqs. (3.3) and (3.4) are useful in updating the routes in static VRP and

DVRP.

3.7.2 De-Crossing

NLNM sometimes gives a solution with crosses, as shown for example in

Fig. 3.4 Cross in the route from NLNM

 31

Fig. 3.4 which makes the route look like a bad solution. The de-crossing

procedure in the next subsection is to remove the crosses and reduce the length of

the route. Therefore, it enhances the quality of the solution.

Assume a crossing situation as a part of a solution called

 which is shown in Fig. 3.5.  4321 ,,, VVVVScross  

1V

2V3V

4V

C

1V

2V3V

4V

C

Fig. 3.5 Crossing and de-crossing  4321 ,,, VVVV   4231 ,,, VVVV

The intersect point is      CVVVV  4321 ,, .

In Fig. 3.5, the following inequality equations are induced

3131 ,,, VVVCCV ddd  (3.5)

4242 ,,, VVVCCV ddd  (3.6)

By adding Eq. (3.5) and Eq. (3.6), we have

42314231 ,,,,,, VVVVVCCVVCCV dddddd  (3.7)

 32

Also by reducing Eq. (3.7), Eq. (3.8) will be obtained

42314,321 ,,,,, VVVVVVVV dd  (3.8)

Inequality Eq. (3.8) implies that the changing order of  4321 ,,, VVVV to

 by swapping (or de-crossing as in Fig. 3.6)  4231 ,,, VVVV   2  3VV and that

reduces the distance from  to  , and consequently, it reduces cost. That is

the effect of the de-crossing procedure.

1V 4V

By applying the de-crossing procedure in Fig. 3.4, we have a de-crossing

result route as shown in Fig. 3.6.

In general, the in inequality Eq. (3.8) is not only the distance

from to in Euclidian space but also is the value from the objective

function to the set

4,1 ,, VVVV yx
d

 1V  4V

 4,, VVV yx1,V . The continuous exchange or release cranky

Fig. 3.6 De-crossing of example in Fig. 3.4

 33

energy of partial route to all the route is called de-cranking procedure.

3.7.3 De-Cranking

The ideal of de-cranking based on the act of straightening a bundle messy

long wire. At first, two hands hold at one side of the wire. Second, slide one hand

along the wire while the second hand keeps and stretches the line. This action will

make the wire straight and release crosses. Third, reach gradually the second hand

to the first hand position and do same actions on second step. Forth, repeat from

first to third step until is straight satisfactorily. That is called de-cranking process,

and the “stretching” operation is equivalent to exchange a partial route. We apply

this procedure to exist routes which generated from nearest L-neighbor method.

The algorithm in Fig. 3.7 could be presented as pseudo-code below:

Fig. 3.7 Algorithm for de-cranking

 34

Begin_Function New_route = DE_CRANKING(Old_route)

New_route = Old_route;

L = LENGTH(Old_route);

DO{

 Old_route = New_route;

 FOR u = 2 TO L-1 {

 FOR v = u+1 TO L-1 {

 Temp_route = New_route;

 s = u; t = v;

 WHILE(s < t) {

 SWAP(Temp_route, s, t);

 s = s +1; t = t – 1;

}

IF(COST(Temp_route) < COST(New_route))

THEN New_route = Temp_route;

}

 }

}STOP IF(New_route == Old_route) ;

RETURN New_route;

End_Function DE_CRANKING

 35

As we see in the algorithm, the cost will go down every loop until no more

reducing, and the route is converged. The COST function can be seen as potential

energy of the route state, and the SWAP will release the “cranky energy” if it

exists in the route state.

The “cranky” is defined in Merriam-Webster’s 11th Collegiate Dictionary

as “full of twists and turns”. The “cranky energy” is a kind of potential energy

which appearing in an un-optimal route with twist-parts (crossing) and turn-parts

along the route which can be detected by a metric function as the objective

function. The trick to check twist-parts or/and turn-parts is just a comparison the

routes before and after exchange the nodes in systematical way that we can see in

the pseudo-algorithm, or in previous explanation of the idea.

Let give a simple example to clarify the ideal of de-cranking energy. A

partial route with twist and turn inside, after de-cranking, the energy of twist and

turn was cleared away and give a better route as in Figs. 3.8 and 3.9.

The objective function is kind of evaluated function to the energy state of

solution set. And as nature of a existing object (biologic-ware or non-biologic-

ware such as people, animal, or things, or routes as the object to this dissertation),

it should adjust its state energy to the lowest and match with the level “energy of

environment” around (living place, political status, supported facilities,

relationships, or position of customer locations to which the dissertation

concerned as an example), because in this level of energy it can reduce waste

energy to against unwanted forces generated by the difference of energies.

 36

Fig. 3.8 Example of cranking and de-cranking

Fig. 3.9 Steps of de-cranking for the example

 37

The de-cranking procedure will release the stagnancy of waste energies

(waste costs) at twisting and turning parts along the route, so that its results will

set the route with a energy no greater than that route before do de-cranking, that

mean is reducing the cost.

 38

Chapter 4 Simulation

4.1 Simulation Conditions

The simulation results will be presented separately the VRP and DVRP.

But firstly, we mention about the data to use in simulation study, and preparing

data to simulate.

4.1.1 Solomon data

To present the results and to show the effectiveness of the NLNN and de-

cranking procedure to the VRP and DVRP, we tested the algorithms on samples of

Solomon data. One sample includes 100 customers with a different spatial

distribution of location are selected, where its schedule for serving includes ready

time, due date, service time, and capacities are considered. Also, Solomon data

have three kind of samples R, C, and RC.

R(random) sample distributes the customer location randomly; C

(clustered) sample clusters the customer location in well-defined geographic

 39

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

 0

 1

 2

 3

 4

 5 6

 7

 8

 9 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56 57

 58

 59

 60

 61

 62

 63

 64 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97 98

 99

'FontSize',7

Fig. 4.1 The arrangement of customer locations and one depot

Fig. 4.2 The order of customer request along the working day

 40

cluster; RC samples consider the customer location of both cases (random and

clustered)

One of them is R101 is been using to make intuitive of the results. Fig. 4.1

figures out the random locations in sample R101 which has 100 customer

locations and one depot. Fig. 4.2 shows the ordering time window of requests

during working time with the long blue box indicates the working time, and small

green boxes are interval request time.

4.1.2 Define Conditions

Using MATLAB to program on a Pentium Core i7 CPU with 3GB Ram

and get the results.

From the objective function in (2), we divided three cases for simulation as

show in Table 4.1.

 Table 4.1 Simulation cases

Cases Comments
Case 1 1 0 0 Only consider travel times

Case 2 1 0 1
Consider travel times and cost of
delay serving

Case 3 1 1 1
Consider travel times and cost of
waiting and delay serving

1a 2a 3a

The parameter was chosen 1 and 2 to get the simulation for VRP and

DVRP.

L

 41

The maximum number of vehicles involved to simulation is 20 units.

