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1. Introduction

We consider the simultaneous estimation problem of parameters from
several independent exponential-type distributions. First, Berger (1980)
studied quite extensively with some approach methods. He suggested various
improving approach methods of usual estimators on the exponential mean
vector under different quadratic losses. and proposed a number of estimators
using these approach methods. He also improved an estimator on the natural
parameter vector of some exponential type distributions under the squared
error loss.

Estimators alternate to Berger’s in the gamma case was proposed by
Das Gupta (1986). And Ghosh and Parsian (1980), Ghosh, Hwang and Tsui
(1984) and Ghosh and Day (1984) generalized Berger’s (1980) results.

Let X; = (X1i,...,Xn;i), 2 = 1,...,p be independent random samples
of size n; from exponential distribution with parameters 6 = (6y,...,6,).

Equivalently Y = (Y3,...,Y,) where ¥; = E;’;l X i is the sufficient statistic
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having pdf

14 en.

f(ylo) = H

nl

“lexp(—biyi), Vyi>0 (1)

where all 6;’s (> 0) is unknown and all sample sizes n; are given. We want

to estimate § = (6,,...,0,) by 6§ = (61,...,6,) under the loss

P
L(6,8) =D [6:6," — log(8:67") ~ 1], (2)
i=1
and for estimating the mean vector 71 = (677, ... ,6;1), the loss
P
L(07%,6) =) [6:6; — log(6:6:) — 1]. (3)
=1

These losses are called as entropy losses which correspond to an entropy
measure of distance between distributions indexed by 6 and §. An analogous
loss was considered in James and Stein (1961) for the estimation of the
variance-covariance matrix of a multinormal distribution.

The usual estimator over the vector of means 6!

Y; Y,
) =0 )
ny np
"'(Xl’ P)
=X
where X; = Y;/n;, i = 1,...,p is the uniformly minimum variance unbiased

estimator (UMVUE) as well as the maximum likelihood estimator (MLE).
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Are the above losses invariant ? Yes ! Since 6;’s are scale parameters, we
consider the group G = {g. : g(z) = cz,¢ > 0}. G, G and G are isomorphic.

For every g in G and a in G,
L({3(8)} !, gu(a)) = Z[ﬁc;(9i) -Gk (ai) — log(ge.(6:) - Gri(ai)) — 1]

p
= Z[cik,ﬂ;ai — log(cikibia;) — 1].
i=1
If we choose k; = Ci‘, t=1,...,p, it is equal to L(#7!,a). Hence there exists
a* = gi(a), where k = (ky,...,k,) and k; = cli, ¢t =1,...,p. Therefore the

loss (3) is invariant under G = {g. : g.(z) = cz,c > 0}. Similarly to the loss

(2), it is also invariant under the group G.

We will find the best invariant estimator 61(y) the best invariant esti-

mator of 67!, under the loss (3). But the estimator 6!(y) is same to 6%(y).

If min;{n;} > 1, the best invariant estimator, of # under the loss (2),

np —1 n,—1
§H(Y) =( ly; Pyp )

is UMVUE.

Let R(6,6) = EY[L(8,6)] denote the risk function of decision rule o(y) at
a particular value 6. And we say that 6* uniformly dominates §, if R(6,6*) <
R(8,6) for all values of 8 with strict inequality for some 6. In this case, we
say 6* is improved from é.

In univariate case, that is p = 1, 6° and §* are admissible for 6~! and
8, respectively, from Stein (1959) and Brown (1966). For p = 2, Dey et al.
(1987) proved the admissibility of §°(Y") for estimating 6=! under the loss
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(3), when min{n;,n,} > 4. They did for p = 2 the admissibility of 6(Y)
for estimating 6 under the loss (2), when min{n;,n,} > 5. They also proved
the inadmissibility of 6°(Y) and §%(Y’) for estimating 6~! and 6 respectively,
when p > 3. They showed the inadmissibility for the generalized Bayes
estimator of (6%, ..., 0;’,” ) with respect to (possibly improper) prior with pdf
12, 6% under the loss

ij 67 (67" — log(nif; ") — 1] (4)

provided certain relationships exist among the m;’s, n;’s, k;’s and by’s.

Berger (1980) and Das Gupta (1986) improved the best scale invari-
ant estimator under a generalized weighted quadratic loss. Their method is

finding the solution 6*, to
Ayr,..,yp) <0

where A(y1,...,yp) = R(8,6%)— R(6,6"). componentwise, the estimators

are of the form

Y
—— 71+ ¢(¥))-

Ghosh and Auer (1983) developed a pseudo-Bayes estimator under squared

error loss using an inverse gamma prior distribution, when all sample sizes
n;’s are equal. It is determined by adjusting the shrinkng factor of Bayes
estimator toward a prior Bayes estimator by a multiple of k¥ whre k is chosen
so that it minimizes the risk of new estimator. Albert (81) proposed the

estimator of Poisson parameter similarly to above approach.

