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Study on the Compensation Algorithm for
Inertial Navigation System

Graduate School of Korea Maritime Univer sity
Department of Far East L ogistics

Duy Anh Nguyen

Abstract

This paper describes a method that how a relaticelmpensate the
position errors in the using of low cost Inertiaédsurement Unit (IMU) has been
evaluated and compared with the well establishethodebased on a Kalman
Filter (KF). The compensation algorithm for IMU Hasen applied to the problem
of integrating information in Inertial NavigatiorySiem (INS). The KF is used to
estimate and compensate the errors of an INS log tise integrated INS velocity

and position, respectively.

First by using Kalman Filter, we try to reduce s®bf acceleration data,
where two of an acceleration, constant drift andogledrift, are considered. With
the constant drift, it depends on sensor and iagbwkeeps on constant error.
When using double integration for calculates distaand velocity, these kinds of

drifts can make increasing velocity and positioroes. So, we tried to find these



errors and used constant compensation algorithntdarpensation of errors in

data.

Second, external environment circumstance is athogdinarily. Almost
of them can be changed on periodic time. The aeedaiff can be obtained during
constant periodic time. And use this value, we merswith a factor as a periodic
external disturbance which affects to the exacttipms We used a repetitive
method to reduce the external environment change.Vfified the proposed

algorithm by simulation results.



Chapter 1. Introduction

1.1 Background and Objective

Over the years, there has been a major upsurgeesést in the integrated
global positioning system (GPS) and inertial natiagasystem (INS) as a cost-
effective way of providing accurate and reliablevigation aid for civil and
military vehicles (ships, aircraft, land vehiclesid etc) (Britting 1971, Chui and
Chen 1987, Farrell and Barth 1998, Loebis et.&0420

The Global Position Systems (GPS) and Inertial biavon Systems (INS)
are widely used for position and attitude detertama applications. When
combined together, GPS and INS provide many conguitary characteristics
that overcome the limitations experienced when gigiach sensor individually.
The primary restriction in the proliferation of $utechnology into a broader
range of applications is the high cost of the iaersensors. A low cost IMU
(Inertial Measurement Units) that can be integratéith GPS are now available
for approximately $5000 or less. However, they esuffom large sensor errors
such as biases and scale factor errors. Anoth&tgmoexperienced with low cost
sensors is that the error sources are not stalléave to be constantly calibrated

using GPS updates.

For auto sailing system in the sea, generally a @P&ry useful for
measuring the exact position, because of no olestastveen ship and satellite.
But, the GPS module suffers a large bound of mgosiérror. Also, when the ship

is passed through in the sea-pollution area, itireg a precise auto sailing system.



However, for measuring precise position, also tN& Idevice needs a high

resolution and high price of GPS module.

To overcome these errors, the phi-angle approadipanangle approach
(Benson 1975, Bar-ltzhack 1981, 1988) have propd3ed that solution requires
a small attitude error. In many case, the requirgran not satisfied for low cost
inertial measurement whose sensitivity is not ehotggmeasure the earth rate.
Thus, the INS error models with small angle asswnptan not satisfy in given
accurate and performance for the navigation systgmlow cost IMU.

GPS and INS sensors are typically combined usitig Malman filter. The
Kalman filter requires a dynamic model to desctibe way in which the errors
develop over time, and a stochastic model to desdhe noise characteristics of
each sensor. The standard inertial navigation syseror model is generally

considered to be sufficient to model the inertyatem.

1.2 Inertial navigation system

Generally, the INS includes two modules: alignmenbdule and
navigation module. From these modules, any errarsither the alignment
module or the navigation module will be integraged will propagate over time.
The performance and the navigation accuracy ofli& are determined by its

errors.

IMU (Inertial Measurement Unit) is assumed to imdua set of three
orthogonal installed accelerometers and three gahal installed gyros. The
standard IMU is shown ifig. 1. By install their sensors with vehicle body, this
kind of INS is called strap-down INS. For implematidn, the INS should



overcome to the unbounded growth in the positioth ttwe velocity errors due to

the integration of inertial measurements that welhtain various forms of error.

