ChangWook Kim
x) 0, then p is uniquely determined.

CoroLLARY 3.11. Let (S,d) be a metric space and {Ti} (i=1,2,--) be a family
of mappings of S into itself satisfying the condition: for each i=1,2,-,
d(Tiq,Tir) <k d(q,r) for all q,r in S and for some k, 0 <k {1. If for all q in
S, the sequence {Tiq} converges to Tq and if pr—>p, where pES, then p is a
fixed point of T and if T satisfies the condition such that there exists a
constant k, O {k {1 such that d(Tq,Tr) <k d(q,r) for all q,r in S, then p is

uniquely determined.
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THE WEAK ATTOUCH—WETS TOPOLOGY AND
THE METRIC ATTOUCH—WETS TOPOLOGY

Sangho Kur*

ApsTracT. The purpose of this paper is to find some relations between
the weak Attouch-Wets topology and the metric Attouch-Wets topology for
the nonempty closed convex subsets of a petrizable locally convex space
Y. We verify that the former is coaser than the latter. Moreover, we
show that X is normable if and only if the two uniformities determining

the two topologies for the closed convex subsets of XXR respectively . (..

are equivalent. Our results strengthen and sharpen those of Hola in
terns of uniformity itself rather than the topology determined by the

uniformity.

1. Introduction

As a successful generalization of the classical Kuratowski convergences of

closed convex sets in finite dimensions [8], Attouch-Wets topology (1] in a
general normed space X has lately attracted considerable attention. The reason
why this topology receives a good deal of attention is that it is stable with
respect to duality without reflexivity or even completeness. This Attouch-Wets
topology is the topology of uniform convergence of distance functionals on
bounded subsets of X, and is well suited for approximation and convex
optimization. Its rich developements can be found in the literature(2][4](5].

Recently, Beer [3] defined, in the context of a locally convex space, the
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weak Attouch-Wets topology and the strong Attouch-Wets topology for the
nonempty closed convex subsets. These topologies are, in general, different.
In fact, it is essentially only in the normed setting that we get the same
topology (see [3, Theorem 4.13]). One [3, Theorem 4.9) of his main theorems
tells us that the strong convergence of a net of continuous linear functionals
on Hausdorff locally convex space X can be explained in terms of the
convergence of the corresponding net of its graphs in XXR with respect to the
weak Attouch-Wets topology for the closed convex subsets C(XXR) or XXR.

On the other hand, Hola [6] considered a “petric” Attouch-Wets topology
for the closed convex subsets of a metrizable locally convex space, equipped
with a translation invariant metric d. By an delementary method in functional
analysis, he has shown that the metric Attouch-Wets convergence of graphs of
linear functionals is stronger than convergence of the functionals in the
strong topology, and that two notions coincide if and only if X is normable.

When X is a metrizable locally convex space with a translation invariant
metric d, there are two topologies, namely, the weak Attouch-Wets topology and
the metric Attouch-Wets topology for the nonempty closed convex subsets of X.
In that case, it is natural to ask what the relation between the two
topologies is. In the présent paper, we will show that the latter is stronger
than the former [Theorem 1]. Moreover, X is normable if and only if the two

topologies for the nonemply closed convex subsets  [Theorem 2]. Our results

strengthen and sharpen those of Hola [Theorem 3 and 4]} in terms of uniformity
itself rather than the topology determined by the uniformity.

2. Preliminaries

We mainly refer to Beer [3]. As mentioned in the introduction, if X is a
normed space, then the Attouch-Wets topology Taw on the nonempty closed convex
subsets C(X) is the topology of uniform convergence of distance functionals on
bounded subsets of X. As is well-known, the Attouch-Wets topology Taw can be

- 10 -
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presented as a uniform space. There are two standard uniformities representing
Taw. A weaker uniformity determining Taw has a base consisting of all sets of
the form

{(4,C) |ANBCC+el and CNBCA+el}
where U is the solid unit ball of X, B is a bounded subset of X, and &) O.
Motivated by this, Beer [3, Definition, p.71 gave the following definition in

the locally convex setting.

Let X be a locally convex space. The weak Attouch-Wets topology T,Yw on C(X) "

is the topology determined by the uniformity with typical basic entourages of

the form
Q(B, 1) ={(4,C) |ANBCC+U and CNBCA+U}

where B is a closed bounded balanced convex subset and U is a convex balanced o

neighborhood of the origin.

Now we turn our attention to the metric space setting. Let (X,d) be a S

metrizable space with a compatible metric d. For xo€X and &) 0, Salxo,£l]
denotes the open d-ball with center xo and radius £€) 0, and Sdal4,e]l=UaeaS4a
[a,e] does the e-parallel body for a subset 4 of X. Let CL(X) be the nonempty
closed subsets of X. The Attouch-Wets topology Taw(d) on CL(X) is presented

by a uniformity Sq vhich has a countable base consisting of all sets of the

form
Valxo,n] ={(4,C) 14N Salxo,n] csd[c,rll] and cmsd[xo,n]csdu,%]}

where xo is a fixed but arbitrary point of X and n€Z*. In particular, if X is

a metrizable locally convex space with a translation invariant (in short,

invariant) metric d, the relativized Attouch-Wets topology Taw(d) on C(X) the

nonempty closed convex subsets is called the “metric” Attouch-Wels topology
in this paper.

