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Abstract

The advanced development in many fields of engineering and science has caused many inter-
ests and demands for crashworthiness and non — linear dynamic transient analysis of structure
response. Crash and impact problems have a dominant characteristic of large deformation for
short time scales with material plasticity. The structural material shows rate — dependent
behaviors in those cases. Conventional rate — independent constitutive equations used in the
general purposed finite analysis programs are inadequate for dynamic finite strain problems.

In this paper, a rate — dependent constitutive equation for elastic — plastic material is devel-
oped. The plastic stretch rate is modeled based on slip model with dislocation velocity and its
density so that there is no yielding condition, and no loading conditions. Non — linear hardening
rule is also introduced for finite strain. Material constants of present constitutive equation are
determined by experimental data of mild steel, and the constitutive equation is applied to uni-

axile tension loading.
I . Introduction

In recent years, there has been a growing interest and demand in the crashworthiness of struc-
tures for the safe and reasonable design, which has a characteristic of the nonlinear problems
involving large deformation over short time scales. From the end of 1970's, hydrocodes such as
NIKED, DYNA2D, DYNA3D, DYTRAN, etc. have been developed for the numerical analysis of
these problems. By the way, the structural materials show rate — dependent behaviors rather than
rate — independent ones with increasing strain rate' *. Therefore, conventional rate — independent
constitutive équation has a limitation for the analysis of large deformation finite strain problem
such as crash or impact analysis.

Perzyna* proposed Perzyna - type rate — dependent constitutive equation in 1963, introducing
relaxation functions and drawing dynamic yield condition. On the other hand, Gilman® suggested
Johnston ~ Gilman - type rate — dependent constitutive equation in 1965, using the model of dislo-
cation velocity and dislocation density. Rice® established a theoretical framework of a flow potential

for rate — dependent inelastic behavior in 1971. Recently, Paglietti” explained the elastoplastic
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deformation based on the Bell's experimental results, by interpreting an elastic limit by the ther-
modynamic theory and by describing rate — dependent plastic deformation as the change of elastic
limit. However, these models have not yet been arranged, and practical constitutive equations
applied to these models have not been published.

Perzyna - type and Johnston — Gilman - type are usually used at present as the rate - dependent
constitutive equations® *”. That is because these types are convenient to approximate the experi-
mental results of dislocation velocity to exponential rules!. Since the exponential rules do not con-
sider dislocation density, it is hard to apply these to mild steel in which the change of dislocation
density senstively affects the plastic deformation behavior. Though Johnston - Gilman - type con-
stitutive equation is used, it has not yet been applied to hydrocodes, the range of its application is
still narrow, and it is not generalized to apply to the general purpose finite element programs.

The objective of this paper is to develop large deformation, rate - dependent elastic plastic consti-
tutive equation, by employing the slip model to represent well the plastic deformation behavior of
mild steel for improvement of the above problems, and by introducing a nonlinear hardening to
broaden an applicable range of strain. The others are to develop the computational algorithm
applicable to the finite element programs and hydrocodes, and to enable to analyze more reasonably
large deformation, dynamic plastic problem such as collision and stranding of ship. Mild steel is the
object of the developed constitutive equation here, body — centered cubic lattice material is also pos-

sible to be applied to.
I. BASIC FRAMEWORK FOR THE CONSTITUTIVE EQUATIONS

Assuming elastic and plastic deformations to be non - ductile, Helmholtz free energy can be com-

posed of the elastic and plastic terms as follows :
W(Ee: Hh Hk): We(Ee)+ l/fp(I_II: Hk) (2 1)

where E, is Green strain tensor, H; and H, are the internal variables indicating isotropic hardening
and kinematic hardening, respectively. Assume that the fourth order tensor, constant, C, is intro-

duced, and that the elastic free energy can be expressed as follows :
1
pu/e(lie):?Ee :C:E, (2.2)

Since Green strain tensor E, and the 2nd Piola - Kirchhoff stress o, are conjugate, the 2nd Piola —

Kirchhoff stress can be described as follows :
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3
o,=p—g=C: E, | 2.3)

Differentiating Eq. (2.3) with time, the following incremental form can be obtained :
0,=C:E, - (2.4)

Since the 2nd Piola — Kirchhoff stress and Green strain are the Lagrangian tensors, their differenti-
ations with time also satisfy objectivity. The tensor field from Eq. (2.4), therefore, is objective.
When Eq. (2.4) is expressed as Eulerian tensor after its transformation, stress rate becomes

objective. Pre — and post —multiplying both sides of Eq. (2.4) with deformation gradient tensor

leads to the following :
L ReF=LrFC:EF (2.5)
J o J T e .

