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I. Introduction

When information about a controlled plant is not known sufficiently, the conventional
adaptive control theory is one of the theories which can be applied to control the plant. In
particular, the standard model reference adaptive control theory can completely control the
plant provided that the unknown plant is modelled as a linear time-invariant system and it
satisfies certain assumptions. This control theory controls the plant by adjusting control
parameters adaptively such that the output of the plant follows the output of a reference
model so that the resultant output error converges to zero asymptotically.“‘ﬂ These adaptive
control theories have developed rapidly since the standard structures were established and
their stabilities were proved.B_5J Because the mathematical proof of stability for an overall
control system assures its stability in a sufficient manner, the adaptive laws derived from
the theory can be used cofidently and effectively. Recently, these adaptive control theories
have extended their application fields through mathematical and structural modifications to
the standard technique, in order to control the plant which contains bounded disturbances or
uncertainties.'*”

However, if the unknown plant is a nonlinear time-varying system which cannot be
approximated as a linear time-invariant model, most adaptive control theories could not be
applied because of mathematical restrictions. A few applicable adaptive control theories

B0 ¢ counter the nonlinear time-varying

mainly deal with the robust stability problem
characteristics of the plant and can achieve stable overall control. However these systems
cannot achieve satisfactory performance because they do not have specific compensation
tools for the nonlinear time-varying characteristics. To solve this problem fuzzy control

U121 an be applied which convert the linguistic control strategy based on an expert

theories
knowledge into an automatic control strategy. Indeed, since most fuzzy control theories are
composed of IF-THEN rules to express the expert knowledge and engineering experience
necessary to control a given plant, they could be especially useful where the plant is
unknown or too complex to be analyzed by model-based control theories. If these fuzzy
control theories, however, need input/output data in order to establish fuzzy logic control
structures, they could not be applied to control an unstable nonlinear time-varying system.
This paper introduces a method to solve the above problem. A new adaptive control
theory is developed which combines a fuzzy controller and the MRAC. The fuzzy

controller within the new control theory is used to analyze and to compensate the

nonlinear time-varying characteristics of the plant. The concept to derive the new control

— A0 -
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theory is as follows. First, it is supposed that a given nonlinear time-varying plant
comprises a nonlinear time-varying subsystem and a linear time-invariant subsystem. The
MRAC is applied to control the linear time-invariant subsystem of the unknown plant.
Although the plant is unstable, it may remain stable as long as the linear time-invariant
part of the plant is regulated by the MRAC. It can be considered intuitively that the steady
state output error of the MRAC system is caused by the nonlinear time-varying
characteristics of the plant, because the output error of the MRAC in steady state must go
to the zero asymptotically where the given plant is linear time-invariant. The nonlinear
time-varying characteristics can be analyzed fuzzily using input/output data from the
unknown plant in the MRAC system. To do this, the fuzzy identification method suggested

19150 s adopted to model the nonlinear time-varying characteristic

by Takaki and Sugeno
which is considered as the steady state output error. Here the error generator is assumed
to generate the output error of the MRAC system in steady state and is modelled as a
fuzzy model. A fuzzy control system with state feedback™ is then designed in order to
make the output of the error generator converge to zero asymptotically. In other words, an
additional control input is obtained from the fuzzy controller, which is added to the control
input generated by the MRAC. In conclusion, the unknown nonlinear time-varying plant can
be controlled by the new adaptive control theory such that the output error of the given
plant converges to zero asymptotically. The new control theory is named the model
reference adaptive fuzzy control (MRAFC) theory in this paper.

The organization of this paper is as follows. Chapter II explains the standard model
reference adaptive control theory when the relative degree #* = 1. Although an explanation

for modifying the error equation is required for the case #* =2, it is omitted here because
the essential characteristic of the adaptive control is not dependent upon the relative degree.
In section 3.1 some assumptions are made to analyze the nonlinear time-varying plant. In
section 3.2, the fuzzy identification procedure is explained for the error generator and the
design method of fuzzy controller for regulating the error generator output is discussed. A
new control structure MRAFC is suggested and the stability analysis for the structure is
discussed in section 3.3. In chapter IV, simulations are executed in order to test the new
theory and to verify its quality for nonlinear time-varying plants. The conclusions of this

paper are contained in chapter V.
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Il. Model Reference Adaptive Control - Ideal Case (»" = 1)

When a controlled plant is linear time-invariant, the standard structure of the MRAC

system to control it is shown in Fig. 1.

