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1. Notation and Definitions

We use the following notation :

Fmmny u?
#(X) = [ ——exp(- 2y
$¥(X) =1 - &(X);
ua ={®¥} " 1(a);

q)X(ua) =a;

Further t¢., is the solution of P{Ty > tf.a} = a where T¢ has Student’s

t-distribution with f degrees of freedom. R? will denote a linear subspace of
dimension d (through the origin) in the sample space R™. A superscript is

used sometimes in order to denote that the corresponding symbol has one,

and only one, fixed value.

We recapitulate some definitions, most of which are generally used. For

that purpose, let (H, K) be a hypothesis testing problem, with composite
alternative K.

— 49 -



Choon Il Park and Jong Cheol Kim

Let Bs(60) = E¢{®(X)} denote the power in 6 of the test ®.

Definition 1.1.1. The test @ is of size a, if supgey fe(f) < a and
is similar of size a, if f3(8) = « for all § € H and is unbiased of size a, if
supgey Be(f) < a and infe Bs(6) > a, where § € H and § € K means that
6 contains in the subset of the parametric space, restricted by the hypothesis

H and K, respectively.

Definition 1.1.2. The envelope power function 85(8) of a class D of
tests ®, is determined by 3},(8) = supgeep Pe(0).

Definition 1.1.3. The shortcoming vs, p(6) of a test ® with respect to
the class D, is defined by v¢,p(8) = Bp(6) — Be ().

Definition 1.1.4. A test ® in a class C of tests, is said to be most
stringent in C with respect to D for testing against K, if test & minimizes

in C' the maximum shortcoming with respect to D on the alternative K:

supge i Y8,0(8) = infyec supge i Ye,0(8)-

In the special case C = D, we obtain the most stringent (D) test. On
specializing further, we obtain the most stringent size- a test in case D is

the class of size-a tests.

The minimax principle leading to the proceeding definitions is sometimes
quite unreasonable, a minimized maximum shortcoming on K often going
with a large shortcoming for many alternatives § € K. This objection to the
two foregoing principles seems to be realistic for many problems of the form
(H,K,) and (H, K3) that will presently be considered. (For these problems,
it seems reasonable to restrict our attention to the subclass C of D, containing
the tests ® which have the shortcoming s, p(6) equal to zero for some 6 in
K.
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Definition 1.1.5. The tests ® are said to be somewhere most powerful
with respect to the class D, (abbreviated: S.M.P.(D)) if there is a 6 in K

such that v¢,p(8) = B} (8) — B (8) = 0.

By specializing the definition of "most stringent in C with respect to D
for testing against K, in case C is the class of S.M.P.(D) tests, we obtain the
most stringent S.M.P.(D) test. The following special cases will be applied:

(A) D is the class of size- a tests; we obtain the most stringent S.M.P.
size- « test;

(B) D is the class of similar size- o tests; we obtain the most stringent
S.M.P. similar size- a test;

(C) D is the class of unbiased size- a tests; we obtain the most stringent
S.M.P. unbiased size- a test.

Obviously the most stringent S.M.P.(D) test has in general a larger
maximum shortcoming than the most stringent (D) test, whereas the latter
test has a larger shortcoming generally in a region inside the alternative. For
many problems of the form (H, K,) and (H, K,) which will be considered, no
clear cut preference will exist for either one of the two principles mentioned

above.
2. The Formulation of the Problem

Let X = (X, -+, X,) have the multivariate normal distribution N (¢, X)
with probability density function

Al AL
fx<X1,~-,Xn>=ﬁe"p —§ZZa'1<Xi-ei><Xj—sj> :
=1 j=1

(2.1)

where the matrix A is nonsingular and known; ¥ = 5241,
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Problem will be considered where o2 is known, in which case we take
o2 to be equal to 1, and also where 0? is unknown. The outcomes X =
(Xi1,-+,Xn) of the random vector X and the vector £ = (&1, -+,€n) of
means, can be regarded as points in the same n dimensional space R".

The vector ¢ of means is known to lie in a subset of a given s-dimensional

hyperplane V*® in R™ (s < n) defined by the (n — s) inequalities
n .
b0h+Zb'h=0 (h=1,---,n—3s) (2.2)
i=1

and the matrix form is

bOl p11 il pnl 1 0
b02 bl‘Z (i bn2 61 0
bOn—s bln—s ... pnn—s fn 0
where the coefficient matrix [b**] (i =1,---,n;h =1,---,n—s) isrank n—s.