The left side of above Eq. (2.5) is Truesdel rate, &". The right side of Eq. (2.5) is developed as follows :

L rc: EEFT=—}tr(CFT EF)=C: L g EF'=C: —1F{,(F:)2 D.F.FF! (2.6)

J J J

Assuming the updated Lagrangian method, then J =1, F,=F.=F =1. Stretch rate tensor, therefore,

can be used as the strain rate. Egs. (2.5) and (2.6) can, therefore, be expressed as follows :
6'=C:D,=C:(D-D) (2.7

where D, D, and D, are total, elastic and plastic stretch rate tensors, respectively.
. STRAIN RATE - DEPENDENT PLASTIC DEVELOPMENT EQUATIONS

1. Dislocation Velocity

Johnston® examined the dislocation velocity and its density in Lif closely through experiments.
The dislocation velocity showed to be extremely sensitive to applied stress. The following four mod-
els for the dislocation velocity are usually used : exponential type model approximated from experi-
mental results for the dislocation velocity, velocity model from the point defect drag, model based on
the thermal excitation, and model based on the friction and dispersion of phonon at high strain
rate. In this study, the point defect drag model such as the following expression is used, which is

suitable for body — centered cubic lattice material :
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D

v=v,e (3.1)

where v, is a limiting velocity of dislocation, D is a characteristic drag stress, and 7 is a applied shear

stress.
2. Dislocation Density

The growth of dislocation is also senstive to applied stress. When a dislocation is subjected to a
constant stress that is sufficiently high to make it multiply, the density of loops along its glide
plane increases with time™. The number of dislocations increases exponentially with time at the
begin.ning of the multiplication process. This density within the band begins to increase only after
the surface of the crystal is completely covered with glide bands. The lateral growth of the glide
bands is a linear function of the macroscopic strain.

It is verified the dislocation density (the number of dislocation per area) increases almost linearly
up to 10% with strain in Lif. Johnston'* modeled the change of the dislocation density based on this
fact. If 8 is the number of new dislocation loops per length of wake, then the rate of change of num-

ber of loops is as follow :
dN =23Ndx (3.2)

where dx is a linear distance swept out by each dislocation, and dx=vdt. Integration of Eq. (3.2) with

time gives
N=N_g¢** (3.3)

Eq. (3.3) means that the total number of loops in a growing band increases exponentially with
time, and represents one - dimensional slip. Since attrition of dislocation occurs in addition to mul-
tiplication during growth of a three — dimensional glide band, the overall rate change of dislocation
density p is written as

dp _ 4
—dT—(Xp Bp (3.4)

3. Slip Velocoty

Slip velocity is affected by the dislocation velocity and the dislocation density, that is, slip is
determined by the number of dislocations and their velocities. Slip velocity can be represented by
the dislocation velocity and its density as following procedure. When a dislocation moves along the

distance x;, slip 5, can be written as
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8=—"-b (3.5)

where b is the Burgers vector. If a dislocation moves along the length [, a slip proceeds by the
Burgers vector. Therefore, slip velocity is described as

}'ﬁ=~‘;—‘b (3.6)

where v, is a dislocation velocity. Assuming there are N dislocations on slip plan, Eq. (3.6) is rear-

ranged as follows :
y=pbv 3.7

where v is the average dislocation velocity and p =N/L.
It is reported that dislocations are composed of the edge and screw components, and that the edge
components move about 50 times as fast as the screw components at a given stress[12]. Considering

this point, Eq. (3.7) can be modified as follow :
y=b(p, v.+p. V) (3.8)

where the subscripts, e and s, refer to the edge and screw dislocations, respectively. Using pP/p.=V.Iv,
=50 and p=p.+p.=p., Eq. (3.8) may be written as

y ps VS - .

y=bpsvs(1+p—v—);2bpsvs:.2bpv5 (3.9)
Finally, slip velocity ¥ is expressed in terms of the dislocation density and the dislocation velocity as
shown in Eq. (3.9). Slip velocity of Eq. (3.9) can be obtained when the dislocation density and the dis-
location velocity are expressed by the stress and the slip.

