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1. Introduction

We consider nonlinear heat flow in a homogeneous bar of unit length of
material with memory with the temperature u = u(¢, r) maintained at zero
at z = 0 and z = 1 by the similar method as [2]. We shall assume that the
history of u is prescribed for t > 0 and 0 < z < 1. The equation satisfied by
u in such a material is derived from assumptions that the internal energy ¢
and the heat flux ¢ are functionals of u and of the gradient of u, respectively.
According to the theory developed by Nunziato [13] for heat flow in materials

of fading memory type the functionals € and ¢ are taken respectively as

(1.1) e(t,z) = au(t, ) +/; B(t — s)u(s, x)ds,

(1.2) q(t,z) = —ru(t,z) — /0 a(t — s)o(uz(s,z))ds

where a > 0,k > 0 are given constants and §,a : [0,00) — R are given
sufficiently smooth functions (called the internal energy and heat flux relax-

ation functions, respectively). In the physical literature 8 and a are usually
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assumed to be decaying exponentials with positive coefficients. The real
function ¢ : R — R in (1.2) will be assumed to ¢ € C'(R),s(0) = 0. It
should be noted that the o(r) = r gives rise to the linear model derived in
Nunziato [13], and that (1.2) is one reasonable generalization of the heat flux

for nonlinear heat flow in one space dimension.

If f = f(t,z) € C'([0,00); L*(0,1)) represents the external heat supply
added to the rod for t > 0 and 0 < z < 1, and if u(0,2) = ue(z),0 <z <1
is the given initial temperature distribution, the law of balance of heat (¢, =
—divg + f) shows that in one space dimension the temperature u satisfies

the initial boundary value problem

(1.3) %{au(t, T)+ /0 B(t — s)u(s,z)ds}

— Kuz(t,z) = /t a(t —s)(o(uz(s,x)))zds
0
= f(t,2),
u(0,z) = up(z) (0<z<1), u(t,0)=u(t1)=0 (t=>0),
where subscripts denote differentiation with respect to z.

In the case A(t) = 0,a = k = 1, in Section 3 we consider the initial

boundary value problem to the following equation:

(1.4) ue(t, ) — uz (t,z) — /0‘ a(t — s)(o(uz(s,z)))ds

= f(t,z), 0<z<1, t>0,

(1.5) u(t,0) = u(t,1) =0, t>0,
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(1.6) u(0,z) = uo(z), 0<z <L

2. Preliminaries
Here, all functions may be real value. We denote by L?(0,1) consist of
2

functions f on some interval [0,1] such that |f(¢)|® is Lebesgue integrable on

this interval. The space L?(0,1) is Hilbert space with the inner product

(f.9) = / f(2)g(z)dz,

and norm is given by

1= ([ f(x)2dm)1/2~

H'(0,1) denotes the set of all functions whose u is absolutely continuous on

[0,1] and whose derivatives up to degree 1 belong to L2(0,1). H!(0,1) is a

Hilbert space with inner product and norm by
(w, v = (u',0) + (u,v),
llully = (1" + Jul?)/2,
respectively, for all u,v € H*(0,1).
Denotes
H}(0,1) = {u € H'(0,1) | u(0) = u(1) = 0},
H;(0,1) c HY(0,1).

Hence H}(0,1) is a Hilbert space with inner product and norm by

1
() = / u!(z)'(z)dz,
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full = (| 1 u'(z)zdx)l/z,

respectively, for all u,v € H}(0,1). Denotes H%(0,1) = {u € H'(0,1) | v’ ;
absolutely continuous on [0,1], " € L?(0,1)}. Hence H?(0,1) is a Hilbert

space with inner product and norm
((ua v))2 = (u"a v”) + (u,s v’) + (u’ v),

lullz = (1" + Ju' [P + Juf?) 72,

respectively, for all u,v € H?(0,1). H71(0,1) = H}(0,1)* denotes the set of
all functions whose derivatives up to degree 1 in distribution sense belong to

L%(0,1). i.e.,

H (0,1 = (L] ferio1)

where H}(0,1)* is dual space of H}(0,1). By the definition, if u € H™1(0,1)
then there exist f € L2(0,1) such that u = f' but f don’t exist uniquely. As
a matter of fact, let u = f’ and c is a constant then f + ¢ € L?(0,1),

u=(f+e.

