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Abstract

The problem of constructing the compromise design chosen which does will on
the three criteria(i.e., D-, G-, and V—op{imality) is very important when the
number of observations is not large relative to the number of parameters. It
is modelled as a multiobjective optimization problem. A solution method is
proposed for this optimization problem using the fuzzy-set approach which has
become accepted as a tool for dealing with a certain form of imprecision
inherent to multiobjective decision making environments. An example of finding

an optimal compromise design in a moderate sized design problem is presented.
1. Introduction

Exact D- and G-optimum designs can be appreciably different, because the
General Equivalent Theorem does not hold for exact design. In this way,
Atkinson(1988) emphasizes the construction of the compromise design chosen
which does well on the D-, G-, and ¥V-optimality. The compromise design is
studied by Welch(1982,1984). He describes the extension of algorithm of the
DETMAX type to the calculation of ¥- and G-optimum design, and provides a list
of a specified number of the best designs according to the primary criterion,

for example, D-optimality. However, if no design simultaneously optimize the a
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bove three criteria, the choice of the compromise design from his list is
subjective. So we suggest a compromise design by the fuzzy set approch. This

is intuitively is not chosen in the list as Welch(1984).

We are concerned with designs when the expected value of the response Y is
related to k explanatory variable x by the linear model E(Y)=X3. The
experiment contains n runs oOr trials with the wvalues of experimental
conditions given by the n rows of nXk design matrix X. The k elements of the

vector of parameters 3 are to be estimated from the results of the expeiment.

We start with a short description of the theory when it is assumed that the ?
errors of observation are independent and identically distributed with ‘

variance c2. For the moment it is approprlate to estimate B by least squares

to give B=(X’X)"1X’y. The variance of this estimate from an n trial design 1s.l'

Var(3) =02(X’X)~!. Unless otherwise stated the kXk information matrix X°X

will be taken to be full rank. The predicted response at x is y(x) and

Var{y(x)}=02x’ (X’ X)~!x. (1)

Optimum design theory (see Kiefer 1959) is concerned with the choice of X fo ™

minipize various functions of the matrix valued variance of 3.

The set of possib]e experimental conditions is given by the design region =

comprising r candidate points xi,Xx2,**,Xr. The design matrix can be thought of

as a probability distribution giving weight 1/n to n not necessarily distinct
sets of conditions in Z. Such a design is called ‘exact’ because it can be

realized exactly in practice. For an exact design, the measure is denoted by

En, so that M(&n)=X’X. It is also mathematically convenient to replace var{y
(x)} in (1) by d{x,&n) =x"H"1(En)x.

One design criterion which has been much studied is that of D-optimality in
which the determinant det M(En) is paximized. This minimizes the variance of
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the parameter estimates. Another criterion, G-optimalty, is concerned with the
variance of the predicted response. If we let d(£n) =maxsx. d(x,€n), a G-optim-

ality design is one which minimizes d(¥n), the maximum of the variance of
the predicted response over the design region Z. The other criterion is that

of V-optimality in which the design is found to minimize

dave (£n) ==~ £d(xs En). 2

The equation (2) represents the average of the variance at r candidate points.
Théﬁ the problem of constucting the design which compromises the D-, G-, and
V—o;;t‘:’iiné‘alty above mentioned is formulated in this paper as the following

multiogjective optimization model:

D(¥n)
minimize | G(¥n) (3)
V(En)

vhere D(£n), G(%a), and ¥(£n) denote det det H(£n), d(¥n), and dave(n)
respectively. The model (3) is a simple multiobjective optimization model with
integer varibles. Our concern is thus the determination of an optimal
compromise design, taking into account the multicriteria. Fuzzy set approach,
gaining recognition as a tool for handing the imprecision nature of decision
mal_(ing environments without undue simplification, is chosen as our solution
technique over other major methods in multiobjective optimization(see
Zimmermann 1985). Another benefit coming from its adaptation would be in the
case of application of Mitchell’s(1974) efficient DETMAX algorithm.

In section 2, we introduce the fuzzy set approach and the solution method
presented in section 3 is the DETMAX which is modified in the excursion and
the criteria of adding or subtacting a point. An example in section 4 suggests
a good compromise design which is not given by Welch(1984).
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I. Fuzzy set approach

I-t Some Fundamental comcepts of fuzzy sets

Fuzzy set theory is to deal quantitatively with ‘imprecision’ which can S
not be equated with ‘randomness’ , thus for which the probability analysis is i,
inappropriate. Consider a set F of objects (decisions, alternatives). A fuzzy ...3
set is a group of objects in which there is no clear(sharp) boundary between .- 1,
those objects that belong to the subset and those that do not. A membership
function u(f) of a fuzzy set is defined to be the mapping from F onto the
closed interval [0,1], which represents the degree of likelihood that object
x belongs to the subset. T