Gilman® derived the dislocation density from Egs. (3.4) and (3.9). Setting =0 of Eq. (3.4), combi-
nation of this with Eq. (3.9) yields

p(P=(p,+p,7) (3.10)

This result is consistent with the experimental observation that the dislocation density increses lin-
early at the beginning of deformation. As straining proceeds, by the way, some of the dislocations of
Eq. (3.10) will lose their mobility through several reasons and will become restrained dislocations.
Their fraction also increases with increasing strain. If f is the fraction of the mobile dislocations, the

expression for the change of f is as follow® :
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df= - ¢fdy (3.11)
where ¢ is a coefficient. From Eq. (3.11), the fraction of the mobile dislocations f can be written as

f=e" (3.12)
By combining Egs. (3.10) and (8.12), the mobile dislocation density is then obtained as

p(Y)=(p,+p,y)e ™ (3.13)

where p, and p, are the initial dislocation density and the multiplication constant, respectively. From

Egs. (3.1) and (3.13), therefore, slip velocity is giben by

_(gy+ oy
{dry+ T

Y = 2bv,(p,+p,V)e (3.14)

where ¢ decreases the slip velocity with increasing slip, which represents a kind of work — harden-

ing. Letting ¢=H,/1, then Eq. (3.14) can be written as

- HO*‘HI"/)

Y = 2bv,(p,+p,Y)e (3.15)

Since the real power necessary to move dislocations is the effective stress except the back stress

(the long range stress) 1, the correction of Eq. (3.15) gives as follows :
N —(vﬁﬂ) N
Y = 2bu.(p,+p,Y)e E (3.16)
where the back stress represents a kinematic — hardening phenomina known as Bausinger’s effect.
4. Generalization of Plastic Development Equations

In this study, the Johnston - Gilman - type constitutive equation is more generalized and is
developed suitable for the large deformation, plastic expressions. Using the slip model explained

previously, the plastic stretch rate tensor D,, the objective strain rate, is expressed as follows :

(3.17)

+H+H R ,
D, =C.{p, +p1Ep)EXP{H 1EP} g—B

(JT2(o -B)) | JI,(0 - B)

where B is the back stress representing the Bausinger's effect. To model the plastic deformation
within the longer range of deformation rate, the exponential term governing the deformation rate

for the stress is modified as follows :
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n (3.18)
(Jd(o'-B))

where, H,, n and H, are the material constants, B’ is deviatoric back stress, E, is an accumulated

EXP{HL’ + H/T, @B + Hi i, (W@ BN ‘}

plastic deformation, H is a hardening function defined in the following Eq. (3.19), and J, (o’ —B’) is
the second invariant of the effective stress(o’ — B’). In the above equation, whereas the back stress
represents kinematic hardening, H, and H, isotropic hardening. n and H, govern dynamic yield
stresses of material.

The constitutive equation is completed obtaining the development equations for the hardening
and back stress in Eq. (3.18), and the constants are determined from the experimental results. The

functions of back stress and isotropic hardening are modeled as follows, based on the hardening

model of Hu" :
H=C,(H,-H) D, < (3.19)
B=cb(§1(1+-}%)Bst—BDp) (3.20)

where C,, H,, C,, B, are the material constants from experiments, ﬁp is the equivalent strain rate as

follows :

D, = /%Dp ' D, (3.21)