£ Zu(s) Ym(2)
" Ru(5)
-Y e(d
r(D Z)(s) y(D
’ Rp(s)
A,

(1)

Fig. 1 The standard structure of the model reference adaptive control

The plant is represented by linear time-invariant differential equations

x, = A,x,+ byu

y, = h]x, (2-1)

where x,: RT — R” is the #n-dimensional state vector, #:R"— R is the input,

Yyt R' — R is the output. The transfer function W,(s) of the plant is represented as

Wy(s) = h(sI—A,) 'b, = k,—Z&)- (2-2)
Rp(s)

where W,(s) is strictly proper with Z,(s) a monic Hurwitz polynomial of degree
m(<n—1), R,(s) a monic polynomial of degree 7, and k, a constant parameter. Here
it is assumed that only m, n and the sign of k, are known as a priori information.

A reference model represents the behavior expected from the plant when it is augmented
with a suitable controller. The model has a reference input #(#) which is piecewise

continuous and uniformly bounded and so is an output ¥,(#. The transfer function of the

—_ A _
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model is defined as

Z,(s)

Wy(s)=hp(sI—A,) 'b,2k

where Z,(s) and R,(s) are monic Hurwitz polynomials of degree n—1 and =

respectively, and k,, is a positive constant.

The control structure must be chosen so that constant values of the controller parameters

exist for which perfect regulation or tracking is achieved asymptotically. The controller is

composed of a gain A(#), the feedforward control loop with the parameter vector §,(#) and
the feedback control loop with the parameter 6,(#) and parameter vector @,(#). It is
described completely by the following differential equations.

0 () = Ao () + Tud)

0 = A wy() + Iy ()

o(t) 2 [HD), o{(D), y,(9, 07 (H]” (2-4)

o) = [k(D), 07D, 6,(8), 05(D]"

u(f) = 07(1) w(9)

where k:RT>R, 8,,@,:R™R" ! 6):RT>R, 8,, w,:R*>R" ' and A is an

(n—1Xn—1) stable matrix arbitrarily chosen by a controller designer. Therefore, the

overall control system combining (2-1) with (2-4) can be represented by the following

equations.
%D Ap 0 0 xp bp
o |=| 0 A0 ||lo+|! [07(t) w(2)] (2-5)
@5 lhy 0 A || o, 0
v,=h,x,.

When the following parameter errors are definéd as

W)2k(t)— k", o(t) 20,(t)— 6, ¢,(2)=0,(¢t)— 0]
Go(1)2 0,(¢t)— 05, $(t) = [¢(2), 61 (), d0(2), d5()]7,

the state equation (2-5) can also be written as

VY



Jonghwa Kim, and Gang-Gyoo Jin

J&:Acx-i- b [EFr+¢Twl; V= hlx (2-6)
where x =[x/, o], /17, h. = [k, 0,017,
A,+6b,h] b,0] b,0; b,
A, = looh, A+107 0, |, b.=|1]. 2-7)
Il 0 A 0

When @(¢) = 0 that is @(¢)= 0", (2-6) represents the reference model nonminimaly

which can be described by the ( 3#— 2)th order differential equation.

x"mczAcxmc_*_ bck*r; ymzhzme (2-8)

where X .= | x*T, wIT, a);r] ' th(sI—AC)_le= L W,(s).
)/ km

Subtracting (2-8) from (2-6), the error equation between the reference model and the

plant can be obtained as

e(t) = A e(t)+ b, [¢()a(t)] 2-9)
el(t)=h! e(t)

where e(?)2 x(t) — x,,(t) is the state error and e, =y, — y,, is the output error.

The output error € is expressed as the following equation.

e (t) = ,{:;: W(s) ¢ 7(t) w(t) (2-10)

Furthermore, the reference model can be chosen as (2-3) so that its transfer function
W,(s) is strictly positive real (SPR), (A, b.) is stabilizable and (kZ, A,.) is

detectable. Therefore, an adaptive control law can be derived from the Lyapunov stability

theory using the Meyer-Kalman-Yakubovich lemma. That is, the parameter error vector

@(t) is updated according to the following adaptive control law'"

= 0=—sgn(k,) e(t) o(t) @-11)

and the equilibrium state (e= 0, ¢ = 0) of (2-9) and (2-11) is globally uniformly stable.