The highlight boxes in Tables from 4.6 to 4.8 indicate the best results from

all that cases of simulation, with two values of cost and computation time. In

DVRP results, we do not include the time calculation with an assumption that the

calculation time to get the routes is in extent for real-time applications.

4.2 Simulation Results

Firstly, to verify the NLNM and the effectiveness of de-cranking in

NLNM in this dissertation, nine customers with single vehicle was considered.

Tables 4.2 and 4.3 show the results of NLNM and NLNM with de-cranking,

respectively. The decreased rate of cost is shown by increasing the number of

neighbor in Figs. 4.3 and 4.4, respectively. L

Next, we considered 100 customers random sample (R101) with a single

vehicle. The simulation results have been given in Figs. 4.5 – 4.10 for three cases

without/with de-cranking. The cost and computational time of simulation results

are summarized in Table 4.4. Also, results for the multi vehicles have been

presented in Figs 4.11 – 4.12 and Table 4.5.

Lastly, the de-cranking heuristic method and NLNM have applied to

DVRP in considering five levels of degree of dynamic. The results are showed in

Tables 4.9 – 4.14.

 42

4.2.1 VRP

Table 4.2 Simulation results of VRP

L cost time(s) cost time(s) cost time(s)
1 158 0.01 1086 0.01 1182 0.02
2 176 0.04 967 0.04 1351 0.03
3 158 0.14 1197 0.14 992 0.14
4 146 0.68 1104 0.68 1079 0.68
5 146 3.71 954 3.58 984 3.57
6 158 15.12 940 15.02 969 15.05
7 158 48.18 835 48.57 895 48.55
8 161 103.76 714 103.26 732 103.40
9 146 110.24 667 110.11 685 110.26

N=9
Case 1 Case 2 Case 3

Simulation cases

Fig. 4.3 Simulation results of NLNM

 43

 Table 4.3 Simulation results of VRP with de-cranking

L cost time(s) cost time(s) cost time(s)

1 146 0.03 771 0.02 795 0.02

2 151 0.05 819 0.05 852 0.05

3 146 0.14 902 0.15 795 0.15

4 146 0.70 737 0.71 851 0.70

5 146 3.58 667 3.64 685 3.58

6 146 15.22 667 15.24 685 15.25

7 146 49.08 737 49.10 732 49.00

8 149 104.65 714 104.30 732 104.34

9 146 111.30 667 111.58 685 110.77

N=9
Case 1 Case 2 Case 3

Simulation cases

Fig. 4.4 Simulation results of NLNM with de-cranking

 44

Fig. 4.5 VRP without de-cranking of sample R101 with N=100, K=1 and L=1,
case 1

Fig. 4.6 VRP with de-cranking of sample R101 with N=100, K=1 and L=1, case 1

 45

Fig. 4.7 VRP without de-cranking of sample R101 with N=100, K=1 and L=1,
case 2

10

20

30

40

50

60

70

-10 0 10 20 30 40 50 60 70 80

Fig. 4.8 VRP with de-cranking of sample R101 with N=100, K=1 and L=1, case 2

 46

-10 0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

Fig. 4.9 VRP without de-cranking of sample R101 with N=100, K=1 and L=1,
case 3

10

20

30

40

50

60

70

-10 0 10 20 30 40 50 60 70 80

Fig. 4.10 VRP with de-cranking of sample R101 with N=100, K=1 and L=1,
case 3

 47

Fig. 4.11 VRP with sample R101 with N=100, K=3 and L=1, case 1

Fig. 4.12 VRP with de-crossing of sample R101 with N=100, K=3 and L=1,
case 1

 48

 Table 4.4 Simulation results of VRP with single vehicle

cost time(s) cost time(s) cost time(s)

without 808 1.14 93,205 1.02 200,100 1.01

with de-cranking 678 33.03 76,699 28.50 81,091 37.91

N=100 Case 1 Case 2 Case 3

Simulation cases

Table 4.5 Simulation results of VRP with multi vehicles

cost time(s) cost time(s) cost time(s)

without 808 1.14 93,205 1.02 200,100 1.01

with de-cranking 678 33.03 76,699 28.50 81,091 37.91

without 624 1.09 134,360 0.98 204,250 0.98

with de-cranking 555 57.14 116,980 98.88 120,350 98.69

without 556 1.19 177,090 1.00 241,010 0.99

with de-cranking 509 164.91 155,430 143.80 161,530 250.48

N=100
Case 1 Case 2 Case 3

Simulation cases

3

k

1

2

 49

Table 4.6 NLNM with de-cranking, case 1

L=1 L=2 L=1 L=2
1 678.035 685.472 8.9492 24.0634
2 550.599 625.937 2.4602 19.7876
3 509.361 482.076 2.3239 20.4968
4 495.389 491.368 1.418 19.7459
5 422.428 392.935 1.2105 17.7639
6 439.267 341.659 2.6854 18.312
7 418.574 432.645 1.2025 17.7689
8 419.134 460.214 1.7907 17.9893
9 364.9 465.565 0.9603 20.3855

10 364.642 367.92 0.9468 17.4402
11 414.098 377.779 1.0881 22.2366
12 378.182 460.095 1.3801 18.7346
13 332.175 370.38 4.1263 31.4744
14 423.602 362.844 1.1566 27.6806
15 375.03 397.568 5.158 20.5543
16 370.941 447.828 1.7467 18.0479
17 305.709 286.122 12.5557 70.1792
18 334.451 313.86 6.037 58.3791
19 360.977 349.976 1.8087 48.2011
20 289.361 364.193 0.6033 40.2694

NLNM with total de-cranking

Vehicles
Case 1

cost time(s)

 50

0 5 10 15 20
200

400

600

800

vehicles

co
st

L=1

L=2

0 5 10 15 20
0

50

100

vehicles

co
m

pu
tin

g
tim

e
[s

]

L=1

L=2

Fig. 4.13 NLNM with de-cranking, case 1

 51

 Table 4.7 NLNM with de-cranking, case 2

L=1 L=2 L=1 L=2
1 7.6699 7.9564 9.5428 27.2364
2 3.6582 3.4235 3.8253 21.2531
3 2.1846 2.3721 2.9591 22.1382
4 1.4352 1.9221 2.7764 19.5542
5 1.0301 1.033 1.7481 18.2923
6 1.1541 1.0954 2.3151 19.6413
7 0.7708 0.8149 2.2661 19.1046
8 0.849 0.798 2.1326 20.2376
9 0.4248 1.2931 1.7051 22.0297

10 0.2357 0.2643 1.2057 17.9264
11 0.2969 1.8085 1.3721 24.5302
12 0.5569 0.5568 2.0351 18.6155
13 1.1865 4.4533 4.8966 40.8315
14 0.3395 2.7841 1.532 33.5581
15 1.3995 1.4938 7.5675 22.898
16 0.566 0.4161 2.4024 18.6891
17 2.4105 9.5105 15.4802 103.663
18 1.4896 7.7354 6.0711 85.3255
19 0.524 6.2626 2.2725 58.2623
20 0.0668 4.575 0.6736 52.8186

