Journal of the Research Institute of Basic Sciences, Korea Maritime University, Vol. 4, 1994.

The Existence and Uniqueness of Solution to the Volterra Integrodifferential Equation of Parabolic Type

Jong Hu Lee* and Weon Kee Kang**

* Department of Applied Mathematics,
Korea Maritime University, Pusan, Korea

** Department of Mathematics,
Dong-A University, Pusan, Korea

1. Introduction

We consider nonlinear heat flow in a homogeneous bar of unit length of material with memory with the temperature u = u(t, x) maintained at zero at x = 0 and x = 1 by the similar method as [2]. We shall assume that the history of u is prescribed for $t \geq 0$ and $0 \leq x \leq 1$. The equation satisfied by u in such a material is derived from assumptions that the internal energy ε and the heat flux q are functionals of u and of the gradient of u, respectively. According to the theory developed by Nunziato [13] for heat flow in materials of fading memory type the functionals ε and q are taken respectively as

(1.1)
$$\varepsilon(t,x) = \alpha u(t,x) + \int_0^t \beta(t-s)u(s,x)ds,$$

(1.2)
$$q(t,x) = -\kappa u_x(t,x) - \int_0^t a(t-s)\sigma(u_x(s,x))ds$$

where $\alpha > 0, \kappa > 0$ are given constants and $\beta, a : [0, \infty) \longrightarrow \mathbf{R}$ are given sufficiently smooth functions (called the internal energy and heat flux relaxation functions, respectively). In the physical literature β and a are usually

assumed to be decaying exponentials with positive coefficients. The real function $\sigma: \mathbf{R} \longrightarrow \mathbf{R}$ in (1.2) will be assumed to $\sigma \in \mathbf{C}^1(\mathbf{R}), \sigma(0) = 0$. It should be noted that the $\sigma(r) \equiv r$ gives rise to the linear model derived in Nunziato [13], and that (1.2) is one reasonable generalization of the heat flux for nonlinear heat flow in one space dimension.

If $f = f(t, x) \in \mathbf{C}^1([0, \infty); \mathbf{L}^1(0, 1))$ represents the external heat supply added to the rod for $t \geq 0$ and $0 \leq x \leq 1$, and if $u(0, x) = u_0(x), 0 \leq x \leq 1$ is the given initial temperature distribution, the law of balance of heat $(\varepsilon_t = -divq + f)$ shows that in one space dimension the temperature u satisfies the initial boundary value problem

(1.3)
$$\frac{\partial}{\partial t} \{\alpha u(t,x) + \int_0^t \beta(t-s)u(s,x)ds\}$$
$$-\kappa u_{xx}(t,x) - \int_0^t a(t-s)(\sigma(u_x(s,x)))_x ds$$
$$= f(t,x),$$

$$u(0,x) = u_0(x) \ (0 \le x \le 1), \ u(t,0) = u(t,1) \equiv 0 \ (t \ge 0),$$

where subscripts denote differentiation with respect to x.

In the case $\beta(t) \equiv 0, \alpha = \kappa = 1$, in Section 3 we consider the initial boundary value problem to the following equation:

(1.4)
$$u_{t}(t,x) - u_{xx}(t,x) - \int_{0}^{t} a(t-s)(\sigma(u_{x}(s,x)))_{x} ds$$
$$= f(t,x), \quad 0 \le x \le 1, \quad t \ge 0,$$

(1.5)
$$u(t,0) = u(t,1) = 0, \quad t \ge 0,$$

$$-90 -$$

$$(1.6) u(0,x) = u_0(x), \quad 0 \le x \le 1.$$

2. Preliminaries

Here, all functions may be real value. We denote by $\mathbf{L}^2(0,1)$ consist of functions f on some interval [0,1] such that $|f(t)|^2$ is Lebesgue integrable on this interval. The space $\mathbf{L}^2(0,1)$ is Hilbert space with the inner product

$$(f,g) = \int_0^1 f(x)g(x)dx,$$

and norm is given by

$$|f| = \left(\int_0^1 f(x)^2 dx\right)^{1/2}.$$

 $\mathbf{H}^1(0,1)$ denotes the set of all functions whose u is absolutely continuous on [0,1] and whose derivatives up to degree 1 belong to $\mathbf{L}^2(0,1)$. $\mathbf{H}^1(0,1)$ is a Hilbert space with inner product and norm by

$$((u,v))_1 = (u',v') + (u,v),$$

$$||u||_1 = (|u'|^2 + |u|^2)^{1/2},$$

respectively, for all $u, v \in \mathbf{H}^1(0, 1)$.

