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Abstract

It has been proposed that plastic spin originates from material anisotropy such as internal
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stress. The plastic spin has been applied to the objective rates of back stresses and used as the
cure for the oscillation of solution in pure shear with Jaumann rate. However, there have been
likely to be some fundamental misleadings in the origin of plastic spin.

In this paper, plastic deformations of polycrstalline materials are discussed in detail, and
new origins for plastic spin are suggested in which it originates from geometric properties of
plastic deformation and from the simultaneous stress components. It is also shown that the

plastic spin is not significant and is sensitive to initially given texture.
. Introduction

Recently many researches have been performed on the plastic spin. Most of them have inclined to
provide additional constitutive equations for plastic spin since Kratochvil’s statement[1]. There are
two typical approaches according to the origins of plastic spin: isotropic tensor representation[2]
and generalized plastic potential one [3,4]. They have been attemped to make a connection between
plastic spin and material anisotropy from internal stress because it has been believed that the spin
originates from such anisotropy [51.

However, there have been likely to be some fundamental misleadings in the origin of plastic spin.
The plastic spin originates not from the material anisotropy such as internal stress but from the
geometric properties of plastic deformations and the simultaneous stress components.

In this paper, some aspects of basic concept for the plastic deformations of polycrstalline materi-
als are discussed in detail, such as normality rule and internal stress which are related to the
mechanism of plastic spin. And new origins for plastic spin are suggested. The plastic spin appears
not significant but very sensitive to initially given texture through some simple calculations. The
first tendency is contrast to the published results so far. It is also noticed that a macroscopic inter-
nal stress tensor can not represent internal stress status because such tensor is not defined in good

approximation.
1. Definition of Plastic Deformation Velocity Gradient

Consider a material point in polycrystal, whose dimension is sufficiently large for the representa-
tive size of grains so that its macromechanical properties are stationary for the sampling point,
which is still regarded as a point in the sense of macroscopic treatment. Assuming uniform distribu-
tions in the stress and deformation of a grain, the macroscopic strain and stress are defined as a

volume weighted average over grains. The same context holds for tensor inner product between
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stress and strain, and is also valid for its rates provided that the effects of rotation and convection

can be neglected [6].
oié=[0,:¢,] (2.1)

where subscript g means grain, [ - ] volume average over grains.

Many intergranular accommodation models can be obtained, such as Talyor's, Lin’s, Kroner's and
static ones, by giving specific accommodation function [7,8]. 1t is, therefore, plausible for the practi-
cal application to assume the static model. By this assumption and exclusion of elastic strain, Eq.

(2.1) can be recast to
c:&=[o:eé] (2.2)

In general, the macroscopic plastic strain rate can not be obtained straightforwardly as Eq. (2.2)[6,9].
On the other hand, observe the plastic deformation phenomena of crystalline meterials in the
macroscopic level. The macroscopic plastic deformation velocity gradient can be described by sum-

ming up the finite number of deformation velocity gradient corresponding to each slip system.

-

Ly =7 (3 & 7B 2.3)
g J

]
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where ¥, is the slip rate of system (i), P;the plastic deformation velocity gradient for unit slip rate,
and all grains are assumed to have the same volume. Here it is worth noting that the terms in paren-

thesis is not symmetric in general, thus plastic spin is defined antisymmetric part of the gradient.
. Aspect of Normality Rule

A macroscopic yield surface of crystalline material consists of many constraints by which all of
the crystal stresses lie within the surface [6]. Under the assumption of Chapter 2, the yield surface
of a polycrystalline appears just the envelope of the yield hyperplanes corresponding to each slip
system in stress component space. Hereafter the normality of the flow rule will be discussed apart
from the stable material postulate[10] or the maximum plastic dissipation postulate[11].

Taking a slip system in Eq. (2.3), whose normal vector is n, and slip direction s,, the plastic defor-

mation velocity gradient due to the slip is given to
Li=yP; (3.1

where P{(=s,@n,) is a deviatoric tensor, 7, a slip rate. Assuming Schmid law holds, it can be sup-
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posed that the yielding oceurs when the Schmid stress 7 of the slip system reaches at a certain crit-

ical stress . Schmid stress 7 is given as
t=0:P; (3.2) .

Taking the gradient of the hyperplane with respect to stress and comparing its components with
those of the deviatoric tensor, we have the normality relation between the yield surface and plastic
deformation velocity gradient.

Now we investigate the normality at vertex for polycrystals. Take another slip system noted by
®), and suppose the yield plane of system (@ meets that of system (D at point Q. Consider a stress

tensor at the point, by which two slips are ready to act.
o: Pi=17i=1,2 (3.3)

To define a unique flow direction, let's take mean surface and resultant plastic deformation velocity

gradient by arithmetically averaging and adding respectively.