Also, alignment module and navigation module acduithed in INS. From
the accelerometers and the gyros, the measuredadatmputs to the INS. In
consideration of installation of accelerometers aylos, the measured data
should be converted to base position in INS. By-atignment of accelerometers
and gyros, the error of alignment will be integdata obtaining velocities and
positions.

b
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Fig. 1 An IMU installed in a vehicle

In navigation module, there compensates the graaitg non-gravity
acceleration sensors, and transforms to the caaelirsystem. From the
transformed data, double integral calculation viné# done for obtaining the
position. In this case, bias factor, integratiomoer zeros setting and other
environment changes will be integrated togethesoAthe signal of acceleration

sensor is passed through filter and amplifier. @beeleration signal includes the



infinitesimal drift in steady state. So it makesiaimense position error in case

that the drift passed by double integral calcutafar converting to position.

In this thesis, an INS compensation (Periodic D@ftmpensation and
Constant Drift Compensation Gain) algorithm for cawgailing system was
proposed. A low cost IMU (Inertial Measurement Ymitas used for measuring
the acceleration. To develop the compensation ifthgor we used a repetitive
method to reduce the external environment changedsvarified the proposed
algorithm by using experiment results. First, waate the basic INS algorithm
with IMU and show that how to compensate the eafoposition by using low
cost IMU. Second, in considering the ship’s chaastic and ocean environments,
we consider with a factor as a periodic externatwbance which effects to the

exact position. The computer simulations were edraut by using MATLAB.



Chapter 2. The Kalman Filter and
Application in INS

2.1 TheKaman filter

It is an extremely effective and versatile procedtor combining noisy
sensor outputs to estimate the state of a systein wmcertain dynamics. The

Kalman filter useful for reduce the noise in foll®wase:

1 The noise of sensors may include in GPS receivedsiertial
sensors (accelerometers and gyroscopes, typieddly)there include speed
sensors (e.g., wheel speeds of land vehicles, wpt®d sensors for ships,

air speed sensors for aircraft, or Doppler radary, time sensors (clocks).

1 The system state in question may include the mositvelocity,

acceleration, attitude, and attitude rate of aalehon land, at sea, in the
air, or in space, but the system state may incladeillary nuisance
variables for modeling correlated noise sources.,(eGPS Selective
Availability timing errors) and time-varying paratees of the sensors,
such as infinitive active position system scaledgcoutput bias, or (for

clocks) frequency.

1 Uncertain dynamics includes unpredictable distucbarof the host
vehicle, whether caused by a human operator orhbyntedium (e.g.,
winds, surface, currents, turns in the road, aiaterchanges), but it may

also include unpredictable changes in the senganpaers.



The Kalman filter maintains 2 types of variables

First is estimated state vector. the componentghef estimated state vector

include the following:

The variables of interest (i.e., we want or needrtow, such as position

and velocity).

Nuisance variables that are of no intrinsic inteleg may be necessary to
the estimation process. These nuisance variablgsmolde, for example
the selective availability errors of the GPS sagdl We generally do not
wish to know their values but may be obliged taugklte them to improve

the receiver estimate of position

The Kalman filter state variables for a specifiplagation must include all

those system dynamic variables that are measubgtilee sensors used in
that application. For example, a Kalman filter farsystem containing
accelerometers and rate components do not have tihdse along the
sensor input axes, however. The Kalman filter stat@ables could be the
components along locally level earth-fixed coortiisa even though the

sensors measure components in vehicle-body-fixeddomates.

In similar fashion, the Kalman filter state variebl for GPS-only
navigation must contain the position coordinateshef receiver antenna,
but these could be geodetic latitude, longitudel, @titude with respect to
a reference sphere, or ECEF Cartesian coordinatdsC| coordinates, or

any equivalent coordinates.

Second is a Covariance Matrix: a Measure of estimatincertainty. The

equations used to propagate the covariance matlletively called the Riccati



equation) model and manage uncertainly takingactmunt how sensor noise and

dynamic uncertainty contribute to uncertainty alibetestimated system state.