In multiobjective decision environment, each goal can be represented by a- --
fuzzy set on the universe of the associated real-valued measurement. For our
study, three such fuzzy sets are in order, one on the determinant, D(¢n), for
Doptimality and another on the maximum variance, G(¢n), for G-optimality and -

the other on the average variance, V(€n), for V-optimality. Define wup(D), Ha .

o

(G), and pv(¥) to be the pembership functions of the fuzzy sets corresponding )
to the D-, G-, and V-optimality respectively. Then pp(D), ue(G), and ), it
indicate the degree of the satisfaction with the measured D(¥n), G(En), and. -
¥{(¥n) respectively. CoeA
For each goal, there exists another fuzzy set defined directly on the set of.<
decision alternatives. Define up(§n), p(€n), and uv(gn) as the membership :
functions for the fuzzy sets associated with D-(G-,V-) optimality to the exact
design En. The relationship between the pembership functions for these two

types of fuzzy sets can be mathematically represented by

pp(En) =pp(D(€n)) for all &n,
I-‘G(En) =ﬂG(G(En)) for all &n,
iv(En) =pv(¥ (€n)) for all &a, (4)
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In fuzzy set theory the intersection of sets normally correponds to the
logical ‘and’ . The fuzzy set of decisions compatible with the overall goal
can therefore be defined as the intersection of those fuzzy sets, one for each
partial goal. The membership function of the intersection is normally
calculated by applying the min—operator to the membership functions of all
fuzzy sets involved (see Zimmermann 1985). Then the membership function Uc(En)
of our- design problem can be characterized as simple as

/.lc(fn) ==min{1“llb(5n), #G(En), #V(En)} (5)

The optimal compromise design is then the one having the highest value of the

above membership function pe.

-2 Fuzzy optimization model

Now back to our original multiobjective model, recall that the experiment

designer has not specified his preferences on the three criteria, specially
(1-up), pc and pv. Also assumed for the moment is the unavailability of even
the .upper and lower bounds on the target level he aspires for each performance
measure, such that he does not accept a level higher than the upper bound and
he is fully satisfied whenever the level is equal to or lower than the lower
bound. If these are available, the fuzzy objectives on the scales of
performance measures can be obtained by the construction of membership
functions which decrease monotonically from 1 at the lower bound to O at the
upper bound.

As such we shall construct the membership functions according to the
suggestion by Zimmermann(1978), of using ‘least justifiable’ solutions by as
lower bounds and upper bounds which is easily specified through the execution
of the DETMAX algorithm. Let DL and Dy denote the lower bound and the upper
bound of D-optimality respectively. Similarly, GL Gu and Vv ¥y are same above.
Also define the following
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dD-:Du"DL() 0)
dg=Gu—GrL() 0)
dy=Fuy+L() 0) (8)

Follwing the common practice in fuzzy mathematical programming, we assume that
up, Me, and pv have the simplest membership funtions' of linear form over the

tolerance intervals of [DL Dul, [GL Gul, and [VL Vu] respectively:

0 DD
up(D)= | (D-DL)/dp DL<D<Dy
1 D2>Duy
0 G 2Gu
us(G) = | (Gu=G)/ds GLLGLGy
1 G<GL
0 V>Vu
w)y= | (F'y¥)/dv "LSVSf’u
1 V<vp 7

where the variables D, G, and ¥ represent the objective value of D-, G-, and
V-optimality to the design &n respectively. The graphical description of these
funtions is given in Figure 1. Now from (4), (5), and (7), we formally state
the ‘fuzzy' version of the multiobjective model (3) as follows:

Haximize{min(up(&n), He(€n), mv(%a))}. (8)
That is, our problem of constructing the compromise design is to find the
exact design €n satisfying the above (8).
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vy Vu

Figure 1. Membership functions
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X. Solution method

The model (8) is a nonlinear integer programming problem with the discrete
variables for which no efficient solution technique is known in general. The
close inspection of the model suggests the applicability of Mitchell’s DETMAX
algorithm. Welch(1984) suggests that the DETMAX algorithm can be generali‘zéd

to minimize an arbitrary design criterion C(En) over the set of exact designs.

v

H":,V:J”

For D-optimality, C(£n)=det M(En) and DETMAX is recovered. Alternatively, we"‘”'

with to maximize the compromise design criterion, C(£n)=min{(up(€n), uc(ﬁn).
uv(fn)) in (8)
Like DETMAX we attempt to improve an initial n-point design by a series of;

excursions. An excursion starts by adding or subtracting a point from the

it

current n-point design En¢1> and then performs a nunmber of additions or ~ B

subtractions of a single point, eventually returning to a possibley new °
n-point design E&n¢22. If C(En€22) ) C(€n1?), then the excursion has succeeded ;-

and £n2> is used as the start for the next excursion, whereas 1f C(En22) <

LR

(a€1?), a failure has occurred and En¢1> is again starting de31gn At each

step within an excursion, two decisions ard made: whether to add or subtract a
point and which design point to add or subtract accordingly. The values for
the first decision follow DETMAX and are described by Mitchell(1974) and Galil
and Kiefer(1980).