0.50: (P;+Py) - 0.5(t5+15)=0 (3.4)
LP=7,(P{+P}) (3.5)

From the gradient of Eq. (3.5), there is a normality. It is, consequently, inferred that the require-
ment of the same slip rates for the slips simultaneously active at vertex is crucial for the normality
with mean surface.

Previous discussions have been done without back stress. The normality holds for every where
except vertex even in the case of back stress. Another normality relation will be defined at vertex.

That is with average yield surface weighted by their slip rates.

1
o ——— (P Pi+y.PH———
ety T

L =7Pi+1.P; (3.7

(Wt +7.735)=0 (3.6)

The normality is a universal property of crystalline materials as far as Schmid law holds, and the
plastic deformations are confined to slips since the normality comes from the geometric nature of
plastic deformation mechanism. So it is valid regardless of softening, hardening, rate independent
or depentent plasticity. But an attention must be given to the normality at vertex in the case of
finite back stress.

The normality has been discussed with slips. There is an energy concept behind the mechanism of

normality previously discussed. It can be supposed a yielding occurs when a specific elastic energy
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given by unit strain in the direction of deviatoric tensor reaches a certain criteria. A yield function
is, therefore, an energy criteria. By this context the normality holds universally for the crystalline

materials under the assumption of incompressible plasticity and Schmid law.

V. Aspect of Plastic Spin

In recent years much progress has been made in the plastic spin. Unfortunately there have been
some misleadings, which had come from misinterpretation for the fundamental mechanism of the
spin. It has been believed that the plastic spin originates from anisotropy such as internal stress
due to substructure. Therefore, a connection between internal stress and plastic spin has been
attempted in many studies, which leads a source of misleading. A new mechanism for plastic spin
will be suggested in this chapter.

As mentioned before in Chapter 2, the plastic spin is a direct result of the slip. It is useful to
examine some experiments with and without internal stress. An important consequence comes
forth such that the plastic spin can bring about regardless internal stress. To sustain this conse-
quence, Boukadia and Sidoroff [12] can be introduced who showed the plastic spin for a perfect
plastic F.C.C. single crystal.

The fundamental mechanisms for plastic spin are suggested : 1) the non — homogeneity of plastic
deformation mechanism(finite discrete slip), 2) texture, 3) stress state in the axis texture(for macro-
scopic level spin) or slip arrangement axis of a grain(for grain level spin), such that more than one
component should be simultaneously applied, whose axial stress components have different magni-
tude. The third mechanism is responsible for the different Schimid stress induced on slip pairs. Ina
word, plastic spin origin from geometric nature of plastic deformation is associated with stress
state.

With new interpretations, some results in literatures will be discussed in the next isotropic func-

tion representation for plastic spin {2,5,13,14,15]. The most simple one is

W’=n(aD? - D a), (4.1)
where 7 is a scalar for fitting « internal stress. It is helpful to give an attention to

Wi=(s®s)D% - D(sRs), (4.2)

where W' is a plastic spin and D?, the symmetric part of plastic deformation veloctiy gradient ten-

sor for single slip, which are expressed as follows, respectively.
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wWe= —; 7 (s@n —nQs) (4.2a)
Di= %7’/ (s®n+nQs) (4.2b)

The resemblance of Egs. (4.1) and (4.2) was noticed by Giessen[16]. It shoud not be overlooked
the importance of Eq. (4.2) since this was derived from kinematics, not from contitutive equation as
Eq. (4.1). The proposed machanism for the plastic spin in this paper is compatible with Eq. (4.2).
Isotropic function representation is very plausible, however, there has been misleadings in the
application.

There is another approach in which unsymmertric internal stresses play an important roll[3,4].
PIOS(Plastic Induced Orientation Structure), whose reference state is specified by triad directors, is
introduced in the theory. It is thought that PIOS is incorporated to texturing, orientation and inten-
sity. If PIOS implies texturing, two variables are outstanding: intensity and orientation. Their con-

jugate forces may be given as follows,

=3M, ; for orientation

M'=X|| M, | ; for intensity

where || - || is a norm.

A difficulty is shown which is concerned with the representation of macroscopic internal variable
for internal stress in stress. Consider a slip system, and suppose that 7% is an internal stress of the
slip, ° Schmid stress, o, Cauchy stress. Then o¢ unknown component of internal stress(unknown

also whether or not symmetric) can be found as follows and its existence is also proved,
o'=01-"9oa, (4.3)

where A=(7° - 7%)/7° is a scalar. From Eq. (4.3) internal stress is a symmetric tensor because so is
Cauchy stress. If a macroscopic internal stress is symmetric, Schmid stress can be written as fol-

lows.
0, [P ym=1% (4.4)

where six equations are needed to determine the stress components uniquely. If the stress is anti -
symmetric tensor, three equations are needed. Nine equations are necessary in the case that the
combination of symmetric and anti — symmetric stress tensor also provides a solution. Thus there

rarely exits unique solution in a crystal.