By maintaining an estimate of its own estimatiorcenminty and the
relative uncertainty in the various sensor outpthg, Kalman filter is able to
combine all sensor information optimally, in thexse that the resulting estimate
minimumizes any quadractic loss function of estiomaterror, including the
mean-squared value of any linear combination ofsthée estimation errors. The
Kalman gain is the optimal weighting matrix for deiming new sensor data with

a prior estimate to obtain a new estimate.

The Kalman filter is a two-step process, the stepswhich we call
prediction and correction. The filter can starthaeither step, but we will begin
by describing the correction step first. The carggcstep makes corrections to an

estimate, based on new information obtained froms@emeasurements.

The derivation begins with background on propertigs Gaussian
probability distributions and Gaussian likelihoath€tions, then development of
models for noisy sensor outputs and a derivatiorthef associated maximum-
likelihood estimate (MLE) for combining prior esttes with noisy sensor

measurements.

The rest of the Kalman filter is the predictionpster which the estimate
and its associated covariance matrix of estimatiocertaintyP are propagated
from one time epoch to another. This is the parenehthe dynamics of the
underlying physical processes come into play. Thte of a dynamic process is a
vector of variables that completely specify enowdtihe initial boundary value
conditions for propagating the trajectory of thena@wyic process forward in time,

and the procedure for propagating that solutionvéod in time is calledstate



prediction. The model for propagating the covariance matrix estimation

uncertainty is derived from the model used for pggting the state vector.

In this section, the method of using Kalman filier described. The
Constant Drift Compensation and Periodic Drift Cemgation method are also
reviewed. To apply Kalman filter for estimationgetlerror model based is used.
More details can be seen in B. Boberg and S.L. &vider (2002). The state

equations can be written in the following form

VNYD _ vé tanL

Vy = fy —2Qve sinl + 1

N N E R+h R+h @)

o _ vp vy tank

Vg = fg +2Q(vy sinL +vp cod prvp———— (2)

R+h

y f 2Q L WE Vﬁ' + 3)

Vn = fy —2Qv cosL - .

b~'D E R+h R+h <
Vv

- 'N

L= 4)
R+h

, Vv

i=_ E (5)
(R+ h)cosL

h=-vp (6)

where,vN Vg and vp are the components of the vehicle's velocity wecto

relative to the earth,. and A are the latitude and longitude, respectivélyis the
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height of the vehicle over the earth's surfedeis the earth angular speed, and

Ris the radius of the earth. The specific force commt,fN, fDand fe are
considered input signals.

Similarly in B. Boberg and S.L. Wirkander (20029, tcompare the two
methods we will use the Kalman estimation algorithmt for the discrete time

case to estimate the INS error from an error mbdséd. In this case, we consider

the model
X(t +1) = Ax(t) + Bu(t) + Bw(t) (7
y(t) = Cx(t) + v(t) (8)

wheret is the time,x and y are the state and the measurement vecfyr8.and

C are the system matrices. andv are discrete white noise.

The block diagram below shows how to generate iat& and filtered

outputs.
> Kalman .
¥ e ™ Y,
U —L pO—p| Plant ) g /filter
Process noise Sensor noise

Fig. 2 Block Kalman filter
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2.2 Acceleration sensors

All acceleration sensors used in inertial navigatsystem are generally
called accelerometers. These kinds of acceleration sensors are usedtfoar
purposes which include bubble levels (for measuttiregdirection of acceleration),
gravimeters (for measuring gravity fields), andses@meters (used in seismic
prospecting and for sensing earthquakes and undend explosions). From now

we will show the accelerometer sensors.