It will be considered the development of exponential parameter estima-

tors by controlling the shrinking factor of Bayes estimator toward a prior
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Bayes estimator under above entropy losses using appropriate prior distri-
bution. We will consider a hierarchical Bayes approach. To model the sim-

ilarity in size of the parameters 6;,...,6,, we assume that 6y,... ,0p are
exchangeable. This prior information is represented by letting 6, LI 6, 1

be a random sample from the conjugate prior

1 1
ﬂa[‘(a) (gi—l)a+1 €

(87 |a, B) = xp(——), a,B>0 (5)

-1
8o
with hyperparameters a and (. It will be said in section 2 to reparameterize

(a,B) into (p,7). p is used as so-called prior Bayes estimator of 6~! and

given by
1
y af’

The parameter p is the best prior estimate of =1 in the sense that the prior
expected loss is minimized componentwisely at 6; = p.

We will consider the cases when p is known and when g is unknown,
with interest. This considering is for the goodness of prior selection. That is,
it is possible that, through experience, the scientist may believe he or she has
a reasonable prior guess for the mean lifetimes in which case u is considered
known. On the other hand, the scientist may believe that the past data has
not been gathered accurately enough to make a reasonable guess and thus
desire to assume g to be unknown. If u is known, the hierarchical model is
as follows:

6~ |u,y ~ inverse — Gamma(y,~)
¥~ w2
where the second stage prior 72 is noninformative. In contrast, p is unknown,
the hierarchical model is as above with the last expression replaced by
(157) ~ 72
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where 73 is now a noninformative prior for the hyperparameters 1 and ~.
The noninformative prior is used to model the uncertainty of the location of

the unknown hyperparameters.

The best invariant estimator will be found and hierarchical Bayes (HB)
estimators are developed for y in section 2. In addition, the empirical Bayes
estimators are improved for y. In section 3, we will compare the two ap-
proaches suggesting the preference of the HB approach. The hierarchical
Bayes approach is a purely Bayesian approach with a hierarchical prior and
the empirical Bayes approach estimates the unknown hyperparameters of
the first stage prior from the marginal density using maximum likelihood. In
section 4, the y unknown case is considered. Since the purely HB approach
is difficult in computation, it is avoided. However a pseudo-hierarchical ap-

proach or a combination of HB and EB approach is employed.

For comparison of estimators in this paper, Dey et al. (1987) is used.
We will conclude by briefly outlining how one can develop approximations

to estimators.

2. Improvement of HB and EB Estimators

Let us find the best invariant estimator, 67(y), of the exponential scale
parameters which situation is specified in previous section, under the entropy

loss in above section. For convention, let \; = 6‘,-"1, t = 1,...,p, that is

,\% = 6;. Then, the loss function is as following

L(\a) = Z(-:-l ;)-1)

And to convert to location parameter problem, let n; = log A;, z; = log y;

and action a* = loga ¢ = 1,...,p. Then componentwisely 67*(z;) =

— 94 —



Sang Jeen Lee and Choon Il Park

2 + k. To find the value of k.
L(ni, 6™ (2:)) = explzi + k=) — (2i + k—n;) — 1.
Hence, the risk is
R(n;, 6"*(Z:)) =EL(n;, 6™(2:))
=EoL(n:,6'(Z;))

=Eo(exp(Zi + k) = (Zi + k) - 1)

=e*Eo(e%) — EoZ; — k — 1.
To minimize this value,

dR k Z;
%—GE()C —1=0

The best invariant estimator in location parameter problem is

1

Ix - ..
6" (zi) = z +1°g(E0eZ-')

So, the estimator in original problem is

(i) = exp{6"*(log y:)}
%

ny

=I;.

In our situation, the best invariant estimator under the entropy loss is equal
to UMVU estimator and MLE.
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Now, we consider improving problem through HB approach when the

best prior estimator y is known. The prior density of ) is given by

2(\lys 0 8) = || s iy exp( )
L Zoray e PN,

Thus, the posterior density of A given y,a and [ is given by

4 (y. + l)0+ni
t B
W(’\lyaa’ IB) - H{ F(a + ni) Aq+n,~+1
=1 1

exp(—(yi + 87T} (6)

a product of p independent inverse Gamma (& + ni, yi + B~1) distributions

for: = 1,...,p.

Assume that Aj,...,), are exchangeable. For reparameterization of
(a,B) to (i, 7v), we find the best prior estimator g, the prior expected loss

with respect to the prior of \;, inverse Gamma (a, B), is
E)\‘Ia’ﬂL(/\,',(S,') ZEA"M’ﬂ(&i/)\,’ = log(é,-/)\,-) - 1)

=, BN L —logs; — ENIF log(-) ~ 1.

