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A GENERAILIZATION OF SIMONS?
RESULTS ON BEST APPROXIMATIONS
Sang—FHo Kum*

1. Introduction

In [10], Simons gave an existence theorem for certain families of quasiconc-
ave functions on a compact convex set and its application to locally convex,
normed, Hilbert and finite dimensional spaces. Bellenger generalized Simons’
existence theorem to paracompact setting. Recently, Park and Bae [9] removed
the paracompactness assumption in the result of Bellenger, and Park [8] used
this extension to generalize results of Simons [10] on fixed points.

In this paper, we are concerned with the results of Simons [10] on best app—
roximations which lead to an extension of the famous Fan's result [3, Theorem
2] in an interesting way. As an application of the existence theorem of Park
aﬁd Bae [9], we extend various results of Simons to more general cases, mainly
to noncompact cases.

Our starting point is Theorem O which is a noncompact version of Simons [10,
Theoren 2.1]. The usefulness of this theorem fully a appears in the rest of
the paper. We rely basically on the methods of Simons, however, we refine and

simplify several results of Simons by virtue of our own useful observations.
2. Preliminaries
A convex space X is a nonempty convex set (in a vector space) with any topo-

logy that induces the Euclidean topology on the convex hulls of its finite su-
bsets. Thus, a convex subset X of a topological vector space E with the relat-
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ive topology is automatically a convex space.

A nonempty subset L of a convex space X is called a c—compact set if for
each finite subset SCX there is a compact convex set LsCX such that LUSC
Ls. It is obvious that every nonempty compact convex set in a Hausdorff topol-

ogicql vector space E is a c—compact subset of E.

Let X be a convex space. We denote by )’E the set of all quasiconcave upper
semicontinuous real function on X. let L be a c—compact subset and X & nonem-
pty compact subset of X.

We first state the following due to Park [8,Theorem 2], which is a noncompa—

ct version of Simons [10, Theorem 2.1].

Tugorem O. (Park [8, Theorem 2]) Let X, X, L, and K be as above. Let Bbe a'

nonempty convex subset of X, and a,B:XXB——>R=[—OO,+oo] functions such that
{feBlalx,f)) B(x,f)} is convex for each xEX. Suppose that, for each fE€B,

0.1) Xs ={xeXlalx,f) <B(x,f)} is closed;
(0.2) XeDMs={x€K|f(x)=max f(X)}; and
(0.3) for each x€X\K, f(x)2sup fL) implies xEXs.

Then there exists an x€X such that x€Xs for all fE€B.”

If a is concave and 8 is convex in their second variables, then {feBlalx, )

» B(x,f)} is convex for each x€X. If a is l.s.c. and B is u.s.c. in their

first varibles, then (0.1) holds automatically. Threrefore, for X=L=K, Theo—

rem O reduces to Simons [10, Theorem 2.1].

From now on, we assume that X is a nonempty convex subset of a Hausdorff lo-
cally convex topological vector space E with the topological dual space E*.

A multifunction F:X—>=2F is said to be upper hemicontinuous (in short,
uw.h.c.) or a CLR map if for each fEE* and each real a, the set {xE€X|sup b
(Fx) {a} is open in X. V

Let m be continous seminorm on E. This assumption is different from that of

- 98 -



Sang-Ho Kun

Simons, who assumed that m is continuous with respect to the Mackey topology T
(E,E*). In fact, this different assunption was used only to simplify the proof
of Theorem 2 in Section 4. Thus our results remain true under the assumption
of Simons except Theorem 2.

We define two sets Bam and 4m as follows;

Ba={fEE*| |f(x)|<n(x) for all xEE},

An=[fEBa| sup lf(x)|=1].

-&. L x€E

m(x)<1

And also, we put
Hrll= sup |f(x)] for each fE€Bm.

xcE, m{x>{1

We say that T:X—>2B\{@} is a m—upper hemicont inuous map(simply mCLR map
as in [10]) if for all fE€4m, the map x—>sup f(Tx) is u.s.c. on X. An upper
hemicontinuous(or CLR in [10]) map is clearly m<CIR.

Throughout this paper, cc(E) always denotes the set of nonempty closed conv-
ex subsets of E.

3. Good approximation theorems

We use the same notations and circumstances of the previous section. We beg-
in with the following.