NLNM with total de-cranking

Vehicles
Case 2

cost time(s)

]10[4

 52

0 5 10 15 20
0

5

10

vehicles

co
st

L=1

L=2

0 5 10 15 20
0

50

100

150

vehicles

co
m

pu
tin

g
tim

e
[s

]

L=1

L=2

Fig. 4.14 NLNM with de-cranking, case 2

 53

Table 4.8 NLNM with de-cranking, case 3

L=1 L=2 L=1 L=2
1 8.1091 7.7574 11.6959 32.3558
2 3.5885 3.5879 6.5484 23.138
3 2.2216 2.3999 3.9412 20.4269
4 1.5125 1.6833 2.4247 19.8097
5 1.1419 0.9988 2.011 18.1762
6 1.1244 0.9313 2.3239 18.9247
7 0.7778 0.5902 2.0043 18.3404
8 0.7636 0.6106 1.7986 18.3663
9 0.3942 1.0601 1.4119 21.4881

10 0.2982 0.2853 0.6826 17.9081
11 0.3145 1.166 0.8877 26.1126
12 0.377 0.3779 1.4603 17.6651
13 0.866 3.4091 4.0198 37.5516
14 0.3001 2.0996 0.9557 25.3536
15 0.9593 1.0464 6.3958 19.3937
16 0.3956 0.3744 1.4025 17.6562
17 2.1249 8.5678 6.7622 69.3687
18 1.159 6.941 7.4689 44.1398
19 0.5272 5.5331 1.9583 37.2734
20 0.2736 4.1551 0.4799 31.8757

NLNM with total de-cranking

Vehicles
Case 3

cost time(s)

]10[4

 54

0 5 10 15 20
0

5

10

vehicles

co
st

L=1

L=2

0 5 10 15 20
0

50

100

vehicles

co
m

pu
tin

g
tim

e
[s

]

L=1

L=2

Fig. 4.15 NLNM with de-cranking, case 3

 55

4.2.2 DVRP

 Table 4.9 NLNM (L=1) with de-cranking for DVRP, case 1

1….. 2 3 4 5
1 0.7999* 792.547 744.891 704.476 694.252
2 0.8673 638.518* 634.12 674.929 557.479
3 1.0505 707.356 601.738 664.42 583.989
4 1.1606 669.149 526.406 520.805 530.316
5 1.1221 663.453 423.410* 492.380* 453.745*
6 0.9315 760.063 504.241 501.639 492.354
7 1.115 787.466 571.434 463.121 489.873
8 0.9158 719.746 580.241 525.235 440.616
9 1.1599 771.062 600.365 488.605 426.865
10 1.1387 692.937 621.858 594.162 481.424
11 0.8145 663.569 548.229 552.947 449.609
12 0.891 690.205 546.242 474.807 481.232
13 1.1512 686.542 521.893 528.724 580.306
14 0.8883 583.587 559.923 526.175 469.59
15 0.8781 674.48 611.909 614.785 511.787
16 0.9475 632.034 528.398 487.031 462.748
17 1.1341 622.312 558.825 488.493 475.631
18 0.8566 667.652 477.512 539.408 468.119
19 0.7357 620.602 546.507 506.93 426.456
20 0.8707 610.13 470.786 476.716 447.74

Vehicle
No.

NLNM with L=1 and total de-cranking, case 1
Degree of dynamics (DoD)

]10[3

 56

0 2 4 6 8 10 12 14 16 18 20
400

500

600

700

800

900

1000

1100

1200

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.16 NLNM (L=1) with de-cranking for DVRP, case 1

 57

 Table 4.10 NLNM (L=1) with de-cranking for DVRP, Case 2

1…. 2…. 3…. 4…. 5….
1 1.7909 1.4497 1.1995 1.0503 1.007
2 0.8031 0.6183 0.6019 0.5045 0.5228
3 0.8887 0.4198 0.3793 0.3638 0.3325
4 0.8705 0.3259 0.2627 0.2303 0.2377
5 0.8954 0.3563 0.1677 0.1852 0.1931
6 1.146 0.3689 0.2275 0.1769 0.1523
7 1.0794 0.379 0.2005 0.1086 0.1196
8 1.3416 0.48 0.1696 0.1607 0.1016
9 1.3481 0.5204 0.3213 0.2501 0.0773
10 1.578 0.6314 0.3468 0.2582 0.0791
11 1.7025 0.8221 0.414 0.3 0.1304
12 1.8769 0.9227 0.2597 0.3228 0.1263
13 1.9619 1.0167 0.4836 0.5176 0.1525
14 2.1785 1.2298 0.7437 0.349 0.3477
15 2.2812 1.1563 0.4885 0.6805 0.2174
16 2.5611 1.2931 0.5264 0.4036 0.1803
17 2.4697 1.2007 0.9426 0.3113 0.1871
18 2.7974 1.8623 0.9644 0.878 0.1823
19 3.0317 1.7084 0.5765 0.8247 0.6834
20 3.1948 2.0381 0.6897 0.5802 0.5614

Vehicle
No.

NLNM with L=1 and total decranking, case 2
Degree of dynamics (DoD)

]10[5]10[5]10[5]10[5]10[5

 58

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.17 NLNM (L=1) with de-cranking for DVRP, case 2

 59

 Table 4.11 NLNM (L=1) with de-cranking for DVRP, case 3

1…. 2…. 3…. 4…. 5….
1 1.7074 1.29 1.1622 1.028 1.0941
2 0.884 0.719 0.6644 0.5596 0.5569
3 0.939 0.4559 0.4444 0.377 0.3803
4 0.9689 0.3416 0.2791 0.2643 0.269
5 0.9766 0.3656 0.1948 0.1891 0.1923
6 1.2494 0.3954 0.1739 0.1957 0.1807
7 1.124 0.3806 0.2428 0.1384 0.1244
8 1.6161 0.366 0.1889 0.1947 0.1171
9 1.2995 0.4127 0.2638 0.2112 0.0746
10 1.6907 0.4772 0.2992 0.1561 0.0991
11 2.2704 0.6867 0.2512 0.1594 0.1139
12 2.0806 0.8098 0.3525 0.1774 0.1189
13 1.8676 0.7933 0.5976 0.2541 0.1683
14 2.9503 0.5548 0.495 0.4124 0.1049
15 2.7797 1.1246 0.7713 0.2305 0.1813
16 2.6446 0.9826 0.7405 0.6618 0.1411
17 2.5027 0.8393 0.6744 0.5145 0.2757
18 4.3154 1.529 0.4034 0.3554 0.2701
19 4.2971 1.3349 1.2315 0.2632 0.1678
20 4.2139 1.3078 1.0794 1.0211 0.6979

Vehicle
No.