1

For minimizing this,

dEL _ _sijapl o1

Therefore, we find the best prior estimator,

1
H=Xla.f L
Ez\.la,ﬂ,x

1
-(-l—ﬁ’ (7)
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since

E)\.la,ﬂ(l//\ //\—1 eXp( ;é(/\’il_\*.l))d)‘l
_T(a+ g
~ T(a)pe

=a- f.

The estimate at the first stage of the Bayesian hierarchical analysis, condi-

tional on the values of y, @ and g, under the above model and the entropy

loss, is given by A= (,Xl, e ,):p) whose component is

QY 1
_E’\‘ly(l//\i)

_Yi top
a+n;
P, a
= Xi+ 2

a+n; a+n;

Ai

§ince
Na+n;+1)
F(a+ n;)

=(a+n)(yi + 677"

EXV(1/)) = (i +87)7"

When vague prior of A, 7(A) = [[’_, A7, which can be taken from inverse

Gamma with parameters that a approaches 0, is considered, the Bayes esti-

mator is

iy = Xi,

which is from A; by letting « approach 0. It is the best invariant UMVU

estimator as well as MLE. We can hence represent the Bayes estimator, ):i,

as a convex combination of the UMVUE X; and the best prior estimator y.
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Consider the limiting value of X; as a approaches co.

lim & = m A0+
a—oo a—oco Y pu+ «

=u.

The Bayes estimator, X, converges to the best prior estimator, p, as a ap-
proaches oco.

For more reparameterizarion, let @ be 1/4. Then the Bayes estimator is

transformed as

/\Ai ___E)\;Iy,“r,u(l/)\i)

n; % v

=Xt
!+ n 7!+ ni s
TN YN
= i+ (1= .
1+ 9n; ( 1+ 7n,)

And the Bayes risk of this is

r(Xi, i) =EX R/ —log(Xi/ ) — 1}
=Xi - BX (A7) —log A + BN #(log ) — 1.

For the HB estimator for A, Y3,...,Y} are marginally independent with den-
sity,

m(yily, 1) =/[lfi|/\i][/\il7,u]dAi
_ I‘(a + ni)y?‘_l
[(n)T(a)B(y; + B~1)atn

_ C(1/v + ni)y™ ~pt/
D(n) T/ )V (yi + p/y) M v+
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The HB estimator of A is given by 67 B(y) defined componentwise as

518 (y) =E(\ily, u)

=%:%i + (1 = 7:)p (9)
where
x. E[n—| !
71 1/’}’+Tl1 Y’#

The expectation is taken over the posterior distribution of 4 given by

w(yly, 1) o< [ [ myily, ) - ma(v)

=1
T L(1/y 4 na)y ™
= ;I;I] P(ni)r(1/7)ﬂl/7(yi A - 5_1)1/7‘{’"; . 772(‘7).

Now, we consider the EB estimator for A. The necessary method for EB

approach is to maximize m(y|y, p).
L(v) =logm(yly, 1)

14
=log [ [ m(vilv, )
=1

P
= logm(yily, )
=1
) 4
= [logT(v™" +1) + (ni — 1)log y; + 7" log
=1

~logT(n;) —log'(y~!) —7 " logy
— (7! ) log(ys + D))
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Therefore
I'(y7h)

9r _ _ _[Z 1‘((;:1 :_“ + plog(p/7) —p T(7-1)

+p— ) log(yi +u/7) - Z " /jr/Z/v

If L is maximized at neither 0 nor 1, the maximum can be found by setting
above expression equal to 0. By using the solution of the equation ¥, we can

find an EB estimator, given 6€2, defined componentwise as

ny _
zi+[1- -l

§EB(y)=— 7. =t
s =, 1/3 + n,

R 1
= —Z; t+ Z H
14 9n; 1+ +n;

This approach ignores the error with respect to the estimation of the hyper-
parameters. But the HB approach models the uncertainty of the hyperpa-
rameters by the second stage prior. This is the main advantage of the HB

approach over the EB approach.
3. Comparison of HB and EB Estimators

In this section, we compare the HB and EB estimators that are found

in previous section. First, we consider the shrinkage. The ¢-th component

shrinkage of 678 and €8 away from the MVUE and invariant estimator ;
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toward the prior mean 4 are following respectively

88 — 2 (1 —3i)(—=i+p)
K= Ti H—Z;
=1-%
5iEB—:Ei -1 1

U —z; 2[1-1-:)/72,‘:“ + 1+’?ni
=1/(1 +4n;)

ul/(p — ;)

where : = 1,2,...,p. Hence, both 6§78 and §£8 shrink the UMVUE X
toward the prior mean pu.

As further study, Simulation study is needed for comparison of §45 ,
6EB and the UMVUE X. Moreover, we need to compare them with other

estimator for 6 or ).
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