Since e; as well as the output v, of the reference model are bounded, ¥y, is bounded

- 44 -
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@(t) is bounded so that e(t)—0 as t—c0 or |e(t)| >0 as t—o. In

conclusion, the equilibrium state of the MRAC system is globally asymptotically stable.

lll. Derivation of a New Adaptive Fuzzy Controller

3.1 The Basic Analysis and Assumptions for the Plant

When a plant is modelled as linear time invariant, the standard MRAC theory can be
used to control the given unknown plant. If the plant evolves nonlinear time-varying
characteristics, it may be impossible to control it using the control theory developed in
chapter 2 because some required assumptions are not satisfied. In spite of that problem, if
the plant is assumed to be linear time-invariant, the adaptive control theory could still be
applied to it although the output of the plant may not follow the output of the reference
model in steady state. Intuitively, it may be assumed that the output error would be

generated by the nonlinear time-varying characteristics of the plant.

Assumption 3.1

An arbitrary nonlinear time-varying plant, whose mathematical model is a linear
combination of linear time-invariant terms and nonlinear time-\‘/arying terms, is assumed to
be composed of a linear time-invariant subsystem and a nonlinear time-varying subsystem.
Then the nonlinear time-varying characteristics of the plant are dependent only upon the
nonlinear time-varying subsystem.

Even for nonlinear systems whose mathematical models cannot be separated into linear

and nonlinear terms explicitly, they might be supposed to satisfy assumption 3.1 because

Nonlinear
Time-varying |22
Input Subsystem + 1 Qutput
- >
u Lincar + Vs
Time-invariant
YL
Subsystem

Nonlincar Time-varying Plant

Fig. 2 Input/output relation for the plant under the assumption 3.1
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they are composed of linear first order terms and nonlinear higher order terms when they

are expanded into Taylor series at a fixed time.
Under this assumption, the input/output relation for the plant can be described as in Fig.

2. Thus the output of the plant y, is described as

Yo = Yoo T Yon . (3-1)

Assumption 3.2

Although the plant which satisfies assumption 3.1 has nonlinear time-varying
characteristics, if it is not known, the standard MRAC theory can still be applied under the
assumption that it is linear time-invariant.

When the standard MRAC is applied to the plant described by the Fig. 3.1, the structure

of the control system is expressed as Fig. 3.

Ym

Reference Model

e (#)

Nonlinear
Time-varying
Model Reference Subsystem

r(t) u (1)
Adaptive Controller L

+

(MRAC) Linear

Timc-invariant

VoL

Subsystem

Unknown Plant

Fig. 3 The standard MRAC control system under the assumption 3.2
Then the output error e; in Fig. 3 is expressed as
e = Yy = Ym = Yo — Ym t YN (3-2)

If the nonlinear time-varying subsystem does not appear in the plant, ¥, is naturally

equal to zero. In this case the plant is linear time-invariant and the output error e; is

given as

AL
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€1 = ¥Yp " VYm = YL — ¥Ym (3-3)
and the steady state output error will converge to zero, that is }im e; = 0, by the control

action of the standard MRAC. Where the nonlinear time-varying characteristics are
contained in the plant, the steady state error will not converge to zero. In this case the
steady state error can be considered as the output of the nonlinear time-varying subsystem
and it can also be considered as the output error of the overall control system in steady

state. That is,

lim e/() = lim[ (v — ym) + vl

= ,13130 o — ym) + tli_{{.loJ’pN (3-4)
= lim y,u

t— oo

If a method exists, which makes the steady state output error }im Ypv converge to zero,
— oc

the nonlinear time-varying plant analyzed as Fig. 2 could be controlled completely within

the standard MRAC structure.

Assumption 3.3

The nonlinear time-varying subsystem in Fig. 2 is considered as the error generator
which generates the output error of the MRAC system in steady state, in the case where
the unknown plant is assumed to be linear time-invariant.