ProposiTion A. (Hirano et al. [4, Theorem 11) Let p be a sublinear function-
al on a vector space E, C a nonempty convex subset of E, and f a concave
function on C such that f(x)<p(x) for all xEC. Then there exists a linear
functional fo E such that

F(x) < folx) for x€C,
fo(xm) <p(y) for yEE,
- g9 -
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Tugorem 1. Let P,Q:X—>cc(E) and g:X—>R* an nonnegat ive real function.
For each fEBa, define Xr and Mt as follows:
Xt ={x€X|inf f(Qx-Px)<g(x)},
He ={x€K|f(x) =masf(x)}.

s d

Suppose that, b
(1.1) for each fE€Ba, Xt is closed in X; AN

(1.2) for each fE€E4m, MeCXsi and sl

(1.3) for each xEX\K and for each f€Ba, f(x)> sup f(L) implies xEXs. '.:20q
Then there exists an xoEX such that distm(Pxo,Qx0) <g(xo), where 2

distm(Pxo,0x0) : = infr(Qxo—Pxo) . Soawamid

Proof. Observe that (1.2) is actually equivalent to the condition that for -

5

all fE€Bm, MeCXt. Indeed, let fEBn\4m and xEMs be given(we may assume that

E4n and x€H ¢ By (1.2), we have

_f
0 ClfIl <1). Then 4rey I

" f T = (Qx-Px) = T f T ——rinf f(Qx-Px) <g(x).

Since g(x)>0 and O C I f 1 <1,
inf F(Qx-Px) < |l f 1 8(x) <g(x).

hence, Ht CXg. Taking B=Ba, alx,f)=inf F(Qx-Px) and Bix,f)=g(x), we can ea-
sily check that all the requirements of Theorem O are satisfied. Thus there
exists an xo€X such that for all f€B5m,
(1.4) inf f(Qxo-Pxo0) <g(x).
It remains to show that

distm(Pxo,Qx0) <g(x).

Suppose the contrary, i.e., inf m(Qxo-Pxo) <g(xo). Then there is an £) 0 such ’

that inf m(Qxo-Pxo) ) g(x0)+£. From Proposition A, with C=Qxo-Pxo, f(x)=g(xo)
+¢ for all x€C and p(x) =m(x) for all x€E, there is linear functional fo on
E such that fo(x)>f(x) for x€C and |fo(x)|<m(x) for all x€E. This fo
belo-ngs to Ba since m is continuous (see Treves {11, Corollary, p.64]). Since
fo(x) 2f(x) for all x€C,
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inf fo(Qxo—Pxo) ) g(xo)+e.
This contradicts (1.4), because fo€Bw. This completes the proof.

Remarks. 1. If P and Q are m—CLR and g(x) is u.s.c., (1.1) is automatically
true. In this case, for X=L=K, Theorem 1 reduces to Simons {10, Theorem
4.1].

2.Simons derived his theorem form the theorem of Mazur and Orilcz applied to
the seminorm m and the convex set Qxo—Pxo. We gave an easy proof by using Pro-
position.A.

We strengthen the continuity conditions on P and Q in the same manner as in
Simons [10]. We say that P,Q:X—>2E are m—continuous if they are both u.s.c.
and 1.s.c. into the topology defined by the seminorm m. Simons stated the fol-

lowing lemma without proof. We give a detailed proof to improve Simons’ resul-
ts slightly.

Lemva B. The function x—*distg(PX,Qx) is continuous.
Proof. Claim 1. The functions s—dista(Px,Qx) is u.s.c.

Fix x€X and £) 0. Take pEPx and QEQx arbitrarily. We define Up and V4 as

follows:

* Up: ={yEEIm(x—P) <_;—}r

Vq: ={yEE|n(x~q) (“g—}.

Since P and Q are l.s.c., there is an open neighborhood ¥ of x in X such that
for each zE€W, PzNUp=@ and QzNVq=0@. For pa€PzNUp and 9aEQcNVq, we have
r(pa—qa) Srpa—p)+m(p—q)+m(qq—q) .