NLNM with L=1 and total de-cranking, case 3
Degree of dynamics (DoD)

]10[5]10[5]10[5]10[5]10[5

 60

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.18 NLNM (L=1) with de-cranking for DVRP, case 3

 61

 Table 4.12 NLNM (L=2) with de-cranking for DVRP, case 1

1…. 2 3 4 5
1 0.8549 783.412 738.746 721.272 745.886
2 0.7897* 667.019 665.731 635.265 659.701
3 0.9281 648.876 658.791 607.575 591.6
4 0.9036 574.693* 557.599 546.03 519.611
5 0.8586 629.435 539.809* 517.472* 489.482*
6 0.8059 710.936 566.959 513.634 519.553
7 0.855 626.407 524.082 508.452 443.273
8 0.8071 587.392 531.586 467.939 432.383
9 0.7244 598.242 543.549 501.253 436.463
10 0.8365 583.762 482.4 467.868 414.792
11 0.718 646.608 533.979 480.3 408.362
12 0.7344 528.683 511.414 430.208 465.858
13 0.6761 563.974 410.996 408.763 432.339
14 0.7763 528.133 493.224 470.221 396.624
15 0.7874 540.789 442.006 486.158 358.545
16 0.7571 588.636 442.869 444.184 392.029
17 0.6434 539.21 478.764 399.817 399.338
18 0.6712 552.888 427.028 359.067 369.756
19 0.7251 504.627 473.313 432.514 380.835
20 0.6855 509.49 432.306 394.342 356.022

Vehicle
No.

NLNM with L=2 and total de-cranking, case 1
Degree of dynamics (DoD)

]10[3

 62

0 2 4 6 8 10 12 14 16 18 20
300

400

500

600

700

800

900

1000

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.19 NLNM (L=2) with de-cranking for DVRP, case 1

 63

 Table 4.13 NLNM (L=2) with de-cranking for DVRP, case 2

1…. 2…. 3…. 4…. 5….
1 1.6738 1.2264 1.0835 1.0524 0.9899
2 0.8886 0.7118 0.6226 0.5475 0.5003
3 0.9418 0.4339 0.3534 0.3596 0.3403
4 0.9839 0.3717 0.2764 0.2315 0.2258
5 1.11 0.415 0.2204 0.2494 0.2373
6 1.2034 0.4516 0.3302 0.2377 0.235
7 1.5962 0.6572 0.3068 0.0916 0.1498
8 1.6974 0.8038 0.3722 0.2584 0.2314
9 2.0214 0.8475 0.5403 0.1161 0.2633
10 1.9603 0.9618 0.6131 0.4088 0.3725
11 2.3633 1.2967 0.8437 0.6812 0.5096
12 2.4354 1.1366 0.917 0.6881 0.6762
13 3.1755 1.7489 0.9006 0.9015 0.694
14 3.317 1.2494 0.2888 0.7548 0.7296
15 3.7307 1.4485 1.1387 1.3199 0.8862
16 3.5939 2.623 1.1302 1.0904 1.0711
17 4.5277 2.6717 0.3529 0.9707 0.7584
18 4.6362 1.8478 1.6203 1.6591 0.9849
19 5.0597 2.1007 1.6371 1.4789 1.4479
20 5.099 2.2736 1.8613 1.559 1.4296

Vehicle
No.

NLNM with L=2 and total de-cranking, case 2
Degree of dynamics (DoD)

]10[5]10[5]10[5]10[5]10[5

 64

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.20 NLNM (L=2) with de-cranking for DVRP, case 2

 65

 Table 4.14 NLNM (L=2) with de-cranking for DVRP, case 3

1…. 2…. 3…. 4…. 5….
1 1.7316 1.3173 1.1333 1.1391 0.9933
2 0.9079 0.6718 0.5771 0.5665 0.5128
3 1.0453 0.4889 0.4303 0.384 0.3384
4 1.1676 0.4087 0.2741 0.2435 0.251
5 1.4192 0.4278 0.2698 0.234 0.2453
6 1.5078 0.5777 0.3124 0.2658 0.251
7 1.8232 0.5607 0.3664 0.3013 0.2039
8 1.9352 0.7714 0.1918 0.3555 0.2405
9 2.583 0.6944 0.4901 0.3167 0.256
10 2.4263 0.8207 0.5271 0.4937 0.2879
11 3.1427 1.2431 0.6784 0.6914 0.3197
12 3.1269 1.0495 0.9232 0.8118 0.4252
13 4.2559 1.5439 1.2137 0.6278 0.6432
14 4.3813 1.2052 0.9479 0.9977 0.5291
15 4.462 1.9724 0.9932 0.8249 0.9859
16 4.3829 2.0976 0.3342 0.9359 1.1114
17 6.7284 2.0286 1.9866 1.8218 0.9411
18 6.9354 1.802 1.7313 1.6741 1.6208
19 7.0952 3.2489 1.5991 1.5752 1.3694
20 7.3089 3.3211 0.383 1.5461 1.4135

Vehicle
No.

NLNM with L=2 and total de-cranking, case 3
Degree of dynamics (DoD)

]10[5]10[5]10[5]10[5]10[5

 66

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

vehicles

co
st

DoD=1 DoD=2 DoD=3 DoD=4 DoD=5

Fig. 4.21 NLNM (L=2) with de-cranking for DVRP, case 3

 67

4.3 Comments and Remarks

As shown in Table 4.2 and Fig. 4.3, the costs decrease when increasing the

number of neighbors. The exact solution is not guaranteed to be obtained by

NLNM. However, NLNM with de-cranking can quickly find a near-exact solution

as shown in Table 4.3 and Fig. 4.4.

L

Figs. 4.5, 4.7 and 4.9 show the results of NLNM without de-cranking for

100 customers. Figs. 4.6, 4.8 and 4.10 show the results of NLNM with de-

cranking.

Fig. 4.5 shows a completely free cranking in the case in which the vehicle

visits all customers and returns to depot. In Figs. 4.8 and 4.10, crankies appear in

the routes because the re-arrangement depended on the objective function in

consideration of penalties. So, the de-cranking can reduce the cost space, not in

ordinary Euclidean space.

In Table 4.4, the cost of NLNM with de-cranking is reduced more than

that of NLNM. So, the NLNM with de-cranking is a more powerful means to get a

better solution than NLNM. However, the comparison results with exact solution

could not be shown in this dissertation because the computer took a long time in

the calculation of simulation.

The simulation of multiple vehicles is applied to 100 customers. To show

the effectiveness of NLNM with de-cranking in the multi-vehicle situation (case

1), = 1 is considered and the results are shown in Figs 27 and 28. Moreover, the

cost and computational time of simulation results with multiple vehicles are

summarized in Table 4.5 for three cases with changing number of vehicles.