Accelerometer Types. Accelerometers used for inertial navigation depem
Newton's second law (in the forfh=ma) to measure accelerationa( by
measuring force ), with the scaling constantn{) called proof mass. These

common origins still allow for a wide range of sendesigns.

ma

Fig. 3 Precession due to mass unbalance

12



Gyroscopic Accelerometers. Gyroscopic accelerometers measure acceleration
through its influence on the precession rate ofassyunbalanced gyroscope, as
illustrated inFig. 3. If the gyroscope is allowed to process, themigteprecession
angle change (integral of precession rate) wilpbeportional to velocity change
(integral of acceleration). If the gyroscope isgteed to prevent precession, then
the required torque will be proportional to thetdibing acceleration. A pulse-
integrating gyroscopic accelerometer (PIGA) usesatable torque pulses, so that
pulse rate is proportional to acceleration and gadbe is equivalent to a constant
change in velocity (the integral of acceleratioByroscopic accelerometers are
also sensitive to rotation rates, so they are weabst exclusively in gimbaled

systems.

Pendulous Accelerometers: Pendulous accelerometers use a hinge to support t
proof mass in two dimensions, as illustratedrig. 4a, so that it is free to move
only in the input axis direction, normal to tpaddle surface. This design requires
an external supporting force to keep the proof nfimes moving in that direction,
and the force required to do it will be proportibt@athe acceleration that would

otherwise be disturbing the proof mass.

Force Rebalance Accelerometers: Electromagnetic accelerometers (EMAS) are
pendulous accelerometers using electromagnetie favckeep the paddle from
moving. A common design uses a voice coil attadbeitie paddle and driven in
an arrangement similar to the speaker cone driygermanent magnet speakers,
with the magnetic flux through the coils providedgermanent magnets. The coil
current is controlled through a feedback servo loapuding a paddle position
sensor such as a capacitance pickoff. The cumethis feedback loop through the
voice coil will be proportional to the disturbingaeleration. For pulse-integrating
accelerometers, the feedback current is suppliedisorete pulses with very

repeatable shapes, so that each pulse is propairtma fixed change in velocity.

13



An up/down counter keeps track of the net pulsenttaetween samples of the

digitized accelerometer output.

Integrating Accelerometers. The pulse-feedback electromagnetic accelerometer
is an integrating accelerometer, in that each palgput corresponds to a constant
increment in velocity. Thdrag cup accelerometer illustrated Fig. 5 is another
type of integrating accelerometer. It uses the sphysical principles as the drag
cup speedometer used for half a century in autolembconsisting of a rotating
bar magnet and conducting envelope (the drag cumnted on a common
rotation shaft but coupled only through the eddsyrent drag induced on the drag
cup by the relative rotation of the magnet. (Thsigie includes a magnetic circuit
return ring outside the drag cup, not shown in thistration.) The torque on the
drag cup is proportional to the relative rotati@terof the magnet. The drag cup
accelerometer has a deliberate mass unbalance eordrlg cup, such that
accelerations of the drag cup orthogonal to thesmashalance will induce a
torque on the drag cup proportional to acceleratidre bar magnet is driven by
an electric motor, the speed of which is servoeke&p the drag cup from rotating.
The rotation rate of the motor is then proportiotalacceleration, and each
revolution of the motor corresponds to a fixed eélochange. These devices can
be daisy chained to perform successive integral® df them coupled in tandem,
with the drag cup of one used to drive the magh#teother, would theoretically
perform double integration, with each motor driegalution equivalent to a fixed

increment of position.

Strain-Sensing Accelerometers: The cantilever beam accelerometer design illus-
trated inFig.4b senses the strain at the root of the beam reguttim support of
the proof mass under acceleration load. The surda@en near the root of the

beam will be proportional to the applied accelemtiThis type of accelerometer

14



can be manufactured relatively inexpensively udtigMS technologies, with an

ion-implanted piezoresistor pattern to measureaserstrain.

I

v
W7

il 1R
||H i bk el
s WL T i ATHIL R L
3

(a) Pendulus Accelerometer (b) Beam Accelerometer

Fig. 4 Single-axis accelerometers

Fig. 5 Drag cup accelerometer

15



/ _ InpuT ACCEL. I//
/ " DIRECTION %
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7 /

Fig. 6 Single-axis vibrating wires accel erometer.