V. Strain Rate - Dependent Constitutive Equations

The constitutive equation of elastoplastic materials explained up to the present is rearranged.
Constitutive equation is largely made up of the relationship of objective stress and strain (2.7), plas-
tic develof)ment equations (3.17) and (3.18), and equations for hardening and back stress (3.19) and
(3.20). Especially, there are no yielding condition and loading /unloading condition in these plastic

development equations, rather than the rate - Table 4.1 Constitutive equation set

independent ones. The obove equations are T
o =C:(D-Dp
rearranged for convenience in Table 4.1. D= G+ EE B H  HE ] (o -B)
In this study, midpoint rule is employed as P ' u H
time integration of constitutive equation which H=C,(H, -H)D,
is arranged in the following Tables 4.2 and 4.3. B- Cb(%( 1+£LB.D, - Bﬁp), where pt = J,
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Table 4.2 Time integration of constitutive equation by midpoint rule

STEP 0 : Calculate Au
L o ox, +4w) HAu)
STEP 1:F, = e =1+ X

n

n n

(%)

" I+ a(%ﬁ?), a=05

STEP3: 0., = 0, — adt(L,,,0, + gL, + tr(L_, )a.)
STEP4:D,,, = 4L, +L},,)

STEP 5 : Go to Table 4.3

STEP6:4,,, = C:(D,,, - D,)

STEP 7:a,,, = 0, +AtS"

n+a n+a

STEP 2:L

STEP 8: g,,, = 0,,, - (1- ®AtL,,,0,,, + G, Li.q +tr(L,, )0,
STEP 9: Go to STEP 0

Table 4.3 Calculation of plastic stretch rate tensor

STEPO0:E,, =E, - aat(L, E, + E,L., +tr(L,E,)
EP,. =B —aAt(L, Er + EPL] _ +tr(L,,,)E?)

B,..=B, - aat(L,,,B, + B.L|, +tr(L_B,)

STEP1:P, = —;3itr(q_i ), Py = -é tr(B,) (Spherical Stress)
o; = 6; + P, B; = B; + Pyd, (Deviatoric Stress)

N n n-1 &P n-1 - T
STEP 2: D, = C,(n, + nE? )EXP{ H; + H(#mz +)§1En(#m) } g%,,,_,,
Moo +a

STEP 3:H = C,(H, - H)D,

B- H ;

STEP4:B- cb(% (1+ §B.D, - BDPJ

STEP 5:E,.. =E', +4tD,,,
E..=E +4tD,

STEP6:E,,, = E,,, - (1-atL,, E,, +E L. +t(L_E_.)

E!,, =E},, -(1-oatL, Ef +EP, LT +tr(L, )E..)
STEP7:B,,,. = B, +AtB
STEP8:B,, =B, - (1-a)atL,, B, +B,L.  +tr(L_)B,..)
H,,,=H, +atH

STEP9:D, - [1D,:D,

STEP 10: Ef,, = Ef + atD,
STEP 11: Go to SETP 6 of Table 4.2
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V. MATERIAL CONSTANTS AND APPLICATION
FOR UNIAXIAL TENSILE LOADING

Material constants are referred to mild steel S41C and are based on the Kuriyama'’s experimen’t”.'
Fig. 5.1 shows the result of this experiment, rearranging and plotting true stress and true strain
diagram. It is found that the upper and lower yield points occur and their difference increases with
increasing strain rate as shown in Fig. 5.1. Macroscopic softening of material occurs around at 20%
strain under static loading and at 9% strain under high strain rate. Softening means the material
unstability, and this unstable phenomenon is concerned with the formation of slip band and its
behavior. The material constants from Fig. 5.1 list at Table 5.1 within strain range between 0% and
15% except unstable region.