L

 68

As a result, the cost of the objective function can be reduced by using the

NLNM with de-cranking more than NLNM, but the computation of NLNM with

de-cranking takes a longer time than that of NLNM. It is certain because time

operation of two heuristic procedures takes more time than just one. But if we

compare the computation time of NLNM with = 1,2 plus de-cranking operation

time with the highest time in the cases of just nine locations as in Tables 4.2 and

4.3, they has shorter computation time. These results are important and

remarkable to think about applying the de-cranking heuristic method and NLNM

with short length of .

L

L

More results with multi vehicle shown in here with total de-crossing to the

routes in Tables 4.6 – 4.8. It shows that the longer L might not effective in the

cases. With L = 1, we can get acceptable solution in a very short time. For

example, for VRP, in case 1 (Table 4.1), cost = 289.361 with computing time of

0.6 second in somewhat better the cost = 286.122 with computing time of 70.2

second. Case 2 and case 3 show the absolute advantageousness of NLNN with

= 1 combined with de-cranking procedure.

L

These methods also has effectiveness in dynamic context, and suitable for

high degree of dynamics. We can see the results highlighted from Tables 4.9 –

4.14 that the good solutions can get with number of vehicles less than 10 units

with both L = 1 and L = 2 and in all degree of dynamics. Except Table 4.9 and

4.12 to the case 1, with L = 1 and L = 2, which is just touring around the

locations without any costing but traveling cost, the require of vehicles is greater

than 12 units to get the good solutions, but these are minor cases and near the

 69

good solutions (indicated with star * beside the value) can be gotten with no

greater than 5 units.

 70

Chapter 5 Conclusions

In this dissertation, the de-cranking heuristic methods and NLNM have

been proposed to find a suboptimal routing solution for the vehicle routing

problem involving multiple vehicles. The de-cranking procedure applied to

solution routes from NLNM gives a better solution and takes a shorter

computation time than solutions involving long string neighbors from NLNM.

The proposed methods have been useful for adaptation to real VPR with

real-time scheduling. Also, the methods have been suitable for the DVRP with

multi-vehicles and high degree of dynamics.

In future, applying these methods to other combinatorial optimization

problems should do more tests.

 71

Published Papers:

[1] Kim, H.S. and Tran-Ngoc, H.S.(2009), “Nearest L - Neighbor Method with

De-crossing in Vehicle Routing Problem”, International Journal of Navigation and

Port Research, Vol. 33, No. 2, pp. 143~151.

[2] Kim, H.S. and Tran-Ngoc, H.S.(2009), “De-Cranking the Routes to Solve the

Dynamic Vehicle Routing Problem”, Technical Report, Department of Logistics,

Korea Maritime University.

[3] Kim, H.S. and Tran-Ngoc, H.S.(2009), “Modeling Vehicle Routing Problem

with Pair Pickup-Delivery Operations “, Conference of KINPR, pp. 149~150.

 72

Appendix:

a. Solomon Data

R101

VEHICLE
NUMBER CAPACITY
 25 200

CUSTOMER
CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

 0 35 35 0 0 230 0
 1 41 49 10 161 171 10
 2 35 17 7 50 60 10
 3 55 45 13 116 126 10
 4 55 20 19 149 159 10
 5 15 30 26 34 44 10
 6 25 30 3 99 109 10
 7 20 50 5 81 91 10
 8 10 43 9 95 105 10
 9 55 60 16 97 107 10
 10 30 60 16 124 134 10
 11 20 65 12 67 77 10
 12 50 35 19 63 73 10
 13 30 25 23 159 169 10
 14 15 10 20 32 42 10
 15 30 5 8 61 71 10
 16 10 20 19 75 85 10
 17 5 30 2 157 167 10
 18 20 40 12 87 97 10
 19 15 60 17 76 86 10
 20 45 65 9 126 136 10
 21 45 20 11 62 72 10
 22 45 10 18 97 107 10
 23 55 5 29 68 78 10
 24 65 35 3 153 163 10
 25 65 20 6 172 182 10
 26 45 30 17 132 142 10
 27 35 40 16 37 47 10
 28 41 37 16 39 49 10
 29 64 42 9 63 73 10
 30 40 60 21 71 81 10
 31 31 52 27 50 60 10
 32 35 69 23 141 151 10
 33 53 52 11 37 47 10
 34 65 55 14 117 127 10
 35 63 65 8 143 153 10
 36 2 60 5 41 51 10
 37 20 20 8 134 144 10
 38 5 5 16 83 93 10
 39 60 12 31 44 54 10
 40 40 25 9 85 95 10
 41 42 7 5 97 107 10
 42 24 12 5 31 41 10
 43 23 3 7 132 142 10

 73

 44 11 14 18 69 79 10
 45 6 38 16 32 42 10
 46 2 48 1 117 127 10
 47 8 56 27 51 61 10
 48 13 52 36 165 175 10
 49 6 68 30 108 118 10
 50 47 47 13 124 134 10
 51 49 58 10 88 98 10
 52 27 43 9 52 62 10
 53 37 31 14 95 105 10
 54 57 29 18 140 150 10
 55 63 23 2 136 146 10
 56 53 12 6 130 140 10
 57 32 12 7 101 111 10
 58 36 26 18 200 210 10
 59 21 24 28 18 28 10
 60 17 34 3 162 172 10
 61 12 24 13 76 86 10
 62 24 58 19 58 68 10
 63 27 69 10 34 44 10
 64 15 77 9 73 83 10
 65 62 77 20 51 61 10
 66 49 73 25 127 137 10
 67 67 5 25 83 93 10
 68 56 39 36 142 152 10
 69 37 47 6 50 60 10
 70 37 56 5 182 192 10
 71 57 68 15 77 87 10
 72 47 16 25 35 45 10
 73 44 17 9 78 88 10
 74 46 13 8 149 159 10
 75 49 11 18 69 79 10
 76 49 42 13 73 83 10
 77 53 43 14 179 189 10
 78 61 52 3 96 106 10
 79 57 48 23 92 102 10
 80 56 37 6 182 192 10
 81 55 54 26 94 104 10
 82 15 47 16 55 65 10
 83 14 37 11 44 54 10
 84 11 31 7 101 111 10
 85 16 22 41 91 101 10
 86 4 18 35 94 104 10
 87 28 18 26 93 103 10
 88 26 52 9 74 84 10
 89 26 35 15 176 186 10
 90 31 67 3 95 105 10
 91 15 19 1 160 170 10
 92 22 22 2 18 28 10
 93 18 24 22 188 198 10
 94 26 27 27 100 110 10
 95 25 24 20 39 49 10
 96 22 27 11 135 145 10
 97 25 21 12 133 143 10
 98 19 21 10 58 68 10
 99 20 26 9 83 93 10