Denotes

$$\mathbf{H}_0^1(0,1) = \{ u \in \mathbf{H}^1(0,1) \mid u(0) = u(1) = 0 \},$$
$$\mathbf{H}_0^1(0,1) \subset \mathbf{H}^1(0,1).$$

Hence $\mathbf{H}_0^1(0,1)$ is a Hilbert space with inner product and norm by

$$((u,v)) = \int_0^1 u'(x)v'(x)dx,$$
- 91 -

$$||u|| = \left(\int_0^1 u'(x)^2 dx\right)^{1/2},$$

respectively, for all $u, v \in \mathbf{H}_0^1(0,1)$. Denotes $\mathbf{H}^2(0,1) = \{u \in \mathbf{H}^1(0,1) \mid u' ;$ absolutely continuous on $[0,1], u'' \in \mathbf{L}^2(0,1)\}$. Hence $\mathbf{H}^2(0,1)$ is a Hilbert space with inner product and norm

$$((u,v))_2 = (u'',v'') + (u',v') + (u,v),$$

$$||u||_2 = (|u''|^2 + |u'|^2 + |u|^2)^{1/2},$$

respectively, for all $u, v \in \mathbf{H}^2(0,1)$. $\mathbf{H}^{-1}(0,1) = \mathbf{H}_0^1(0,1)^*$ denotes the set of all functions whose derivatives up to degree 1 in distribution sense belong to $\mathbf{L}^2(0,1)$. i.e.,

$$\mathbf{H}^{-1}(0,1) = \{ \frac{df}{dx} \mid f \in \mathbf{L}^2(0,1) \}$$

where $\mathbf{H}_0^1(0,1)^*$ is dual space of $\mathbf{H}_0^1(0,1)$. By the definition, if $u \in \mathbf{H}^{-1}(0,1)$ then there exist $f \in \mathbf{L}^2(0,1)$ such that u = f' but f don't exist uniquely. As a matter of fact, let u = f' and c is a constant then $f + c \in \mathbf{L}^2(0,1)$, u = (f + c)'.

Conversely, suppose that $f, g \in \mathbf{L}^2(0,1)$ and f' = g' = u, then (f-g)' = 0. Hence f is constant function. If we select f such that $\int_0^1 f(x) dx = 0$, then f is uniquely determined by u. Let

$$u, v \in \mathbf{H}^{-1}(0,1), u = f', v = g', \int_0^1 f(x)dx = \int_0^1 g(x)dx = 0$$

and

$$((u, v))_* = (f, g), ||u||_* = |f|,$$

$$-92 -$$

then $\mathbf{H}^{-1}(0,1)$ becomes a Hilbert space with inner product $((\cdot,\cdot))_*$ and norm $\|\cdot\|_*$. Therefore,

$$\mathbf{H}_0^1(0,1) \subset \mathbf{L}^2(0,1) \subset \mathbf{H}^{-1}(0,1).$$

3. Assumptions and main theorem

By the definition,

$$\mathbf{H}^{2}(0,1) \cap \mathbf{H}^{1}_{0}(0,1) = \{ u \in \mathbf{H}^{2}(0,1) \mid u(0) = u(1) = 0 \}.$$

Let A be the operator defined by

(3.1)
$$D(A) = \text{domain of } A = \{u | u \in \mathbf{H}^2(0,1) \cap \mathbf{H}_0^1(0,1)\},\$$