From Table 5.1, C, is material constant designated as C,=2bv, where b is Burgers vector and v is
limit dislocation velocity. Since b=2.5 x 10 'mm and rm v=3.2 X 10°mm/s in the case of mild steel,
C,=1.6mm?%s. Material property p, representing the growth of dislocation density with plastic
deformation is given by 10°mm ° in mild steel®. Material properties C, and p, are fixed values in

this material constitutive equation. The other
Table 5.1 Material constants

material constants are determined by the C. | 1.6mms o | 10°mm ¢
experimental results. Since material constants n | 135 H, | 50kg/mm’
H, | 160kg/mm’ B, | 30kg/mm’
n and H, control the yield stress, they are deter- . { 3.75 x 10°mm ° c, | 70
. . . 7 g
mined referring to the yield stress from stress — G, | 0 H, | 1200kg/mm
150.0
100.0 42010's
g 6.3x10™s
2 1
&
50.0 ~
0.0 T T T
0.0 5.0 10.0 15.0 20.0 25.0 30.0
strain(%)

Fig. 5.1 Strain - stress curve of Kuriyama's experiment
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strain diagram. The others are decided from the stress - strain diagram after yielding, because
their properties control the material behavior after yielding.

To examine the applicability of this constitutive equation, the case of uniaxial tensile loading is
applied. Fig. 5.2 shows the computational results of this constitutive equation and the Kuriyama's
experimental results together, in which it can be seen that computational results realize the upper
and lower yield points well and describe the experimental data well between 0% and 15% strain

range. Here the strain rate is the one for the nominal strain. Fig. 5.3 represents the computational

150.0
| IS exp.
] cal.
®
E
E)
%
w
&
strain(%)
Fig. 5.2 Experimental and calculated strain - stress curve
150.0
ﬁ
100-07 10 10/s
¥ ]
=
- _
% AW
g | o 1(;’ is
- 63x10™7s 10/s 107478
50.0 4
i
0.0 - T y V— , l ' ' ' '
h " 10.0 15.0
strain(%)

Fig. 5.3 Strain - stress curve according to strain rates
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results of the yield stress and the flow stress for the strain rate in the range of strain rate between
6.3 x 10 /s and 4.2 x 10%s. As shown in this figure, the present constitutive equation represents the
strain rate dependence of mild steel well.

Figs. 5.4 and 5.5 show the change of the stress curves during loading when the strain rate is
changed. Whereas Fig. 5.4 is the case of the strain rate increase from 6.3 %10 */s to 4.2X 10%/s
where dot line is the computational data of 4.2 X 10%s, Fig. 5.5 is the one of the strain rate decrease

from 4.2 X 10%s to 20/s where dot line is the experimental result. Generally, there is a phenomenon

150.0

100.0

stress(kg/mm?)

50.0

. . T r v v . I . v r :
0.0 5.0 10.0 15.0
strain(%)

Fig. 5.4 Strain - stress curve for the change of strain rate during deformation(high rate after low rate)

150.0

stress(kg/mm?)

0.0 T S e
0.0 5.0 10.0 15.0
strain(%)

Fig. 5.5 Strain - stress curve for the change of strian rate during deformation(low rate after high rate)
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of memory effect in material. The memory effect is that the past deformation history affects the pre-
sent material behavior. While there is apparent memory effect in material such as aluminum, it is
too small to be neglected in steel. The outer appearance effect of memory effect is usually represent-
ed by the gradual approach of the stress curve with changed strain rate during deformation to the
previous one with unchanged strain rate. The present constitutive equation does not show this
behavior as shown in Figs. 5.4 and 5.5. Therefore, it might be thought that this constitutive equa-

tion reasonably simulates the behavior of steel with the least memory effect.

V. CONCLUSION

Using plastic development equation by the slip model expressed by the dislocation velocity and its
density, the rate - dependent elastic plastic constitutive equation was developed, in which the
applicable range of strain rate and strain was broadened by introducing exponential rule and non-
linear hardening based on Johnston — Gilman - type. Yield and loading conditions are not needed as
the special features of this constitutive equation, the calculation, therefore, is more convenient.
Since plasticity is expressed by the dislocation velocity and its density, a plastic phenomenon of
steel material can be expressed with more physical meanings.

As the results of the application of the developed constitutive equation to notably rate — depen-
dent mild steel S41C, rate - dependence of mild steel is well represented. Because of wide applica-
ble range of strain, the present constitutive equation can be applied to the dynamic plastic prob-
lems, hydrocodes and the general elastoplastic analysis programs, and may be enable reasonably to
analyze the problems such as the collision and stranding of ship etc. Though mild steel is the object

material here, body — centered cubic lattice material can usualy be applicable to.
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