Vibrating-Wire Accelerometers: The resonant frequencies of vibrating wires (or
strings) depend upon the length, density, andielashstant of the wire and on
the square of the tension in the wire. The motiohshe wires must be sensed
(e.g., by capacitance pickoffs) and forced (e.glecteostatically or
electromagnetically) to be kept in resonance. Theesvcan then be used as
digitizing force sensors, as illustratedRig. 6. The configuration shown is for a
single-axis accelerometer, but the concept can »yareled to a three-axis

accelerometer by attaching pairs of opposing wirgbree orthogonal directions.

In the push-pull configuration shown, any lateral accelerationhaf proof
mass will cause one wire frequency to increase #uad other to decrease.
Furthermore, if the preload tensions in the wires servoed to keep the sum of
their frequencies constant, then the differencgueacy

et ~ Hight? —TZ, )
Yeit ™ Hight

16



Both the difference frequencycqeﬂ—a)right and the sum frequency

Y oft +wright (used for preload tension control) can be obtaimgdnixing and

filtering the two wire position signals from thesomance forcing servo loop. Each
cycle of the difference frequency then correspotoda constant delta velocity,
making the sensor inherently digital.

Accelerometers cannot measure gravitational acceleration. An
accelerometer effectively measures the force aamgs proof mass to make it
follow its mounting base, which includes only namegtational accelerations
applied through physical forces acting on the INBowgh its host vehicle.

Satellites, which are effectively in free fall, @pence no sensible accelerations.

Accelerometers have scale factors, which are the ratios of input
acceleration units to output signal magnitude uriésy., meters per second
squared per volt). The signal must be rescalechénravigation computer by

multiplying by this scale factor.
2.3 Acceleration problems

Accelerometers cannot measure gravitational acueder An
accelerometer effectively measures the force acmgfs proof mass to make it
follow its mounting base, which includes only namegtational accelerations
applied through physical forces acting on the INBowgh its host vehicle.
Satellites, which are effectively in free fall, e@nce no sensible accelerations.

Accelerometers have scale factors, which are thiosraof input
acceleration units to output signal magnitude urésy., meters per second
squared per volt). The signal must be rescalechénravigation computer by

multiplying by this scale factor.

17



Gravitational accelerations must be modeled ancutsked in the
navigational computer, then added to the sensezlaaation (after error and scale

compensation) to obtain the net acceleration ofiX&
Accelerometers hawautput errors, including:
1 Unknown constantffsets, also callediases;
1 Unknown constardcale factor errors;
1 Unknown sensor inpuxis misalignments;
1 Unknownnon-constant variations in bias and scale factor; and

1 Unknown zero-mean additive noise on the sensor outputs,
including quantization noise and electronic noiBlee noise itself
is not predictable, but its statistical properi@e used in Kalman
filtering to estimate drifting scale factor an@$es.

24 Application in INS

The time-varying Kalman filter is a generalizatiohthe steady-state filter
for time-varying systems or LTI systems with noatsmary noise covariance.
Given the plant state and measurement equatioms(@y (8) the Kalman filter is
designed as in B. Boberg and S.L. Wirkander (2002).

Input signals include white noise and measuringagewoise. By using
Kalman Filter, we can receive the output-filtereidnsals. We using double
integration for calculating the distance and veigdhese kinds of drifts can make
the increasing the position error dramatically. vé@ use two methods: constant
compensation algorithm and periodic compensatigarahm, for reducing errors
in velocity and position. That method will showniaxt chapter.

18



Chapter 3. Design Method for Drift

Compensation Gain

The drift of accelerometer is generated by itswritstance and it can be
divided into two cases: constant drift and periodidt. The constant drift is
depended on the circumstance of sensor inside gpicbk constant condition. But
the outside circumstance will be changed with logg@iency, which affected by
seasonal, day and night, temperature, and atmaspgtresssure etc. When using
double integration for calculating the distancesstihkinds of drifts can make the
increasing the position error dramatically. Alsoewmhusing ISN module, it's
certainly have errors. The errors consist of défgrcombinations of white noise
components and constant components. So we try ® amstant drift

compensation and periodic drift compensation teestiat problem.
3.1 Design method for constant drift compensation gain

The data we get from accelerometer included whitsenand measuring
device noise. First time, we use Kalman filter feduces that noise. When we
using double integration for calculating the dis&rand velocity, the position
errors can make and increasing. So we try to fihd tonstant drift of

accelerometer and compensation that problem

For compensating the constant drift of accelerometiee following
algorithm will be used generally.