(3.2)
$$Au = -\Delta u \ (\Delta = \text{Laplacian}), \quad u \in D(A).$$

Then A is positive definite self-adjoint operator. Suppose that $\sigma(r)$ is defined continuously differentiable on \mathbf{R} , the derivative $\sigma'(r)$ is bounded. That is, there exists M>0 such that

$$(3.3) |\sigma'(r)| \le M$$

for $-\infty < r < \infty$. Obviously $\sigma(r)$ satisfies uniformly Lipschitz condition. In other words,

$$(3.4) |\sigma(r) - \sigma(s)| \le M|r - s|$$

for $r, s \in \mathbf{R}$. For $u \in D(A)$ and by (3.4), the following inequality holds.

$$|\sigma(u'(x)) - \sigma(u'(y))| \le M|u'(x) - u'(y)|.$$

Hence $\sigma(u'(x))$ is absolutely continuous. For $u \in D(A)$, the following equality holds

(3.5)
$$(\sigma(u'(x)))' = \sigma'(u'(x))u''(x).$$

Defining $g(u(x)) = (\sigma(u'(x)))'$ then $g(u)(x) = \sigma'(u'(x))u''(x)$. By virtue of (3.3), for each $u \in D(A)$, it follows that

$$g(u) \in \mathbf{L}^2(0,1), |g(u)| \le M|u''|.$$

We need the following assumptions:

(i) a(t) is Hölder continuous on $[0, \infty)$ with exponent ρ , that is, there exists a constant c > 0 and $0 < \rho \le 1$ such that

$$|a(t) - a(s)| \le c|t - s|^{\rho}$$

for all $t, s \in [0, \infty)$.

$$(ii) u_0 \in D(A). 1945$$

(iii)
$$f(t) \in \mathbf{C}^1([0,\infty); \mathbf{L}^2(0,1)).$$

We write the mixed problem (1.2) - (1.4) as a formulation in $L^2(0,1)$,

$$(3.6) \qquad \qquad \frac{du}{dt}(t) + Au(t) + \int_0^t a(t-s)g(u(s))ds = f(t),$$

$$(3.7) u(0) = u_0.$$

Theorem 3.1. Assume that (i)–(iii) hold. Let u(t), f(t) be a $\mathbf{L}^2(0,1)$ – valued functions of t, respectively and

$$u(t) \in D(A), \ \frac{du}{dt}(t) = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h}$$

be exist in the $L^2(0,1)$ -topology. Then there exist a unique solution u(t) of (3.6), (3.7).

We can solve the problem (3.6), (3.7) by the following method. Setting $q(v,u) = \sigma'(v')u''$ for all $v \in \mathbf{H}_0^1(0,1)$ and for all $u \in D(A)$. Obviously, q(u,u) = g(u).

(a) Let v(t) be a $\mathbf{H}_0^1(0,1)$ -valued continuous function such that $v(0) = u_0$. We solve that the following initial value problem:

(3.8)
$$\frac{du}{dt}(t) + Au(t) + \int_0^t a(t-s)q(v(s), u(s))ds = f(t),$$

$$(3.9) u(0) = u_0.$$

(b) Since the solution of Eqs.(3.8),(3.9) is exist and unique, the mapping θ defined from $\mathbf{H}_0^1(0,1)$ to D(A) i.e., $\theta v = u$. Therefore there exists a fixed point of θ , that is, the fixed point is a solution of Eqs.(3.6),(3.7).

Proof of the Existence [7, 8]. (a) Obviously, q(v, u) satisfies uniformly Lipschitz condition that the following inequality: there exists M > 0 such that

$$|q(v, u_1) - q(v, u_2)| \le M||u_1 - u_2||$$

for all $v \in \mathbf{H}_0^1(0,1)$ and $u_1, u_2 \in D(A)$. Since A is a positive definite self-adjoint operator, we set

$$A = \int_0^\infty \lambda dE(\lambda)$$
; (real) spectral resolution of operator A ,

where E is a real spectral measure.