Thus
m(pa—aq) Sm(pq)+e
and so,
distw(Pz,02) <m(p—q)+c.
Since p and q are arbitrary,
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distm(Pz,02) <dista(Px,Qx)+e for all ZEW.
This implies that the function x—>distm(PXx,Qx) is u.s.c.
Claim 2. The functions x—>dista(Px,Qx) is l.s.c.
Define two sets U and ¥ as follows:

!

pePx qeQx
where wontl
Up={yEE|Im(x-p) (—;—} and Vp={yEE|R(xq) (-—Z—}. - e
Then U [resp. ¥1 is an open neighborhood of the set Px (resp. @x1. o oy 2l

Since P and Q are u.s.c., there exists an open neighborhood W of x in X such” (xQ
that for each z€V,

PzCclU and QzCV.
For each pqEPz and qq€Qz there exist pEPx and gEQx sO that

»(pa—p) <—§— and =m(qa~9) <—§—.
Now consider the inequality
r(p—q) <r(pgp)+w(pa—da) *r(3a—)
<m(paqal+e -
Since paEPz and qa€EQe are arbitrary, we have
dista(Px,0x) <m(pq) <dista(Pz,Q2)+€ for all z€V.
Thus the function x—distm(Px,Qx) is 1.s.c. as desired. This completes the
proof.

Now we can state the following.

CoroLLarY 1. Let P,Q:X—>cc(E) be w—CLR and l.s.c. with respect to the top~
ology of E defined by the seminorm R. Given n€(0,1), we assume that for each
xEX\K and fEBa, f(x)2sup f(L) implies

inf f(Qx-Px)<n distm(Px,0x).
Then there exist an f€Bm and an xEHs such that
inf f(Qx-Px) 27 dista(Px,Qx).
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Proof. Define g:X—>R* by g(x)=n distm(Px,Qx) for each x€X. Note that g
is u.s.c. with the aid of the proof of Lemma B because P and Q are l.s.c. We
consider two cases.

Case 1. distm(Px,Qx)) O for all x€X.

Then dista(Px,Qx) ) g(x) for all xEX. Assume that for any f€Ba and xEHs,

inf F(Qx-Px) {(n distm(Px,Qx)=g(x).
Since g is u.s.c. and P and Q are mCLR,
Xs ={xeX|inf f(Qx-Px)<Lg(x)}

is closed for each f€Bn. It is nc;t hard to see that the remaining requiremen—
ts of Theorem 1 are also satisfied. Hence there is an x€X such that dista(Px,
Qx) <gtx), a contradiction.

Case 2. distm(Px,Qx) =0 for some x€X.

Taking f=0, the zero functional, we trivially obtain the result.

This completes our proof.

Remark. Clearly, m—continuity implies m—CLR and m-1.s.c.. Hence, Corollary 1
improves Simons’ result in the sense that the condition on thd domain X and-

the continuity conditions on P and Q are weakened.
4. Best approximation theorems

Tueorem 2. Let P,0:X—>cc(E) be m—continuous. Suppose that for each x€X\K
and fEBm, f(x)2>sup f(L) implies

inf f(Qx—Px) g—%—distm(bc,gx).

Then there sxist an fE€Bx and an xEMs such that

inf f(Qx-Px) =distm(Px,Qx).
Further if for all x€X,

(2.1) distm(Px,0Qx) ) O,
then f€An.
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Proof. From Corollary 1, for all k>2, there are fkE€Bm and xx EMrx CK such
that

(2.2) inf fu(@ae-Pxa) = (1- —i—) di stm(Pxa, Q%) »

Note that the set {kERIk>2} is a net ordered by the usual order in R. Since
K is compact, by passing to an appropriate subnet xk:, we may suppose that
there exists an x€K such that xx'—X. Let bits
U={x€EIn(x) L1},
vo={feE*|1f(x)1 L1 for all x€U}.
s3aad

Recall that U° is the polar of U. The Banach-Alaoglu theorem states that Ue is
weark* compact. Actually, it is compact in the topology E** of uniform conver— . ..
gence on each compact subset of E(See [5, Exercise 18.E] or [6, Theorer 2.21).
In this case, Bm is a closed subset of U° in the topology E*k. Hence there ex-
ists an fE€Ba such that a a subnet of kx+ converges to f in the topology E*k. o
In fact, we may assume without loss of generality that {kx-} satisfies this
property.

Claim 1. x€EHs. B

Since kx'—f uniformly on the compact set K, the dual pairing <, on BaXK
—R, defined by {f,yw=f(y), for each fEBa and yEX, is continuous with repe-
ct to the product topology on Bo XK. Therefore kk-(xx') converges to f(x). Si= .
nce xx* €EMfx’,

Fier () <fke () for all yEX
and so, by letting k’—>©, we obtain tha
F(M Lf(x) for all yEX.

This forces us to get the result.

Claim 2. inf f(Qx-Px) =distm(Px,0x).