Based on the assumption 3.3, (3-2) can be expressed as

e = Y= Ym = (Vo = Ym + Yov

= ea + en (3-5)

where €4 = Y,. — ¥ is the output error of the standard MRAC when the plant is
time-invariant, ey = y,v is the output of the error generator. Then the nonlinear

time-varying unknown plant can be substituted into Fig. 3 as shown in Fig. 4.

The control aim is to find a method which generate an additional control input such that

the output of the error generator converges to zero in steady state, that is rlim e =0.
— o

AT
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Error e
Generator
u +1 Y, =Yt en
+
Plant assumed
tp be.Lme?xr VoL
Time-invariant

Unknown Plant

Fig. 4 A description of the unknown plant under the MRAC

3.2 Fuzzy Identification for the Error Generator and Design of a Fuzzy Controller

It was supposed in the previous section that the nonlinear characteristic evolved by the
unknown plant is considered as the output of the error generator. If the behavior of the
error generator is analyzed, it could be achieved to obtain an additional control input so
that the output of error generator asymptotically converges to zero in steady state. To do
this, this section is developed according to the followings. First, the error generator of the
unknown plant is considered as a fuzzy model and is identified using a fuzzy identification
method. Second, a fuzzy controller is designed such that the output of the identified fuzzy
error generator goes to zero and resultantly the additional control input added to the control

input of the standard MRAC is obtained.

3.2.1 Fuzzy identification of the error generator
Since the error generator was assumed to generate the steady state error of the MRAC
control system, it can be identified fuzzily by using input/output data from the MRAC
control system in steady state where it is assumed to be a fuzzy system. Therefore, Takaki

1[]3.!6]

and Sugeno’s fuzzy mode is adopted as a fuzzy model and it is identified according to

the identification steps in Fig. 5 suggested by Sugeno and Kang.[14J
At any rate, Takaki and Sugeno’s fuzzy model is composed of fuzzy IF-THEN rules
which represent locally linear input/output relations of the error generator. The ith rule is

expressed as follows.

— AR —
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Premisc structure identification

'

Consequent structure identification

'

Calculation of the criterion
for model verification

'

Verification of consequent structure

Verification of premise structure

Detcermination of fuzzy model

Fig. 5 The identification procedure of a fuzzy model

Rule i : IF e(k) is Fi and and e (k—m+1) is F.,

THEN ei(k+1)=a}e (B +aye(k—1)++ale(k—m+1)+b u'(k)
(3-6)

where 1=1,2,-,1, e (k—j+1)(j=1,2,:-+,m) are state variables of the fuzzy model,
a, and b' are consequent parameters, and F, are fuzzy sets of which membership

functions are represented as continuous piecewise-polynomial functions. If the consequent

part of (3-6) is expressed in vector-matrix notation, it can be written as follows.

Rule i : IF e(k) is F| and and e (k—m+1) is F,
THEN ei(k+1) = F;e (k) + B;u(k) (3-7)

where e, (k) = [¢e; (k), el(k—l),---,el(k—m-f-l)]r is the state vector of the fuzzy

model and e{(k+1) = [ej(k+1), e, (k), e (k—1), -, e, (k—m)]T is the output from the

tth rule.  When a pair of { e, (%), u;(k) } is given, the final output of the fuzzy system is

inferred as follows.

a4
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S &R (Fei(h) + B,ulh)]
e (k+1) = = (3-8)
> £

where E£(k) = I:[l Fj:(el(k—j+ 1)) and Ff(el(k—j+ 1)) is the grade of membership

of e(k—j+1) inF.

Let us assume in this paper that
gl E(k) >0 and &R =20 for i=1,2,--,1

for all k. Each linear consequent equation represented by linear discrete notation F; e (k)

is called ‘subsystem of the error generator’.

In conclusion, the fuzzy system given as (3-8) is the fuzzy representation of the
nonlinear time-varying characteristic which is evolved by the error generator. This fuzzy
model is important in two aspects. First, it is used as the base model of the fuzzy control
system which generates the input to regulate the output of the error generator. Second, it is

used to prove the global asymptotic stability for the fuzzy control system.

3.2.2 Design of a fuzzy controller to stabilize the output of the error generator
The fuzzy system identified as (3-8) presents the nonlinear time-varying characteristic

which is evolved by the error generator. Thus if a fuzzy controller is designed and a
regulation input is obtained so that the output e;(k+ 1) of (3-8) converges to zero in

steady state, the overall control system could be controlled in a stable fashion. To do this,
let consider a fuzzy control system described as Fig. 6.