Conversely, suppose that f, g € L?(0,1) and f' =g’ =u, then
(f—9g) =0. Hence f is constant function. If we select f such that

fol f(z)dz =0, then f is uniquely determined by u. Let

1
0

1
u, ve H1(0,1), =f, v=g, dr = de =0
e ()ufvgfof(w):r/.f/(m)w

and

(w,0)u = (£, 9), llulls = |£],
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then H™'(0,1) becomes a Hilbert space with inner product ((-,-))« and norm
| - ||«- Therefore,

H{(0,1) c L%(0,1) c H7(0,1).
3. Assumptions and main theorem
By the definition,
H?(0,1) N Hy(0,1) = {u € H*(0,1) | u(0) = u(1) = 0}.
Let A be the operator defined by

(3.1) D(A) = domain of 4 = {ulu € H*(0,1) N H(0,1)},

(3.2) Au = —Au (A = Laplacian), u € D(A).

Then A is positive definite self-adjoint operator. Suppose that o(r) is defined
continuously differentiable on R, the derivative o’(r) is bounded. That is,

there exists M > 0 such that
(3.3) lo'(r)] < M

for —0co < 7 < co. Obviously o(r) satisfies uniformly Lipschitz condition. In

other words,
(3.4) lo(r) —o(s)] < M|r —s|
for r,s € R. For u € D(A) and by (3.4), the following inequality holds.

lo(w'(2)) = o (v (y))] < Mlu'(2) - ' (y)].
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Hence o(u'(z)) is absolutely continuous. For u € D(A), the following equality
holds

(3:5) (o(u'(2))) = o' (u'(z))u" (2).

Defining g(u(z)) = (o(u'(z)))" then g(u)(z) = o'(u'(z))u"(z). By virtue of
(3.3), for each u € D(A), it follows that

g(u) € L*(0,1), |g(u)] < M|u"|.
We need the following assumptions:

(i) a(t) is Holder continuous on [0,00) with exponent p, that is, there

exists a constant ¢ > 0 and 0 < p < 1 such that
la(t) — a(s)| < cft —s|?
for all t, s € [0, 00).
(i1) ug € D(A).

(iit) f(t) € C'([0,00); L*(0, 1)).
We write the mixed problem (1.2) - (1.4) as a formulation in L2(0, 1),

du

(36) %O+ 4u) + [ alt = g(u(s))ds = 1)

(3.7) u(0) = uo.

Theorem 3.1. Assume that (i)-(iii) hold. Let u(t), f(¢) be a L?(0,1)

— valued functions of t, respectively and

u(t + h) = ()
h

u(t) € D(4), (t) = lim
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be exist in the L?(0,1)-topology. Then there exist a unique solution u(t) of
(3.6), (3.7).

We can solve the problem (3.6), (3.7) by the following method. Setting
q(v,u) = o'(v')u" for all v € H}(0,1) and for all u € D(A). Obviously,
q(u,u) = g(u).

(a) Let v(t) be a H{(0,1)-valued continuous function such that v(0) =

ug. We solve that the following initial value problem:

(3.8) El(-i--lt-t-(t) + Au(t) + /0 a(t — s)q(v(s),u(s))ds = f(t),

(3.9) u(0) = uo.

(b) Since the solution of Eqs.(3.8),(3.9) is exist and unique, the mapping
6 defined from H(0,1) to D(A) i.e.,fv = u. Therefore there exists a fixed
point of 8, that is, the fixed point is a solution of Egs.(3.6),(3.7).