Ve follow the fashion of Simoms. Fix pEPX, qEQx and £) 0. Since P and Q
are m-1.s.c. and xx'—x, there are two nets {px'} and {qx-} such that px' €
Pxx- [resp. qx- €EQxx-] and px-—p [resp. qx'—9q]. Hence there is an ko such
that for any k’ 2ko,
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(2.3) R(px:=p) {5 and m(qu-—) (=

From (2.2) and (2.3), for k’ 2ko,

fie (qre—pre) 2 (1- —;1;7) distm(Pxc: ,Qxk* ),

frr (=p) 2 fx (=px )= | fx Nlmlpx—p) ) fi (=pxcr ) %

fier (@) 2 fie (que)= |l fie Il =) ) e (qer)= 5

hence

i (g-p) = (1- —%) dista(Pxc: ,Qxk" )¢.
Thus for ‘all pEPx and qEQX,
lim jnf fx: (g-p) >distm(Px,0x)
from which
. £(q-p) >dista(Px,x).
Since this holds for all pEPx and 9€0x,
inf F(Qx-PX) >distm(Px,0x).

Moreover, the reverse inequality is trivial. Therefore,the conclusion follows.

Suppose, finally, (2.1) in true. Form Claim 2, f*0. Let g=—-—‘l; T
i
Then-g€4n and | gl =1, hence,

dista(Px,Qx) > inf g(Qx-Px)

=hinf F(Qx-Px)

1
—mdlstm(Px,QX) > 0.

Thus || f |l >1, from which it follows that | f| =1,i.e., fE4n, as desired.
This completes the proof.

For a normed vector space E, we have the following consequence. However, we
can simplify the proof in this case, which consequently gives a short proof
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for Simons’ result.

Tueorem 3. Let P,Q:X—>cc(E) be continuous. Let L be a compact convex subs-
et, and K a nonempty compact subset of E. Suppose that for each x€X\ and f€
e* with ||l €1, f(x)> sup f(L) implies

L0
inf f(QePx) S—dista(Px,0X). ' ses
Then there exist an fEE* with || f |l <1 and an x€EHt such that inf F(Qx=Px)= 2%
dist(Px,Qx). Further, if for all x€X,

dist(Px,Qx)) O
v l;i:nﬂ
then || f Il =1.
Prrof. We have only to modify Claim 2 in Theorem 2 as follows:
Fix pEPx, qEQx and £) 0. Since P and Q are l.s.c. and xx'—X, there are

two subsequences {pk-} and {qx-} such that Pk EPxx’, qr' €’y PRI TP and
qx*—q. Hence there is an ko such that for any k’ 2ko, |

3.1 lpe-pll (& and ol <5~

From (2.2) and (3.1), for k’2ko,
(3.2) Fir (que—pke ) 2(1- —;;)dist(m-.m-x

Since pk'—p, gk’ —q and fx'—f, we have fi'(qx-—px*)—f{g-p).
By Lemma B we see that dist(Px:,Qac:)—dist(Px,Qx). Hence we obtain from.:
(3.2) that
f{q-p) >dist(Px,0Qx).
Since this holds for all pEPx and q€E0Qx,
inf f(Qx-Px) >dist(Px,Qx).

Moreover, the reverse inequality is trivial. Therefore,the conclusion follows.

Remark. Theorem 3 is a noncompact version of Simons [10, Theorem 5.1]. Simo-
ns showed how Theorem 5.1 leads to an extension of Fan [3, Theorem 2]. For
more discussion, refer to Simons [10, Remark 5.3}. On the other hand, we can
also generalize Simons (10, Corollary 5.2]. We omit it here.

In what follows we suppose that (E, [[- I|) is a normed vector space and X is
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a nonempty weakly convex subset of E. let E have the Il - | topology and X the
weak topology. We only state our final result without proof which is easily by
employing a similar process in Claim 1 of Theorem 2 and Simons’ argument.

TuEoREM 4. Suppose the E* is locally uniformly convex. Let P,Q:X—cc(E) be
contimuous. Let L be a weakly compact convex subset, and K a nonempty weakly
compact subset of E. Suppose that for each x&€X\K and fEE* with L1, 500
>sup f(L) implies .

inf f(Qx—Px)5;-%—dist(Px,ck0.

Then there exist an fEE* with || f| <1 and an xEMs¢ such that inf fQx-Px) =
dist(Px,Qx). If further for all x€X,
dist(Px,Qx) > 0
then | £l =1.
RE;};R'K. We can easily obtain a Corollary to Theorem 4 which is an improveme-

nt of Simons [10, Corollary 6.2]. We omit it here.
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