Stepl: Acquire the acceleration sensor values with doiftx, y and z axes,

respectively.

19



ay = ay +day (10)

where a, denotes original acceleration sensor value aag denotes an

accelerometer value with drift ax axis, respectively.

Step 2: Calculate the velocity by using numerical intégnathod.
t+1
Uy (t+1)= { ay ()dr +Vy (t) (11)
Step 3: Compensate the drift for velocity

Vy (t+1) =Vy (t +1)+dy, (12)

Step 4: Calculate the position by using numerical intégnathod.
t+l
X(t+1)= { Vy (T)dT +X(t) (13)

Step 5: Compensate the drift of position

x(t+1):>‘<(t+1)+dIo (24)

In the above algorithm, the drift can be compertshteon-line calculation,

thus vy and X can be obtained respectively, where an accumufatsdion error

will be reduced by small sampling time, but compiateal error will be increased.

To obtain design method for the drift compensatyams d,, anddp, we will

show two methods: constant compensation algorithchgeriodic compensation

algorithm.

20



If the drift of accelerometer included into origirsagnal, then the average
drift can be obtained during constant periodic tii8e the original signal can be

estimated by drift compensation method from thesuesad signal with drift value.

For this, the accelerometer should be installedt@ady state and obtain
the accelerometer data during constant periodie.tiinom these data, the velocity

drift dy, and position driftdp are calculated, respectively. At this time, the

accelerometer should be leaved from the externalitistance changes with long
experimental time. But, the constant drift compénsaalgorithm is not useful

when the circumstance is changed or the type aflammeter is changed.

In constant compensation algorithm, after usingréal Filter for reduced

noise from accelerometer and measuring device heveecan calculate, and

compensate for velocity and position by velocitiftdd,, and position driftl D

3.2 Design method for Periodic drift compensation gains

Generally, the external environment circumstancdl Wwe changed
ordinarily. Almost these kinds of circumstances banchanged on periodic time
such as, seasonally, day and night, or tide et¢thdtsame time, the average drift
can be obtained during constant periodic time aseduhis value, when drift

includes into original signal.

On the other hand, in auto pilot system for sHig, mnavigation module is
used GPS system for detecting the position, buiadlgtthe GPS has position
error and it depends on the weather condition.cBarpensation of the GPS signal,
some time there uses an IMU. In this case, thegpdition such as tide, wind or
sea surface condition etc. can affect to navigatbip. Under the general

assumption, the ship can be moved by sinusoidaéwéhere tide or wind affects

21



to the ship sailing in periodically. From these dibions, we can make a periodic

drift compensation algorithm by following procedure

An INS compensation (Periodic Drift Compensatiorgoathm for auto
sailing system was proposed. The main procedurdetogn the periodic drift

compensation algorithm can be briefly describethadollowing
In Fig. 7, the parametersy, and ap denote the velocity and position

errors compensation gains amg, and ,Bp denote the periodic compensation

gains for velocity and position errors, respeciivel

period
.
compensation BV’BP
Compensated
Data + + data
— @ a0,
» e—Ls e—Ls

Fig. 7 Block Diagram of Periodic Drift Compensation
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< Procedurefor Calculation of Periodic Compensation

Gains >

Step 1. Calculate the natural frequency and its magnitémte accelerometer

circumstance b¥FT method.

Step 2: From theFFT results, decide the dominant frequercgf accelerometer.
Step 3: Make periodicL data table from decided dominant frequency modes.
Step 4: Initialization of periodicL data table.