We are defined $\exp(-tA) = \int_0^\infty \exp(-\lambda t) E(\lambda)$ for all $t \geq 0$. It is known that, -A generates an analytic semigroup in $\mathbf{L}^p(0,1) (1 \leq p < \infty)$. For each $v \in D(A)$ we define

$$(K_v u)(t) = \exp(-tA)u_0$$

$$+ \int_0^t \exp(-(t-s)A)\{f(s) - \int_0^s a(s-r)q(v(r), u(r))dr\}ds.$$

We show that for t_0 sufficiently small, K_v is a contraction. By (3.3), there exists a constant c (0 < c < 1) that satisfy a following inequality:

$$||(K_v u_1)(t) - (K_v u_2)(t)|| \le c||u_1(t) - u_2(t)||$$

for all $0 \le t \le t_0$. It follows that K_v is a contraction mapping of D(A) into $\mathbf{H}^2(0,1)$. Hence there is a unique fixed point u of K_v in $\mathbf{H}^2(0,1)$ and u(t) is a local solution of (3.8),(3.9). Then by previous arguments there exists a unique solution u(t) of (3.8),(3.9) on $[0,\infty)$.

(b) Let t_1, L, η are positive number and $\eta < 1$. Define

$$S = \{ v \in \mathbf{H}_0^1(0,1) \mid ||v(t) - v(s)|| \le L|t - s|^{\eta}, v(0) = u_0 \text{ in } [0,t_1] \}.$$

For t_1 sufficiently small, then $\theta: S \to S$ is continuously compact mapping for some L, η . Since S is closed, bounded, and convex, it follows from Schauder's fixed point theorem there is a unique fixed point that satisfies (3.6),(3.7) on $[0,t_1]$. By the continuity, there exists a solution of (3.6),(3.7) on $[0,\infty)$.

Proof of the Uniqueness. In the previous proof we have only the existence of solution of Eqs.(1.2) – (1.4) in $L^2(0,1)$. It remains to prove

the uniqueness of (1.2) - (1.4). For this purpose we need some elements of functional analysis. Putting

$$\widetilde{A}u = -u''$$
 for all $u \in \mathbf{H}_0^1(0.1)$.

Since $-u'' = (-u')', -u' \in \mathbf{L}^2(0,1)$ hold then

$$\widetilde{A}u \in \mathbf{H}^{-1}(0,1), \quad \int_0^1 -u'(x)dx = -u(1) + u(0) = 0.$$

Hence, if for $v \in \mathbf{H}_0^1(0,1)$, the function g satisfies

$$g' = v$$
, $\int_0^1 g(x)dx = 0$,

then by integration by parts and u(0) = u(1) = 0.

$$((\widetilde{A}u, v))_* = (-u', g) = (u, g') = (u, v),$$

$$((u, \widetilde{A}v))_* = ((\widetilde{A}v, u))_* = (v, u) = (u, v) = ((\widetilde{A}u, v))_*.$$

Therefore, the operator A is a symmetric and a positive definite self-adjoint on $\mathbf{H}^{-1}(0,1)$. Defined the linear operator $\widetilde{A}: \mathbf{H}_0^1(0,1) \to \mathbf{H}^{-1}(0,1)$ by

(3.10)
$$D(A) = \{ u \in \mathbf{H}_0^1(0,1) \mid \widetilde{A}u \in \mathbf{L}^2(0,1) \},$$

(3.11)
$$\widetilde{A}u = Au \text{ for all } u \in D(A).$$

Since we may replace $\sigma(r)$ by $\sigma(r)$ + constants without altering equation (1.4), we may assume that $\sigma(0) = 0$, by (3.4) for all $u \in \mathbf{H}_0^1(0,1)$ then

$$|\sigma(u'(x))| = |\sigma(u'(x)) - \sigma(0)| \le M|u'(x)|.$$

Hence

$$\sigma(u') \in \mathbf{L}^2(0,1), \ (\sigma(u'))' \in \mathbf{H}^{-1}(0,1).$$

And if we put $\widetilde{g}(u) = (\sigma(u'))'$ then \widetilde{g} is a mapping from $\mathbf{H}_0^1(0,1)$ to $\mathbf{H}^{-1}(0,1)$. In particularly, if $u \in D(A)$, then $\widetilde{g}(u) = g(u)$. By the above argument, we consider the mixed problem (1.4) – (1.6) as a formulation in $\mathbf{H}^{-1}(0,1)$:

(3.12)
$$\frac{du}{dt}(t) + \widetilde{A}u(t) + \int_0^t a(t-s)\widetilde{g}(u(s))ds = f(t),$$

$$(3.13). u(0) = u_0$$

Obviously, if the solution of initial value problem (3.6) - (3.7) exists then that of (3.12) - (3.13) exists, and the solution of initial value problem (3.12) - (3.13) is unique then that of (3.6) - (3.7) is unique.

We prove that the solution (3.12) – (3.13) is unique. In general, if $f \in \mathbf{L}^2(0,1)$ then $||f'||_* \leq |f|$. By (3.4), we have

$$\|\tilde{g}(u) - \tilde{g}(v)\|_{*} = \|(\sigma(u'))' - (\sigma(v'))'\|_{*}$$

$$\leq |\sigma(u') - \sigma(v')|$$

$$\leq M|u' - v'| = M\|u - v\|.$$

Hence \tilde{g} satisfies a uniform Lipschitz condition. Therefore the uniqueness of solution of (3.12), (3.13) follows from (3.8), (3.9).

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, the Netherlands, 1976.

- [2] Ph. Clément, R. C. MacCamy and J. A. Nohel, Asymptotic properties of solutions of nonlinear abstract Volterra equations, J. Integral Equations, 3(1981), pp.185 – 216.
- [3] M. G. Crandall, S. -O. Londen and J. A. Nohel, An abstract nonlinear Volterra integrodifferential equation, J. Math. Anal. Appl., 64(1978), pp. 701 - 735.
- [4] W. S. Edelstein and M. E. Gurtin, Uniqueness theorems in the linear dynamic theory of anisotropic viscoelastic solid, Arch. Rat. Mech. Anal., 17 (1964), pp.47 60.
- [5] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
- [6] A. Friedman and M. Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc., 126(1967), pp.131 179.
- [7] M. L. Heard, An abstract semilinear hyperbolic Volterra integrodifferential equation, J. Math. Anal. Appl., 80(1981), pp.175 202.
- [8] ———, An abstract parabolic Volterra integrodifferential equation, SIAM J. Appl. Math., 13(1982), pp.81 105.
- [9] ————, A class of hyperbolic Volterra integrodifferential equations, Nonlinear Analysis: TMA, 8(1984), pp.79 – 93.
- [10] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sec. I 17(1970), pp.241 - 258.
- [11] ———, Linear evolution equations of "hyperbolic" type, II, J. Math. Soc. Japan, 25(1973), pp.648 666.
- [12] R. K. Miller and R. L. Wheeler, Well posedness and stability of linear Volterra integrodifferential equations in abstract spaces, Funkcialaj Ekvacioj, 21(1978), pp.163 - 194.
- [13] J. W. Nunziato, On heat conduction in materials with memory, Quartely Appl. Math., 29(1971), pp.187 204.

- [14] H. Tanabe, Equations of evolution, Pitman, London, 1979.
- [15] ———, Volterra type Integrodifferential equation, Sugaku Seminar, 22(1983), pp.49 53 (in Japanese).
- [16] C. C. Travis and G. F. Webb, An abstract second order semilinear Volterra integrodifferential equation, SIAM J. Math. Anal., 10(1979), pp.412 – 424.
- [17] G. F. Webb, An abstract semilinear Volterra integrodifferential equation, Proc. Am. Math. Soc., 69(1978), pp.255 - 260.
- [18] ———, Abstract Volterra integrodifferential equations and a class of reaction diffusion equations, Lecture Notes in Mathematics, No. 737, pp.295 303, Springer Verlag, New York, 1979.