Directly speaking, a macroscopic internal stress in six or nine component stress space can not be
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used as internal variable in the finite plastic deformation of crystalline materials. In this context, it
is expected much errors in the conventional approach. Really, we have had a evidence, such as
severe distortions in yield surface [17,18]. The distortions can not be explained by one macroscopic
internal stress tensor. The sharpening and flattening of yield surface around loading point or other
distortions will be explained by the multi - internal stress tensor.

It is elucidated in the prvious discussions that the plastic spin arises regradless of the internal
stress, a macroscopic internal stress can not be an internal variable in the case of finite plastic
deformation, and the plastic spin dissipates no energy without couple stresses. Finally consider
whether or not the plastic spin is subjected to thermodynamic law. Kratochvil [1] is the first that
pointed out the plastic spin must be given by constitutive relation. From another view point, howev-
er, the plastic spin is one given by a constraint relation. When a system is symmetrized, the plastic
spin hands over its restrictions in the thermodynamics to the symmetric variable and keeps only
some relation with the symmetric variable. Thus the plastic spin is said to be subjected to thermo-
dynamic law indirectly. The restriction to the symmetric one is just the restriction to the plastic

spin. For instance,

o:Dl=g:Ff(WH>0 (4.5)
V. Numerical Experiment for Plastic Spin

To validate the proposed origin for the plastic spin simple numerical calcuiations are performed

based on Eq. (2.3) with a few grains.
1. Kinematics

Although kinematics is a fundamental theory in mechanics, it is still an open field especially in
elastoplastic problems. A number of formulations for finite deformations have, as well known, been
proposed, but no one has been given to a unified agreement yet. On one hand, many numerical
schemes for solving boundary value problems employ updated Lagrangian method. Fortunately, the
relative discrepancies from the different formulations may be trivial with updated Lagrangian one
whose increment is small. The formulations in this paper aim to apply to the updated Lagrangian
method.

Mulitiplicative decomposition of deformation gradient tensor has been used for elastoplastic defor-
mations. Deformation velocity gradient is introduced as follows which is quite frequently seen in

the literatures.
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L=FF) ‘+FF(F)\F)'=L"+FLF)" (5.1)

where the second term is not only odd but also difficult to measure in both experiments and numer-
ical calculations. Thus a different approach shall be pursued in what follows. _
The new approach is based on Lagrangian measures. The increment of Green strain tensor can be

written as follows with multiplicative decomposition.
AB=- (FF - 1= o (P YEF = (P YF +(FYF ~ V) =UV AT+ A (5.2)

where 1 is deagonal unit tensor, AE® is elastic strain increment measured from x’(initial reference
configuration) and AE? plastic strain increment from x"(configuration after plastic deformation).
Now trying to evaluate plastic deformation gradient by approximation. By integration the rela-

tion

LP=F@F")" (5.3)
with an assumption of constant L’ in the course of increment, we have

FP=RY (5.4)

where Af is a small time increment. Equation (5.4) can be evaluated by characteristic equation theo-

ry for a function of matrix. To avoid eigenvalue analysis, Eq. (5.4) is approximated as follows.
Fr=1"+L°At (5.5)
2. Objective rate and stress increment

The time derivative of Lagrangian tensor has Lagrangian objectivity. It is convenient for deriving
an objective rate to make use of Lagrangian tensor. Note the relation between Cauchy stress and

the second Piola — Kirchoff stress

1 T
o=7 FoF (5.6)

where o is Cauchy stress, o, the second Piola — Kirchoff stress on a certain configuration, J
Jacobian of deformation gradient F. By taking time derivative of both sides in Eq. (5.6) and rear-

ranging it, the objective rate which will be used in this paper is defined as

aT=§F0',,FT=c’7~L0— oL —tr(L)o (6.7
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where 6’ is Truesdel stress rate.
The constitutive relation between the second Piola - Kirchoff stress and Green strain tensor may

be given in the incremental form as below.
40,=CAE =C{(F*)(AE - AE"XF*) }=C(AE -E%) (5.8)

where C is a forth order tensor and C=(F*)’"C(F*) ', The update of stress is performed as follows.

Jle F*Ao(F*)Y"+LoAt +LoAt+tr(L)o At (5.9)

Ao=

1 . .. . .
where o'=—3F0°F’ , 0" is Cauchy stress in x configuration before updating.

3. Slip velocity and hardening models

Many models are available for the slip velocity. In this study a viscoplastic model is considered.