Proof of the Existence (7, 8]. (a) Obviously, ¢(v, u) satisfies uniformly
Lipschitz condition that the following inequality : there exists M > 0 such
that

lg(v,u1) = q(v,u2)| < Mllus — ua|

for all v € H}(0,1) and u;,us; € D(A). Since A is a positive definite self-

adjoint operator, we set
oo
A= / AdE()) ; (real) spectral resolution of operator A,
0

where E is a real spectral measure.
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We are defined exp(—tA) = fooo exp(—At)E(X) for all ¢ > 0. It is known
that, —A generates an analytic semigroup in L?(0,1) (1 < p < 00). For each
v € D(A) we define

(Kyu)(t) = exp(—tA)ug

+ [ exp(=t = 90(F) - [ als = rato(r),u(r)dr)as.

We show that for ¢y sufficiently small, K, is a contraction. By (3.3), there
exists a constant ¢ (0 < ¢ < 1) that satisfy a following inequality:

[(Bou1)(t) = (Koug)(@)|| < cllui(t) — ua(d)]

for all 0 < ¢t < ty. It follows that K, is a contraction mapping of D(A) into
H?(0,1). Hence there is a unique fixed point u of K, in H%(0,1) and u(t)
is a local solution of (3.8),(3.9). Then by previous arguments there exists a

unique solution u(t) of (3.8),(3.9) on {0, o).

(b) Let t;, L, n are positive number and 1 < 1. Define
S ={veHy(0,1) | [lo(t) — v(s)ll < LIt - s|",v(0) = uo in [0,1]}.

For t; sufficiently small, then 6 : S — S is continuously compact mapping for

some L, 7. Since S is closed, bounded, and convex, it follows from Schauder’s
fixed point theorem there is a unique fixed point that satisfies (3.6),(3.7) on
[0,¢;]. By the continuity, there exists a solution of (3.6),(3.7) on [0, c0).

Proof of the Uniqueness. In the previous proof we have only the

existence of solution of Egs.(1.2) — (1.4) in L?(0,1). It remains to prove
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the uniqueness of (1.2) — (1.4). For this purpose we need some elements of

functional analysis. Putting

Au = —u" for all u € H}(0.1).

Since —u" = (—u')’, —u’ € L?(0,1) hold then
5 1
Au e HY(0,1), / —u'(z)dz = —u(1) + u(0) = 0.
0
Hence, if for v € H{(0, 1), the function ¢ satisfies

1
d'=v, [ ge)ds=0,
0
then by integration by parts and u(0) = u(1) = 0.
(Au,v)e = (=, 9) = (u.g') = (u,v),

(v, Av))s = (Av,u))s = (v,u) = (u,v) = (Au,v)\.
Therefore, the operator A is a symmetric and a positive definite self-adjoint

on H™!(0,1). Defined the linear operator A : Hj(0,1) - H~1(0,1) by

(3.10) D(A) = {u € H}(0,1)| Au € L2(0,1)},

(3.11) Au= Au forallu € D(A).

Since we may replace o(r) by o(r) + constants without altering equation

(1.4), we may assume that (0) = 0, by (3.4) for all u € H}(0,1) then

lo(u'(2))] = lo(u'(2)) = o(0)] < Mlu'(2)].
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Hence
o(u') € L2(0,1), (a(uv')) € HT'(0,1).

And if we put §(u) = (o(u'))’ then § is a mapping from H(0,1) to H*(0, 1).
In particularly, if u € D(A), then g(u) = g(u). By the above argument, we
consider the mixed problem (1.4) - (1.6) as a formulation in H71(0,1) :

(3.12) o)+ Fu(t)+ [ alt = o)i(ut)ds = £0),

(3.13). u(0) = uo

Obviously, if the solution of initial value problem (3.6) — (3.7) exists then
that of (3.12) — (3.13) exists, and the solution of initial value problem (3.12)
~ (3.13) is unique then that of (3.6) - (3.7) is unique.

We prove that the solution (3.12) — (3.13) is unique. In general, if
f € L%0,1) then ||f'|l« < |f]. By (3.4), we have

1§(w) = §(0)lls = (e ()" = ((v"))'ll«
< lo(u') — o(v")|
< Mu' —v'| = M|lu — vl

Hence § satisfies a uniform Lipschitz condition. Therefore the uniqueness of
solution of (3.12), (3.13) follows from (3.8), (3.9).
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