Step 5: Calculate the velocity drift compensation gain

dy (t+1) = B, (max(peak )+ min(eak ))/ <

a1, (T (1+1)=Ty (t+1-L)=d) ) (4

where max(peak ) and min(peak) denote the maximum and minimum value from

obtained acceleration sensor data, respectively.

Step 6: Calculate the position drift compensation gain

dp(t+1) = Bp (max(peak }+ min(oeak )) /2

+ap(Y(t+D)-y(t+1-L)-dp ) (16)

In the above procedure, the step 5 and 6 will beutated by periodically on the
calculation routine. And the calculated values stidnd saved and used it in next

calculation.
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Chapter 4. Implementation and Results

4.1 Using Kalman filter and IMU bias

We have considered accelerometer data from actelersignals. For our
experiments, th&rossbow-CXL10LP3 accelerometer was used. T@eossbow-
CXL10LP3 can measure both dynamic acceleration (e.g., wratand static
acceleration. The sampling time was 0.01[s], anditita in steady state for 60[s].
Output signals of the accelerometer are analog lsignéiose voltages are
proportional to acceleration in each axis, respetti The accelerometers output
can be measured directly with A/D converter insidentieroprocessor. UART of
the microprocessor get the accelerometer datarandnits them to computer by

serial port. The microprocessor used in data atenss ATMEL ATmegal28L.

First time, we assumed the accelerometer do nwmioiee. We tried to find
the constant drift of accelerometer when environneennot change. From that
condition, the data of accelerometer received. Botmally the data of
accelerometer also included noise from acceleram@easuring device) and
white noise. By using Kalman filter, we can reducihgit noise and find the
errors of sensor. When using double integratiorcédculating the distance, these
kinds of drifts can make the increasing the posigoror dramatically. We could
find the constant drift and reduced their errorsfddiow our method which last
chapter we showed. With the bias drift problem, thessrs would be
accumulated and the accuracy is deteriorated asitinoteases due to integration.

The data including acceleration input and white @aige given irfFig.8.
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Fig.8 Accelerometer value included noise
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Fig.9 Accelerometer value after using Kalman filter
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Applying Kalman Filter, the accelerometer data caglduce white noise

and measuring device. Their results are giveRig®©. After using Kalman filter,

the distance and the velocity could be calculatgdiding double integrals. The

result of distance and velocity without bias comjpadios is shown irFig.10. In

Fig.10, we observe that the errors of distancexqny and z axes increased so

high value. We have to reduce that error by follow method. We find the

constant compensation value for velocity and d#amhe results are show as

table 1.

Distances[m]

Velocity without bias compensation

O ., = :_v‘_hl T T T T
7 -2 TR e i
= I Ry T
= P - ' s
" _4_ : = =
8 -
5 §
> g |

_8 | | | | |

0 10 20 30 40 50 60
Time[s]
Distance without bias compensation
0 = : : .
-50 —~ard N - -
-100- &
— — T Xxaxis
—150 y axis -
CT T zaxis
-20 1 1 1 1 1
10 20 30 40 50 60

Time[s]

Fig.10 Distance without bias compensation
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Table 1 Calculated Biasfor 60 [ s] on each axes

x AXis y AXis 7z AXis

Velocity Bias | -0.0012955 | -0.0017321 | -0.0021636

Distance Bias | -0.000081 0.000041 -0.000024

By usingTable 1, we can compensate the velocity and the distamdgsh
calculated by integral method. The compensatedmtist and velocity data can be

received as ifrig.11.