Gilman [19] suggested a slip model as follows.

o+ H

H

v =2bu,p, +pvie  * (5.10)

where b is burger’s vector, v, the limit velocity of dislocation, H, material constant, p, initial dislo-
cation density, p dislocation increasing rate to slip, v shear stress. H 1 1s concerned with represen-
tation of fixed portion of the generated dislocations, which actually means hardening. This velocity
model is the base for the present examples, but slightly sophisticated modifications are given to it.
The hardening due to the fixed dislocation in the way of defects is modelled by the next evolution

equation.
H=c(h,~H)|v| (5.11)

where c, is material constant, A, the saturation value of the hardening, and || v || a norm evaluated
over all active deviatoric tensor. The hardening due to the fixed dislocations is assumed linearly

increasing with slip distance.
Hl:hl | Um I (5-12)

where &, is material constant, v,, maximum slip. The internal stress a is described by the evolution

equation as follows.

a=c,(hu - av)

a=c,(h,u~av) (5.13)
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where ¢, is material constant, &, the saturation of the internal stress.
Finally the stress parameter is modelled to depend on the power (n). Gathering the above models,

the slip velocity is modified as below.

(H,)" +H, +Hy" -

v = 2bu,(p, +pv,)e - (5.14)

4. Numerical experiment

A plane stress problem is attempted for numerical experiment of the plastic spin. The loading is

imposed by the prescribed total deformation tensor.
F,,=1+6¢, F;,=0.0, F, =8¢, F,,=1.0

The (0, 0, 1) orientation of crystal is alligned to Z — axis.
Figures 5.1~5.3 show the plastic spin for shear loading. The considered orientation patterns are
given in Table 5.1. As seen in figures, there is no significant plastic spin over the orientation pat-

. ) terns of grain. That implys that simultaneously
Table 5.1. Orientation patterns (unit deg)

P1 P2 P3 applied stress components are essential for the
0.0 0.0 0.0 plastic spin.
30.0 22.5 22.5 . h i
60.0 615 45.0 Figures 5.4~5.5 are the results of combined
120.0 112.5 112.5 loading of shear and tension. It can be seen that
150.0 157.5 135.0
210.0 202.5 202.5 the plastic spin is significant in Figure 5.5
240.0 2475 225.0 Lo o .
300.0 9299.5 202.5 which is for initially given texture contrary to
330.0 337.5 315.0 Figure 5.4 for the even distribution of orienta-
40 [ 1.0 40 r 1.0
Shear Stress F Shear Stress —
304 8 304 T
0.5 o 0.5
o 201 i d n 207 ) i e
g Spin " 00 " : - Spin [ g0 "
wn wn
101 10
-0.5 -0.5
% T 0ds ot ods odo ° ~19%0 0.05 "Tole T ods odo

Shear Strain Shear Strain

Fig. 5.1. Plastic spin for shear loading with orientation Fig. 5.2. Plastic spin for shear loading with orientation
pattern 1 pattern 2
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20- P L
= — 0.5
w 20 wp
H Spin i v
v v
I3 -
F V. 7 0.0
10 L
-0.5
°W [
-10 r r ; ——t ~1.0
0.00 0.05 0.10 0.15 0.20
Shear Strain
Fig. 5.3. Plastic spin for shear loading with orientation
pattern 3

tion. These figures show that the pattern of tex-
ture is also essential for plastic spin.

Generally speaking, the plastic spin is small
and there is no need to consider it in the engi-
neering problems except for the special case of
initially textured material. The oscillations and
spins in the figures are due to the small number
of grains considered. If sufficient grains are con-

sidered, better results could be obtained.
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50"r 10
40+ Shear Stress L
0.5
30+
. L
-
L2 v
72 Axial Stress -o.0
10 Spin
-0.5
o+
-10 T T —r— T T T -1.0
0.00 0.05 D.10 0.15 0.20
Shear Strain

Fig. 5.4. Plastic spin for combined loading with even
distribution of orientation pattern

40 71.0
Shear Stress
30+
0.5
5 207 Axial Stress il
(3
) 00 "
[
10
1 \/_\V\’—\——\_______ -0.5
° Spin
-‘lol T T T T =} .0
0.00 0.05 0.10 0.15 0.20

Shear Strain

Fig. 5.5. Plastic spin for combined loading with initial-
ly given texture pattern

VI. CONCLUSION

In this paper, the plastic deformations of polycrstalline materials were discussed in detail and

new origins for the plastic spin were suggested, from which the following conclusions are obtained:

1) The plastic spin originates from geometric properties of the plastic deformations.

2) For the plastic spin in polycrstalline materials, texture and simultaneously appliedstress com-

ponents are essential.

3) The plastic spin is not significant except the especial cases differently before.

4) The anisotropy of internal stress has the secondary effects on the plastic spin.

5) The status of internal stress (eg. back stress) of crystalline materials can not be respresented

by single macroscopic tensor.
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