The hypothesis H is to be tested that £ lie in a given (s — r) dimensional
hyperplane V*~" in V?, defined by

Hypothesis H:bOh+Zbih§,~=0(h=n—s+1,~--,n—s+r),

i=1

where 1 <r < s;[b*] (1 =1,---,mjh=1,---,;n—s+T) is a matrix of rank

n — s + r and also the above hypothesis is presented by

bOl bll .. bnl 1 0

: : . : & 0
bOn-—s bln—s - pnn—s . —

bOn;s+r bln—.-s+r . bnn;s+r £n 0
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We shall first derive tests for H against the following one-sided alternative :
n .
K : b0h+Zb'h§,' >0 (h=n—-s+1,---,n—s+r)
=1

with at least one inequality strong; corresponding to a subset of V'*, which
subset will be denoted also by K.

We shall describe some transformations simplifying the formulation of
the problem defined above. We state here that the results of our investigation
will be put in forms which do not depend on the particular transformations
used,so the theory can be applied without an explicit construction of these
transformations.

First, we choose the origin of R™ in V*~" defined by the hypothesis H,

thus obtaining a problem where
" =0 (h=1,---,n—s—r) (2.3)

holds true. So we can assume (2.3) in what follows. In this case all hyperplane
V* become linear subspaces R!, containing the origin.

Next, the problem can be written in a simple form, by introducing a
new basis in R". Denoting the points (Xi,---,X,) of R" by z, we define an

inner product in R" by means of the bilinear form

n n -1
(z,y) = Z Z ainiifj =z Ay =2 Z Y. (2.4)

i=1 j=1
Orthogonality z Ly is defined by (z,y) = 0, the norm ||z|| is defined by

Ilz]l* = (z,2)
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and the metric is defined by

d(z,y) =z —y|=(z —y) A(z — y).

We can construct an orthonomal basis fy,---, f, for R", e.g., by using the
Gram-Schmidt orthogonalization process, such that f,_(;_r)4+1, ", fn sSpan
the linear subspace R*~" defined by the hypothesis H and frn—s—r, ", fn
span R’ defined by the Equalities (2.2). The problem can be reformulated
by means of the coordinates Y7,---,Y, with respect to the basis f1, -, fa,
of the sample point X : Y; = (X, fi) = Yp; Y1nq fiva¥'z; and by means
of the new coordinates 7, --,n, of the vector £ of mean value. Now we

introduce the new quantities with respect to the above orthonomal basis

fl,' . 'fn- Since Y; = (X,f,‘), we have

E(Y:) = E(X, fi) = (EX, fi) = (£ fi) = ms.

Since
Yi=(X,fi) = (fi,X) = fiAX,
We have
vi\ (AAX\  [(R\ fi
Y = ;): : = |AX = A X =(FAX
Y, frAX, fa n

considering the identities

FAF' =IL,(fif)=1=fiAfi=> > aufl'f!
n v

and

(fi, fi) = fiAf; =0.
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Therefore y is equal to (FA)z and n is EY, that is,

n=FEY = E((FA)X)=FAEX = FA(,
and hence
n=(FA).

Next the covariance matrix of Y is

E(Y —n)(Y — ) =E(FAX — FA)(FAX — FA¢)
=FAE(X - &)(X - §)(FA)
—FA{c?AT'A'F")
=o’FAF'
=o’I,

The original coordinates Xi,---,X, of the sample point X having the nor-

mal N(&,5") distribution (2.1), the new coordinates Yi,---,Y, of X will
have independent normal N(7;,0?) distribution given by probability density

function
1 n
@ron)E &P { 5oz 2 (Yi— m)z} (2.5)
i=1

Since

SN ai(Xi—E)X; - &) =X —¢l* = Z(y-n,>2

i=1 j=1

Theorem 1.2.1. Let X = (X;,---,X,) be distribution to N(¢,"),
where 3" = 02A™!. Transform Y; = (X, fi) according to the above new
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orthonormal basis, then Y = (¥3,---,Y,,) is distributed to the independent
normal distribution N(n,0%I), where n = F A€.