100 18 18 17 185 195 10

 74

b. MATLAB Codes

%==%
% Coded by Tran Ngoc Hoang Son %
% Korea Maritime University %
% Department of Logistics %
% 2009 %
%==%
%---
function newSERVE=decranking(CUSLIST,SERVE,a,v,gamma)
 tempSERVE=SERVE;
 newSERVE=pluckingoff(CUSLIST,tempSERVE,a,v,gamma);

 while sumsqr(tempSERVE~=newSERVE)>0
 tempSERVE=newSERVE;
 newSERVE=pluckingoff(CUSLIST,tempSERVE,a,v,gamma);
 end
 newSERVE;
end
%---
function newSERVE=pluckingoff(CUSLIST,SERVE,a,v,gamma)
 newSERVE=SERVE;
 [r c]=size(SERVE);
 for i=1:c
 u=2;v=3;
 while u<r
 for v=u+1:r-1
 tempSERVE=newSERVE;
 s=u;t=v;
 while s<t
 tt=tempSERVE(s,i);
 tempSERVE(s,i)=tempSERVE(t,i);
 tempSERVE(t,i)=tt;
 s=s+1;t=t-1;
 end
 [newtime
newcost]=calculatetimeandcost4(CUSLIST,newSERVE,a,v,gamma);
 [temptime
tempcost]=calculatetimeandcost4(CUSLIST,tempSERVE,a,v,gamma);
 if tempcost(i)<newcost(i)
 newSERVE=tempSERVE;
 end
 end
 u=u+1;
 end
 end

end
%---

 75

%Nearest L-Neighbor Method
function [SERVE]=multivehiclerouting4(CUSLIST,a,v,k,L)
 UNSERVE=CUSLIST(2:length(CUSLIST),1)';
 SERVE=zeros(1,k);indexes=ones(1,k);
 len=length(UNSERVE);
 kth=1;
 while len>0
 if len>L
 [list time cost remain]=selectroutes5(CUSLIST, UNSERVE,
SERVE(indexes(kth),kth),a,v, L);
 else
 [list time cost remain]=selectroutes5(CUSLIST, UNSERVE,
SERVE(indexes(kth),kth),a,v, len);
 end

 SERVE=[SERVE;zeros(length(list),k)];
 SERVE(indexes(kth)+1:indexes(kth)+length(list),kth)=list;
 indexes(kth)=indexes(kth)+length(list);
 for u=1:k
 if u==kth
 continue;
 end
SERVE(indexes(u)+1:indexes(kth),u)=[SERVE(indexes(u),u)*ones(index
es(kth)-indexes(u),1)];
 indexes(u)=indexes(kth);
 end
 UNSERVE=remain;
 len=length(UNSERVE);
 kth= mod(kth,k)+1;
 end
end
%---
function [list time cost remain]=selectroutes5(CUSLIST, UNSERV,
cuscode, a,v,L)
 [row,col]=size(CUSLIST);
 %----initialize-----
 serve_time=0;
 serve_cost=0;

 x=2;
 gamma=[];

 len=length(UNSERV);

 if (len<L)
 % we can control this case by using this function with len
 end

 len=length(UNSERV);

 76

 mode=0;%dynamic travelling time mode =1
 [gammanextlist x]=gammagentor(x,L,mode);
 gamma=[gamma gammanextlist];

 index=[1:len];

 SERVE=[cuscode];
 k=1;
 r=L;
 seq=index(1:r);
 seq_index=[1:length(seq)];

SERVE_temp=addlist(SERVE,getvaluefromsequence(UNSERV,getvaluefroms
equence(seq,seq_index)),k,L);
% a=[1 0 0];v=1;
 [time
cost]=calculatetimeandcost4(CUSLIST,[SERVE_temp],a,v,[gamma]);

 OPTLIST=SERVE_temp;
 optlistcost=cost;
 optlisttime=time;
 optseq=seq;%should store for eliminating the served customers

 ff=1;
 while ff==1
 seq_index=[1:length(seq)];

 f=1;
 while f==1
SERVE_temp=addlist(SERVE,getvaluefromsequence(UNSERV,getvaluefroms
equence(seq,seq_index)),k,L);
 [time
cost]=calculatetimeandcost4(CUSLIST,[SERVE_temp],a,v,[gamma]);
 if sum(optlistcost)>sum(cost)
 OPTLIST=SERVE_temp;
 optlistcost=cost;
 optlisttime=time;
 optseq=seq;
 end

 [seq_index f]=permutation_next(seq_index);
 end
 [seq ff]=next_r_combination(seq,len);
 end

 %update SERVE list
 SERVE=OPTLIST;

 77

 %eliminate the served list in UNSERV
 for i=1:length(optseq)
 UNSERV(optseq(i)-i+1)=[];
 end

 remain=UNSERV;

 list=SERVE(2:length(SERVE));

 [time
cost]=calculatetimeandcost4(CUSLIST,[SERVE],a,v,[gamma]);

end
%---
function serve_next=addlist(serve,seqlist,k,L)
 serve_next=serve;
 for u=1:L
 serve_next=[serve_next;seqlist((u-1)*k+1:u*k)];%[x1y1z1
x2y2z2 xyz]
 end
end
%---
function [gamma x]=gammagentor(xo,step,mode)
 gamma_array=[-0.5:0.5:8];%planed speed
 if mode==0%planned speed
 x=2;
 for u=1:step
 gamma(u)=gamma_array(x);
 end
 return
 end
 m=17;
 a=3;
 x=xo;
 %gamma(1)=mod((a*x0),m);
 for u=1:step
 %x=mod((anpha*x),m);%case of dynamic travel time
 %x=2;%case of planned speed
 x=mod(a*x,m);
 gamma(u)=gamma_array(x);
 end
end
%---
function s=getvaluefromsequence(seq,seqindex)
 for k=1:length(seqindex)
 s(k)=seq(seqindex(k));
 end
 %return s;
end

 78

%---
function [time
cost]=calculatetimeandcost4(cuslist,serve,a,v,gamma)
%a=[1 1 1 1]; %weighting parameters
%V=1;% assume average velocity of vehicle, planned speed
%t=s/v, T=Tij(1+gamma), -0.5<=gamma<=inf. gamma=-0.5: goood
conditions, gamma=inf: bad conditions on road

 [row col]=size(serve);%rows contain sequence of served
customers
 cost=zeros(1,col);
 time=zeros(1,col);
 for u=2:row %along customers sequence
 for v=1:col %for each vehicle
 arrivetime=v\norm([(cuslist(serve(u,v)+1,2)-
cuslist(serve(u-1,v)+1,2)) ...
 (cuslist(serve(u,v)+1,3)-cuslist(serve(u-
1,v)+1,3))])*(1+gamma(u-1));%+variant time gamma
 %update x at each link->need to save sequence of x's
values for
 %comparasion between
 waitingtime=max(0, cuslist(serve(u,v)+1,5)-
(time(v)+arrivetime));
 servicetime=cuslist(serve(u,v)+1,7);
 time(v)=time(v)+arrivetime+waitingtime+servicetime;
 delaytime=max(0, time(v)-cuslist(serve(u,v)+1,6));

 cost(v)=cost(v)+...
 a(1)*arrivetime+...
 a(2)*waitingtime+...
 a(3)*delaytime;
 end
 end
end