In the sequel, X will be a metrizable locally convex space with an invariant
metric d, X* its continuous dual, and U will be the family of convex balanced
neighborhoods fo the origin 6. The product XXR will be understood to be

-11 -



Sangho Kum

equipped with the box petric, denoted by dX| - 1. Also we denote by C(X) the
nonempty closed convex subsets of X. Let us write BC(X) for the family of all

closed, bounded, balanced convex subsets of X.

3. Main Results

A set E in X is bounded if, for every neighborhood ¥ of 6, we have ECtV for
all sufficiently large t. A set ECX is said to be d-bounded if there is a
number; M (00 such that d(x,y) <M for all x and y in E. In general, the bounded
sets and the d-bounded ones need not be the same, even if d is invariant. If X
is a normed space and d is the petric induced by the norm, then the two
notions of boundedness coincide; but if d is replaced by dy =d/(1+.d), (an
invariant metric which induces the same topology) they do not. However, we

always assert the following.

Lemma. Let X be a metrizable locally convex space with an invariant metric d

Then_ ihe family of d-bounded subsels contains the family of bounded ones.

Proof. Let E be bounded but not d-bounded. We may choose 2 sequence{xn} in E
satisfyiﬁg d(6,xn) >n2. Since d is invariant, we have

d(6,nx) <nd(6,x)
for every x€X and for n=1,2,3,-". Taking x=xn/n, we obtain

130, xn) <d(6,%).
n n

Hence d(6,xn/n)(>n) does not tend to zero. Since d is a compatible metric,
this implies xn/n is not convergent to the origin 6. This contradicts the

boundedness of E([9,Theorem 1.30, p.221).
This simple lemma plays the crucial role in our results.

Theorem 1. Let X be metrizuble locally convex space with an invariant metric
- 12 -
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d. Then the uniformity X4 delermining Thw for C(X) is stronger than the one

doing Taw for C(X). Therefore Thw is coaser than Taw(d).

Proof. It is sufficient to verify that every basic entourage Q(B,U) contains

some Ua[@,n] in Ta where BEBC(X) and UE€Y. Since B is bounded, by Lemma

there is an no€Z* such that BCSa[0,nol. The family {Sal6,1/nl}e_, is a local ’

base of the origin 6, so we may assume that Sa(8,1/nel CU. Observe that for a :;

subset ECX and r) 0, we have SalE,r]=E+Sal6,r] because d is invariant. Then
for 4,C€C(X) we have

ANSal8, nol CSd[C.:;—O] c&[e,la] —>ANBCC+

CﬂSd[e,no]CSd[A,%;] = A+Sd[9,':i;]’———>c NBC A+l

Thus Ua[0,n0l C Q(B,U) as desired. Therefore, Thw is wesker than Taw(d).
As a direct consequence, we obtain the followings.

Corollary. (Hola [6, Theorem 3]) Let {fn} be a net X* and let fEX*. The Taw

......

(dX| - |)—convergence of Grfn to Grf implies that fa is convergent to f in the -

strong topology. Here Grf denotes the graph of f in XXR.

Proof. By Theorem 1, Gr fn converges to Gr f in the weak Attouch—Wets topology

T‘}fw for C(XXR). Moreover,'tyiw—convergence is equivalent to the strong

convergence of fn to f in virtue of Beer’s result [3, Theorem 4.8]. This

forces us to get the result.

Remark. In the meantime, we provided a simple proof for ‘Hola’s result [6,

Theoren 3].
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Theorem 2. X is normable if and only if the {wo uniformities {Q(B, 1} and

S ax determining AW and Taw(dX | - 1) for C(XXR) respectively are equivalent

(If X is a normed space, we lake d=ll - | the norm).

Proof. If X is normed space and d is the metric induced by the norm I - Il, the
box metric dX|-| is norm (easily checked). Hence the boundedness and the
dX | - |-boundedness on the normed space (XXR,dX|-1) coincide. Recall that the
ball Sax [6,n] is convex balanced in this case. It is direct from these and
Theorem 1 that the two uniformities {Q(B,0)} and Xax for C(XXR) are
equivalent. Conversely, if the two uniformities are equivalent, then Taw and
Taw(dX | -1) for C(XXR) are the same. Thus, the strong convergence of a net
{fn} to f in X* coincides with the Taw(dX|-|)-convergence of its graphs by

mearns of Beer’s result (3, Theorenm 4.9]. By Hola’s result (6, Theorem 41, X

is normable. This completes our proof.

Remark. Theorem 2, in fact, is a strengthened form of Hola’s theorem [6,
Theoren 4].
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