The vector ¢ of means 7;,---,7n, is known to lie in the s-dimensional

linear subspace R*, defined by the equalities
=0 (t=1.--,n—3) (2.6)
and the hypothesis H is to be tested, that £ lies in the subspace R*~", defined

by
Hypothesis H:n; =0 (t=n-s+1,---,n—s+r),

whereas the alternative A} becomes a subset in R® of the form

n—s+r
K : Z d”’m >0 (h=1,---,r)

i=n—s+1
with at least one inequality strong; where
[d*M (i=n—s+1,---,n—s+rh= 1,---,r7)
is a matrix of rank r.

3. Problem {(H,K,;),c? is unknown }

By arguments similar to those of Problem {(H,K;),0? = 1}, we can
derive the most stringent somewhere most powerful size-a test for Problem
{(H,K1),0? is unknown }.

By applying an obvious modification of Theorem 1 in [7] (p. 161), we
obtain the uniformly most powerful (abbreviated:(U.M.P)) similar size-« test
®:

ox’ th—(s—r)—1; &
[ X T — XTI . (n—(s—r)—1)3

(3.1)
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for Problem {(H, A;), 6? is unknown } where the alternative

Ay =0 (¢e=1,---,n—3s)

N =977§1) t=n-s+1,---,n—5+r),0 >0,

Let X7 is the projection of the sample point X onto the R; spanned by the
half-line I = A}, X! is the projection of the sample point X onto the R*—*+"
perpendicular to the R°~" defined by the hypothesis H, in the sample space

R™. So the class C of somewhere most powerful similar size-a tests for
Problem {(H, K}, 0? is unknown } is determined by (3.1) for { varying over
Kj.

We observe that the critical region belong to the test (3.1) consists of

the points whose orthogonal projections onto R*~**" are inner or boundary

points of a semi-cone of revolution with axis [ and semi-angle
Ay = cot™! {(n -8+ r— 1)—%1‘,,_34.,_1; a} . (3.2)

It can be proved that the maximum shortcoming supge,, 76,c(8) of Test
(3.1) over the half-line m in Kj, is a non-decreasing function of ¥(I,m)
which strictly increase for ¥(/,m) < A; and is constantly equal to 1 for
¥(l,m) > A;. Since, we consider that B¢(6) of S.M.P similar size- a test
for {(H, K;),0? is unknown } is defined on the class C' at power function ®.

Then (¢(6) is invariant under translation parallel to R*~" confined in K.

That is,

sup 7¢,p(#) = sup v¢,c(6) = sup {gup ve,c(8)}.
, Lsup

o€k, 9EK, mCK]

Hence

Bc(0) = sup B (8) = Be,,(6)
seC
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where ®,, is U.M.P. tests on the half-line m in K. Therefore

sup v¢,c(0) = Osggo{ﬂé(Q) - B2(Q)}

fem

= sup {Be..(Q) — Pa(Q)}-
0Q>0

Actually the maximum shortcoming supge,, 78,c(6) over m in K7, is nonde-
creasing function of ¥(l,m) which strictly increase for ¥(l,m) < A; (Since
Bs,,(Q) is fixed and Ps(Q) is decrease) and

sup v¢,c(Q) = sup {Bc(Q) — Be(Q)} =1
em 0Q>0

if ¥(l,m) > A;.
Applying consideration to those of problem {(H, K;),0? = 1}, we obtain

the following result.

Theorem 1.3.1. (A) In case ¥y < Ay, the most stringent somewhere
most powerful similar size-a test ®, for Problem {(H, K1), 0? is unknown }

is determined by (3.1), taking for ! the half-line Iy satisfying

sup ¥(lp,m)= inf sup ¥(I,m)
mCK ICK] mCK]

(B) In case ¥y > A;, each somewhere most powerful similar size-a test
has the maximum shortcoming on K; equal to 1, so that no uniquely deter-

mined most stringent somewhere most powerful similar size -« test exists for

Problem {(H, K;), 0% is unknown } in this case.
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4. An Application

The theory Section 3 will be applied to the Problem of testing homo-
geneity of means (p1 = p2 = =+ = pix) against an upward trend (p1 <

py < -+ < pg, with at least one inequality strong), as mentioned at the

end of introduction. This problem is of the form {(H, K1), o? is unknown

}, where X, corresponds with X;; ( =1,---,ni, t = 1,---,k) distributed

as N(pi,0?), 0% is unknown, when v = Ziﬂ nw+j (v=1,---,n). The
indices v = 1,---,n are subdivided into k blocks of ny,ng,---,nk indices

respectively. We have
n kK =n;
s=kr=k—1i(z,y) =) XY= >N XY
v=1 =1 3=1

and

R = RE = {(uy o pus s pia i i)}y

which notation indicates that the points of R® have coordinates which are
equal within each block.