%---
%find the next r combination
function [pnext f]=next_r_combination(p,n)
 l=length(p);

 pnext=n-l+1:n;
 if pnext==p
 f=0;
 return
 end

 k=l;
 while p(k)==n-l+k
 k=k-1;

 79

 end
 p(k)=p(k)+1;
 for s=k+1:l
 p(s)=p(k)+s-k;
 end
 f=1;
 pnext=p;
end
%---
%find the next permutation
function [pnext f]=permutation_next(p)
 n=length(p);
 if (p==sort([1:n],'descend')) %check last permutation n,n-
1,...,1
 f=0;
 pnext=p;
 return;
 end

 pcheck=sort(p);
 if (pcheck~=[1:n]) %check last permutation n,n-1,...,1
 f=0;
 pnext=p ;
 return;
 end

 pnext=p;

 j=length(p)-1;
 while ((p(j)>p(j+1)) && (j>0))
 j=j-1;
 end

 if j==0
 j=1;
 end

 k=n;
 while p(j)>p(k)
 k=k-1;
 end

 %swap(j,k);
 t=p(j);
 p(j)=p(k);
 p(k)=t;

 k=n;

 80

 m=j+1;
 while k>m
 %swap(k,m);
 t=p(k);
 p(k)=p(m);
 p(m)=t;

 k=k-1;
 m=m+1;
 end

 pnext=p;
 f=1;
end
%---
%find the previous permutation
function [pnext f]=permutation_prev(p)
 n=length(p);
 if (p==[1:n]) %check last permutation n,n-1,...,1
 f=0;
 pnext=p;
 ; return
 end

 pcheck=sort(p);
 if (pcheck~=[1:n]) %check last permutation n,n-1,...,1
 f=0;
 pnext=p;
 return;
 end

 pnext=p;

 j=length(p)-1;
 while ((p(j)<p(j+1)) && (j>0))
 j=j-1;
 end

 if j==0
 j=1;
 end

 k=n;
 while p(j)<p(k)
 k=k-1;
 end

 %swap(j,k);

 81

 t=p(j);
 p(j)=p(k);
 p(k)=t;

 k=n;
 m=j+1;
 while k>m
 %swap(k,m);
 t=p(k);
 p(k)=p(m);
 p(m)=t;

 k=k-1;
 m=m+1;
 end

 pnext=p;
 f=1;
end

 82

Bibliography

[1] Martello, S., Laporte, G., Minoux, M. and Ribeiro, C.(1987), "Surveys in

Combinatorial Optimization", Annals of Discrete Mathematics, Mathematics

Studies, North-Holland, Vol. 132, Chapter 5 and 9.

[2] Ball, M., Magnanti, T., Monma, C. and Nemhauser, G.(1995)a, "Handbooks in

Operation Research and Management Science – Network Model", Elsevier

Science, Vol.7.

[3] Ball, M., Magnanti, T., Monma, C. and Nemhauser, G.(1995)b, "Handbooks in

Operation Research and Management Science – Network Routing", Elsevier

Science, Vol.8.

[4] Horowitz, E. and Sahni, S.(1978), “Fundamentals of Computer Algorithms”,

Computer Science Press.

[5] Horowitz, E. and Sahni, S.(1983), “Fundamentals of Data Structures”,

Computer Science Press.

[6] Syslo, M.M., Deo, N. and Kowalik J.S.(1983), “Discrete Optimization

Algorithms with Pascal Programs”, Dover Edition.

[7] Ahuja, R.K., Magnanti, T.L. and Orlin J.B.(1993), “Network flows: theory,

algorithms and applications”, 1st edition, Prentice Hall.

[8] Gendreau, M., Laporte G. and Seguin R.(1996), “Stochastic vehicle routing”,

European Journal Of Operational Research, Vol. 88, pp. 3~12.

[9] Michalewicz (1996), “Genetic algorithms + data structures = evolution

programs”, 3rd edition, Springer.

 83

[10] Sipser, M.(1997), “Introduction to the Theory of Computation”, PWS

Publishing.

[11] Toth, P. and Vigo, D.(2002), “The Vehicle Routing Problem”, Society for

Industrial and Applied Mathematics (SIAM).

[12] Ichoua, S., Gendreau, M. and Potvin, J.Y.(2003), “Vehicle Dispatching with

Time-Dependent Travel Times”, European Journal of Operational Research, Vol.

114, pp. 379~396.

[13] Montemanni, R. Gambardella, L.M., Rizzoli, A.E. and Donati, A.V.(2005),

“Ant colony system for a dynamic vehicle routing problem”, Journal of

Combinatorial Optimization, Vol. 10, pp. 327~343.

[14] Haghani, A. and Jung, S.(2005), "A Dynamic Vehicle Routing Problem with

Time-Dependent Travel Times", Journal of Computers & Operations Research,

Vol. 32, pp. 2959~2986.

[15] Hashimoto, H., Ibaraki, T., Imahori, S. and Yagiura, M.(2006), "The Vehicle

Routing Problem with Flexible Time Windows and Travelling Times", Journal of

Discrete Applied Mathematics, Vol. 154, pp. 2271~2290.

[16] Fabri, A. and Recht, P.(2006), “On Dynamic Pickup and Delivery Vehicle

Routing with Several Time Windows and Waiting Times”, Journal of

Transportation Research Part B, Vol. 40, pp. 335~350.

[17] Hanshar, F.T. and Ombuki-Berman, B.M.(2007), “Dynamic vehicle routing

using genetic algorithms”, Applied Intelligent, Vol. 27, pp. 89~99.

 84

[18] Chitty, D.M. and Hernandez, M.L.(2004), “A hybrid ant colony optimization

technique for dynamic vehicle routing”, Book chapter, Genetic and Evolutionary

Computation – GECCO 2004, pp. 48-59.

[19] Zeimpekis, V. and Giaglis, G.M.(2005), “A Dynamic Real-Time Vehicle

Routing System for Distribution Operations”, Consumer Driven Electronic

Transformation, Springer.

[20] Fan, J., Wang, X. and Ning, H.(2006), “A Multiple Vehicles Routing

Problem Algorithm with Stochastic Demand”, The Sixth World on Intelligent

Control and Automation WCICA.

[21] Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E.(2003), “Design and

Managing the Supply Chain: Concepts, Strategies and Case Studies”, McGraw

Hill.

[22] Solomon data, http://www.idsia.ch/~luca/macs-vrptw/problems/welcome.htm

[23] Shin, J.H., Chang, M.H., and Yu, S.J.(2008), “A Study on RTLS Technology

based YT Dynamic Operation for Efficiency of Container Terminal”, Journal of

Navigation and Port Research, Vol. 32, No. 5, pp. 369-377.