The algorithm to maximize the compromise design criteria C(¥n) deviates from

DETMAX in the choice of a promising point to add or subtract as required. If

the adjustment involves candidate xj, then element &n of the current design is
increased or decreased to €n+1 Or &n-1 respectively. The obvious generalizat-

ion of DETMAX is to add a point xj, satisfying.

C(En+1) =max{D(En+1) — G(&n+1) ~ V(€n+1)}

;N?X{X}ﬁ-l(gn)}(j - d(xj, En+1) — dave(Xj, ¥n+1)} (9)
jStaee, T
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or when subtracting, select xj to satisfy

C(En—l)zmaX{D(fn-l) - G(En—l) - V(En-l)}

ZJE??(.{.X;;H-l(En)Xj + d(xj, En-1) + dave(xj, En-1)} (10)

where c_i(xj. ¥n+1) and dave(xj, ¥n+1) denote the maximum of the variance of the
prediéted response and the average of the variance respectively, when xj is
addedlto En.

By Weich(1984), G—optimality would be prohibitively expensive in computatio-
nal cgnsjderation, and the results can also be disai)pointingi paradoxically

the D- or V-optimal designs often possess smaller values of G-optimality than

those generated by the G-optimality algorithm intended to minimize d(€n).
Fortunately, though, simple modification reduces time vet further, in the

criterion to add or subtract a point, the term d(xj, En+1) is temporarily

ignored at all other steps of an excursion. At the final step of excursions,

the term d(xj, En+1) is considered.
N. An Exmaple

Experiments with mixtures have received much attention in the literature;
Lornéil(l%l) provides a review, They involves explanatory variables with
nonnegative levels summing to one to represent the proportions of comporents
in ‘a mixture. Vuchkov, Damgaliev, and Yontchev(1981) (VDY) describe the
sequential generation of D-optimal designs for mixture experiments that also
include independent process variables.

We test the example such as Welch(1984). The example applies the modified
excursion algorithm for the construction of the comprise design to the case
three mixture variables and one process variable. A design point xci>1,--,
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xcij4 is therefore constrained such that

Xciyy * X¢idz * x¢i»3=1;

x(iye >0, s=1, 2, 3. (11)

The second-order model canonical parameterization given by VDY is

BsixX(irsXCidt + Baax?cidg.
{=8+

]

3
E(Y‘”ZE BsX(iys *+

AMe
Ma

This model has k=10 parameters. As ai design region suppose that the mixture

proportions are continuous between zero and one, and approximate their ranges =,

by the seven levels x(iye =0(1/68)1 (s=1,2,3). In contrast, assuse that the

process variable is confined to only three values coded -1, 0, and 1. With
three are 84 combinations of levels satisfying the constraints (11) t_o
comprise the design region.

To compare the compromise design of Welch's approach and our solution .
approach, the designs generated by both methods are given in Table 1. In table
1, we find the compromise design chosen which does well on the D-, G-, and V-
criteria without the list of Welch(1984).

Table 1. Design Properties for the Example with Three Mixture variables and ¢

One Process Variable

n -—95i§§§i93—— G(£n) V(En) D(&n)
D 1.0 0. 5488 2.6367
v 1.0 0.5235 2.6367
15 G 0.8917 0.5436 2.2236
C 0.9518 0.5555 2.5499

NOTE: C represents the compromise design generated by our method.
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V. Conclusions

We formulated the multiobjective optimization model to construct a comprom—
ise design. Then a fuzzy set theoretic solution approach was presented, which
has become accepted as a tool for dealing with a certain form of imprecision
inherent to multiobjective decision making environments. In order to solve the
problem, the proposed procedure utilizes the DETMAX algorithm which is podifi-
ed in the excursion and the criterion to add or subtract a point.

In Welch(1984), after excuting the generalized DETMAX algorithm for the each
criterion, a list of a specified member of the best designs was provided. How-
ever,""it 'is very cumbersome to find the list of best designs. And from the
list,‘} the choice of a compromise design is subjective if no design simultaneo—
usly;‘optimizes the three criteria. So, we use the modified DETMAX, considering
all the criteria(i,e, D-, G-, and V-optimality) at each step of excursions,
And & good compromise design is systematically suggested by the fuzzy set

approach,
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