Since the design purpose of the fuzzy controller is to make the output of the error

us(k)
Fuzzy —f—-—b Fuzzy System e (k+1)
™| Control for . >
ontroller Error Generator
Delay [e¢———
e, (k)

Fig. 6 A fuzzy control system to regulate the error generator
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generator converge to zero in steady state, an external input to the error generator is

assumed to be zero. That is, the regulation problem of a free fuzzy system is considered.

If an 1th control rule is assumed to act only on the same ith rule of the fuzzy system, the

following control rules are used in this paper.

Control rule i : IF e\(k) is Any and - and e (k—m+1) is Any

THEN uk) = — K, e (k) i=1,21 (3-9)

where K, is a proportional feedback gain for the control rule : and ‘Any’ is a fuzzy set

whose membership function Any{e;( - )} is 1.0 for all e;( - ). This type of proportional
controller is known as a special case of a fuzzy proportional controller."®

In order to compose a fuzzy control system, each control rule given as (3-9) is combined
into the corresponding subsystem given as (3-7) for the same :. Thus the ith subsystem

of the fuzzy control system is expressed as

Control subsystem i : IF e(k) is F and - and e,(k—m+1) is F',

THEN ei(k+1) = (F;,— B;K;) e, (k).

(3-10)
The resultant output of the fuzzy control system can be obtained as follows.
21 Ei(k) T; e (k)
e (k+1) = —= (3-11)
>

where T, = F,— B;K,

Since the number of control subsystems corresponds to the number of fuzzy subsystems
of the error generator, that is = 1,2,---,/, the stability analysis of the fuzzy control
system is quite simple. This type of rule has the characteristic that the control input u}(k)

is applied directly to the corresponding subsystem regardless of premise parameter

condition.
Therefore, the resultant fuzzy control input /%) must be calculated using the same
method that each subsystem controlled by the control u}(k) participates in the resultant

output of the fuzzy control system with the weight &,(k). That is,
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" 2. &8 i) T &B K, e i
u = = -
T Sew > &b

In conclusion, the design problem of the fuzzy controller is to decide the feedback gains

K, to stabilize the given fuzzy system, or in other words, to decide the fuzzy control

input #{ k) in order to make the output of the error generator converge to zero in steady

state.

3.3 A New Control Structure Named Model Reference Adaptive Fuzzy
Control (MRAFC) System

3.3.1 The structure of MRAFC system

When an unknown nonlinear time-varying plant is assumed to be linear time-invariant, it
was supposed that the steady state output error of the MRAC system is caused by the
nonlinear time-varying characteristic which is considered as the output of the error
generator.

In the previous section, the identification method and the fuzzy control design method
were discussed to obtain the additional control input so that the output of the error
generator converges to zero in steady state.

Fig. 7 shows the overall control system that the fuzzy control system is combined with

the MRAC system in order to control the given nonlinear time-varying plant. From Fig. 7

the total control input #,(#) can be obtained by adding the additional control input w#A#)

from the fuzzy controller to the control input %(#) from the MRAC, that is,

u(f)
uld

u(t) + ufd) (3-13)
u(k) - 47

where 47T is the sampling period for the fuzzy control system.

Although the error model identified as a fuzzy model is used as a mathematical model to
generate the additional control input #A#), in other words to find the feedback gain K, of
the fuzzy controller, it is not used directly within the control structure. This is because it
is more useful and exact to use the actual output error e;(#) than to use the error

generator output. Therefore, the signals expressed by the dashed line ‘----" in Fig. 7 are

not used actually for control action but used only for developing the fuzzy control system

- 159 -
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discussed in the previous section. The fuzzy model for the error generator is used as a
basic mathematical model when the stability for the fuzzy control system is analyzed. If
the nonlinear time-varying characteristic of the given plant is modelled exactly as a fuzzy
error generator and if the stability of the fuzzy control system is proved, the nonlinear

time-varying plant could be controlled with global stability.

3.3.2 The stability analysis of the MRAFC system
The fuzzy control system in the MRAC structure regulates the error generator which is
represented as a fuzzy model and is assumed to generate the nonlinear time-varying
characteristic of the plant. Thus it is very important to prove the global asymptotic

stability of the fuzzy control system.