[24] Shin, J.H., Yu, Yu, S.J., Chang, M.H.(2008), “A Study on Optimized

Decision Model for Transfer Crane Operation in Container Terminal”, Journal of

Navigation and Port Research, Vol. 32, No. 6, pp. 465-471.

[25] Shin, J.Y. and Oh, S.I.(2008), “Vehicle Routing Problem for delivering

containers using combined chassis trailers”, Conference of KINPR 2008, pp. 155-

156.

 85

http://www.springerlink.com/content/ek1txv4hynxf/?p=59e0e6c3ffd6407cae1752f6fe4e8dd2&pi=0
http://www.springerlink.com/content/ek1txv4hynxf/?p=59e0e6c3ffd6407cae1752f6fe4e8dd2&pi=0
http://www.springerlink.com/content/kn3651/?p=37ef18d20d5e448fa74e529e75598d49&pi=0
http://www.springerlink.com/content/kn3651/?p=37ef18d20d5e448fa74e529e75598d49&pi=0
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(jianhua%20fan%3cIN%3eau)&valnm=Jianhua+Fan&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20xiufeng%20wang%3cIN%3eau)&valnm=+Xiufeng+Wang&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20hongyun%20ning%3cIN%3eau)&valnm=+Hongyun+Ning&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=11210
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=11210
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20hongyun%20ning%3cIN%3eau)&valnm=+Hongyun+Ning&reqloc%20=others&history=yes

[26] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. and Wu, A.

Y.(1994), “An Optimal Algorithm for Approximate Nearest Neighbor Searching

in Fixed Dimensions”, Journal of the ACM, Vol. 45, No. 6, pp. 891-923.

[27] Russell, S., and Norvig, P.(2003), “Artificial Intelligence: A Modern

Approach”, Prentice Hall, American.

[28] Michalewicz, Z., and Fogel, D.(2004), “How to Solve It: Modern Heuristics”,

Second, Revised and Extended Edition, Springer, Germany.

[29] Larsen, A.(2000), The Dynamic Vehicle Routing Problem. PhD dissertation,

Technical University of Denmark.

[30] Ichoua, S., Gendreau, M. and Potvin, J.V.(2000),), “Diversion Issues in

Real-Time Vehicle Dishpatching”, Transportation Science, Vol. 34, No. 4, pp.

426~438.

[31] Berman, O. Larson, R.C.(2001), “Deliveries in an Inventory/Routing

Problem Using Stochastic Dynamic Programming”, Transportation Science, Vol.

35, No. 2, pp. 192~213.

[32] Kenyon, A.S. and Morton, D.P.(2003), “Stochastic Vehicle Routing with

Random Travel Times”, Transportation Science, Vol. 37, No. 1, pp. 69~82.

[33] Taniguchi, E. and Shimamoto, H.(2004), “Intelligent Transportation System

Based Dynamic Vehicle Routing and Scheduling with Variable Travel Times”,

Transportation Research – Part C, Vol. 12, No. 3 – 4 , pp. 235~250.

[34] Branke, J., Midendorf, M., Noeth, G. and Dessouky, M.(2005), “Waiting

Strategies for Dynamic Vehicle Routing”, Transportation Science, Vol. 39, No. 3,

pp. 298~312.

 86

 87

[35] Hvattum, L.M., Løkketangen, A. and Laporte, G.(2006), “Solving a Dynamic

and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging

Heuristic”, Transportation Science, Vol. 40, No. 4, pp. 421~438.

[36] Hvattum, L.M., Løkketangen, A. and Laporte, G.(2007), “A Branch-and-

Regret Heuristic for Stochastic and Dynamic Vehicle Routing Problems”, Wiley

Periodicals of Networks, Vol. 49, No. 4, pp. 330~340.

[37] Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.(2003), “Real-time

Vehilcle Routing: Solution Concepts, Algorithms and Parallel Computing

Strategies”, European Journal of Operational Research, Vol. 151, pp. 1~11.

[38] Hamming, R.(1991), “The Art of Probability”, Addition Wesley.

[39] Sauer, T.(2006), “Numerical Analysis”, Addition Wesley.

My wonders of love and life:

Lost-found-named my Unkyon (은견), is that destiny?

-No, that is not, that is just a causal progress!

Do grief and torment blend with recognized long time waiting love?

-Yes, a lot! Astonishing emotion of love!

Is that really happy or just a sensation stage people would pass?

-Maybe both!

What is a PhD?

Plagiarist will never be a PhD! If were, shame on you!

Just original self-finding one could be…

Cảm ơn ba má…

	Chapter 1 Introduction
	1.1 Introduction
	1.2 Outline of the Dissertation

	Chapter 2 Vehicle Routing Problem: Static and Dynamic
	2.1 Introduction
	2.2 Static VRP
	2.3 Dynamic VRP
	2.3.1 Dynamic of Unknown Customers
	2.3.2 Dynamic of Travel Times

	Chapter 3 Solving the VRPs
	3.1 Introduction
	3.2 Set Theory and Order Relation
	3.3 Mapping
	3.4 Permutation and Combination
	3.5 Multi-branch Tree and Traversal
	3.6 Exact Methods
	3.7 Heuristics
	3.7.1 Nearest L-Neighbor Method
	3.7.2 De-Crossing
	3.7.3 De-Cranking

	Chapter 4 Simulation
	4.1 Simulation Conditions
	4.1.1 Solomon Data
	4.1.2 Define Conditions

	4.2 Simulation Results
	4.2.1 VRP
	4.2.2 DVRP

	4.3 Comments and Remarks

	Chapter 5 Conclusions
	Published Papers:
	Appendix:
	a. Solomon Data
	b. MATLAB Codes

	Bibliography

<startpage>15
Chapter 1 Introduction 1
 1.1 Introduction 1
 1.2 Outline of the Dissertation 6
Chapter 2 Vehicle Routing Problem: Static and Dynamic 8
 2.1 Introduction 8
 2.2 Static VRP 8
 2.3 Dynamic VRP 16
 2.3.1 Dynamic of Unknown Customers 17
 2.3.2 Dynamic of Travel Times 18
Chapter 3 Solving the VRPs 21
 3.1 Introduction 21
 3.2 Set Theory and Order Relation 22
 3.3 Mapping 23
 3.4 Permutation and Combination 25
 3.5 Multi-branch Tree and Traversal 27
 3.6 Exact Methods 28
 3.7 Heuristics 28
 3.7.1 Nearest L-Neighbor Method 28
 3.7.2 De-Crossing 31
 3.7.3 De-Cranking 34
Chapter 4 Simulation 39
 4.1 Simulation Conditions 39
 4.1.1 Solomon Data 39
 4.1.2 Define Conditions 41
 4.2 Simulation Results 42
 4.2.1 VRP 43
 4.2.2 DVRP 56
 4.3 Comments and Remarks 68
Chapter 5 Conclusions 71
Published Papers: 72
Appendix: 73
 a. Solomon Data 73
 b. MATLAB Codes 75
Bibliography 83</body>