Velocity with bias compensation

0.02 . ‘ . .

w 0.01f H
: I i
£ _ %‘u fﬂ}q R:} r‘w W..'wu
s ! w“@m«“““" r by hiid ,aaj
b

o o Y M “s'M" W’ 'ﬁu-\'“".r"'*\
> -0.01 W‘s"‘ | W -

_0.0‘ | | | | |

0 10 20 30 40 50 60
Time[s]
Distance with bias compensation

02 T T T T

e 01 o TR R &
@ . ™
Q — e T
% O..- it SR - = : — e — ]
@ e -} () - B T

Q=01 yaxis oy ]

o M, z axis . ‘ . .
‘40 10 20 30 40 50 60

Time[s]

Fig.11 Distance with constant bias compensation
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From this result, with the environment do not charige value of distance
and velocity just fluctuate kept within value which wan accept and the
deviation is acceptable. We can observe that thestaot bias compensation

algorithm effects to the accelerometer bias comgéns
4.2 Constant bias compensation

To verify the constant bias compensation, we did@relerometer test by
experiment. In natural environment condition, weardvave good condition. The
boat can under the influence of wave, wind e.gthedoat always floating on the
waves. For experiment that case, we considered dbelemometer is oscillated
onx, Yy and z axis with sinusoidal. We tried to vibrate amplitueer
accelerometer for simulation sinusoidal signal.t&iely the accelerometer data
are included white noise and errors from measurienjce signals. First, using
Kalman filter for reduced white noise and measuriegick. With the constant
drift compensation method, the velocity and posit@an be compensated. The

results are given from Fig. 12to Fig. 14 for y and z axis. In that fig,

accelerometer value for each axis is a value aftegrg Kalman filter
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Fig. 13 Constant bias compensated dataon y axis
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Accelerometer value for z axis
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Fig. 14 Constant bias compensated data on z axis.

60

Although using Kalman filter and constant drift canpation method, the

distances were increased by external environmeahgds. When we did the

experiments, our vibration amplitudes have justiad0.3 [m]. But the distances

received after applying constant bias compensat®i,16 [m] on X axis. We

can see that error to high. So we tried to use &herlmas compensation.

4.3 Periodic bias compensation

In this subsectionwe used Period bias compensation. First, we verified

environment changes. To do this, we udedl method to check the main

frequency term, which affected the accelerometeh® AHFT result is shown in

Fig.15
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Fig.15 FFT resultson xaxis

In Fig.15 the main frequency is 0.19996MH§g] and its magnitude is
3.025656. From the frequency, the period is catedlaas 5.0008f5]. In

simulation for periodic bias compensation, we defititee parameters dsble. 2.

Table 2: Parameters for periodic bias compensation

X AXis y AXis z Axis

\% D \% D \ D

a 0.5 0.5 0.5 0.1 0.5 0.1
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By using the parameters imable 2 and the periodic compensation
algorithm, we can get the results Fig. 16 - Fig. 18, where the same
accelerometer's data with constant bias compensagbinod are used.
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Fig.16 Periodic bias compensated data on x axis
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Accelerometer value for y axis
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Fig. 17 Periodic bias compensated dataon y axis
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Fig. 18 Periodic bias compensated data on z axis.
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From Fig.16 to Fig.18, we can see the distance data after using Periodic
bias compensation, are reduced when external emr@nnchanges. Last time,
when we use constant drift compensation method, idftande is 3.16] for x
axis. But now as you see kg 16, the distance just oscillate around 0.05][ So

we verify that the above results show is good nagseellation.
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Chapter 5. Conclusions

In this thesis, we applied the method of Kalmarefifor estimating the
acceleration data and compensate constant biasonstant drift compensation
method, there can only reduce the velocity andadcst errors in some extents.
The compensated error was still relatively largeisTue to the fact that Kalman
filter requires error model. With FFT method thrbygeriodic bias compensation,
we could reduce the error effectively.

In container terminal, they are use AGV to transfer ¢ontainer. Their
AGV included the GPS modules for detected the posiioAGV. Sometimes,
when AGV move to under Gantry Crane, the GPS signalncarreceived data
into control room. Their Gantry Crane included samogse. That noise bringing
the transmission has interrupt or delay data. At doadition, the INS included
out method very useful. By our INS solution, we caiow exact the position of
AGV.

In the future research, we will try to compare tlegiguic compensation
algorithm with numerical double integration of a@ration measurements in
noise using rectangular and trapezoidal rules. étttilme, the angle sensors might

be considered to improve the accuracy of the mositr vehicle.
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