Similarly, we have always mentioning the j-th coordinate of i-th block;

Rs‘_r .:Rk—(k_l) =R1 :{(#...N:p’...u...u)}

R =RF'={(p1--m1 Cpg it k)b
where Ele nip; = 0 has to be satisfied;
gr—str _gr—(s-7) — g1
={X11, +, X1n; Xoa, s Xijy oo s Xkni) by
where Y5 >3y Xij = 0 has to be satisfied;
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The r = (k —1) edges e; (9 = 1,---,k —1) of k| in R" = R*" are
determined by
eg = {(mr - pispg - pie - )},

where

pi==0s" (i < g)ipi=6(n~s5)7 (i >g);60>0,

with the notation:
g
ngzni (g=1,,k)7 so = 0. (41)
=1

The arbitrary half-line
l:{(Gwl---9w1;0w2---Owi-'-ﬂwk)},9>0 (4.2)

is in K| provided that
k
Z nwi =0 (w1 Swp < - Swy). (43)
i=1

The angles ¥(l,e5) (9 =1,--- k- 1) are determined by

e,) =cos ! (l,eg)
beg) = cos™ )

Y s
=cos™! {_ n? ) il niwi

k 2\ 1 % 1
(Ei:l "iwi)259(n —$g)2

Since

1? = 6%(wi® + w2 + -+ + wyi2),
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then
u 1
1l =60 " niw?)z,
i=1
and
g
elll? = | 62 E+[02n Sg}
legll [ Z } CEAE
—9? Sg n— 3
{sz BCETS:
_ 6n
sg(n — 3g9)
then
”69“ = 9”%{59(” i 39)}_%
Therefore

g9 k
(1,69)2—92 E n,'—l—wi-i-HQ E n;
S n—
i=1 9 i=1

g k
= — 92 ——-————n ~ 59 n;w; — % niw;
;sg(n—sg) z,_gln—sg
= — 92 n;w;
Z: 39(" — sg)
1 g
= - 9271———— n;w;.
sg(n — sg) ;
Consequently, ! is the half-line /;, making equal angles
k
Uy = cos_l{(z nw?)" 1} (4.4)
=1
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with the edges e, (¢ = 1,---,k — 1), if the weights w; (t = 1,---,k) satisfy

the equations

The solution

T S 1 1 1y -
w; =n"2n; {Si_l(n—si_l)z—si2(n—s,~)2}(z=1,~--

g
—n? Zn,w,- = sg%(n —sg)% (g=1,---,k).

1=1

(4.5)

of these equations satisfies the Inequalities (4.3). So lyp C K and lo satisfies
(3.3). The projection X I of the sample point X on Iy is determined by (4.2)

where 8 has to minimize

So

Therefore

k ng
DD (Xij = 6wi).
i=1 j3=1 i
0 o %
90 Z Z(Xij - fw;)
i=1 )=1

:Z z 2(X,'J' - Hw,-)(—w,-) = 0.

'
=1 j=1

k i
0 =(Zw,~2)—l iwiXij
=1 1=1
k k
=(Z nw?)™! Z niw; Xi;
i=1 i=1

k
ox'=6(> niw?)?,
=1
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(4.6) where X; denotes the sample mean n; ™! Z?:1 Xij.
The projection X of X on R*~*+" = R"~! is defined by

XT =X =X, Xij— X,y Xien — X)),

- k ‘
where X =n"1%." | Z;'l=1 Xij, so we have

1X 7 = X2 =X - (X

k
=) ) Xy = X.)* = (0X')". (4.7)

i=1 j=1

The condition ¥y < A; (see (3.2) and (4.4)) can be written in the following

form

k
tnozia < (n—2)5() nw?—1)"% (4.8)
=1

Applying the Theorem 1.3.1, we obtain the following.

Corollary 1.4.1. The test

(E:‘c:l niw?)_% Ef:] niwiXi. > tn_2
T
{ZL S (X = X2 = (T niwd) Dk, niwiXo )2}

)

o (n—2)%

where the weights w; (i = 1,---, k) are determined by (4.5) and (4.1) is the
most stringent somewhere most powerful similar size-a k-sample test against

an upward trend if (4.8) holds true.
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