Theorem 3.1 '8

The equilibrium of a fuzzy free system of (3-8 when uj(k) =0 is globally

asymptotically stable if there exists a common positive definite matrix P for all the

subsystems such that

FIPF, — P<0 for i=1,2,-,1. (3-14)

Theorem 3.2

The equilibrium of a fuzzy control system expressed as (3-11) is globally asymptotically

stable if there exists a common positive definite matrix P for all subsystems such that
T'PT, — P<0 (3-15)

where 1=1,2,--, /.

Proof. The proof follows directly from the theorem 3.1 if the feedback matrices
K; (i=1,2,--,1) are selected such that all the resultant matrices T, of the fuzzy
control system satisfy the condition (3-14) for a common positive matrix P. [

Therefore, as long as T, satisfy the condition (3-15), the fuzzy control system (3-11) to

regulate the error generator is always globally asymptotically stable.
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Theor 3

The equilibrium state of the standard MRAC system is globally asymptotically stable
along the trajectories (2-9) and (2-11), if the fuzzy control system of the MRAFC structure
satisfies the theorem 3.2 under the assumptions 3.1 and 3.3.

Proof. If the assumptions 3.1 and 3.3 are satisfied, we can write the output error ¢,(#) as
e(D = ea(®) + e (3-16)
Then the output error in steady state can be expressed as
1,1{2 el(d = 1,1_1'101o leja(d) + ep()]
= lim e1a(9) + lim e;i(#) (3-17)
It was assumed in this paper that the error generator is modelled as a fuzzy model using
input/output data in steady state and it also generates the steady state error which is

caused by the nonlinear time-varying characteristic. Thus, if the fuzzy control system is

asymptotically stable, then

lim ¢,() =0 and lim ex(#) = 0. (3-18)

Therefore, the following result can be obtained from (3-17).
1,1_{'{1 ea(t) = 1,1_{2 (o —¥m) =0 (3-19)

This means the bounded condition
I frl Ndr < (3-20)
o _
lim | ea(0)l dr

must be satisfied because the unboundedness of the limit (3-20) contradicts (3-19). From
(3-19) and (3-20), the output error ej4(#) of the MRAC for the linear time-invariant
subsystem belongs to L'ML® and hence it is uniformly bounded.”? Since W,(s) in
(2-10) is a stable matrix and hence ej4() and ¢ 7(#) @(#) grow at the same rate,"”
¢ (D) w(d is also uniformly bounded. These means that all the signals in the standard
MRAC are bounded as long as y,, is bounded. Therefore, the adaptive law given as (2-11)

holds true and the equilibrium state of the MRAC system along (2-9) and (2-11) is

globally asymptotically stable. J
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In fact, e,(®) is used instead of e;4(# which cannot actually be separated from e;(#)
in Fig. 7. Nevertheless, all the internal signals of the MRAC are also bounded as long as
e;(#) is bounded and converges asymptotically to zero.

In conclusion, if the error generator is identified as a fuzzy model with confidence and
the feedback matrices K, are decided so that the fuzzy control system is globally

asymptotically stable, the overall MRAFC system is globally asymptotically stable and it

can control the given unstable nonlinear time-varying plant.

»| Reference model Ym(?)

i Controller [t ® Sample <1—<>e'—(t)>

i Hold 1+
i - N o Fuzzy Control System _ _ i
Unkn
r(1) Nonlinear Y1)
Time-varying
Plant
Al

@,(1)

: signal actually used for control
------------------------------------------ : signal not used for control

Fig. 7 The structure of the Model Reference Adaptive Fuzzy Control(MRAFC) system

IV. SIMULATIONS

In this chapter, two simple plant models are adopted in order to test and to verify the
control performance and the efficiency of the suggested MRAFC structure. One is an
unstable nonlinear plant and the other is an unstable nonlinear time-varying plant. They
cannot be controlled by the control theories including fuzzy control theories that necessitate

input/output data for the given plant. Because they are unstable and divergent, it is
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impossible to acquire input/output data directly from the plant. According to the design
procedure the overall control systems for two given plants are designed. Many simulation
results are demonstrated by comparing the time responses among the reference model, the
standard MRAC system and the suggested MRAFC system for the unit step and a

persistently excited sinusoidal input.

imulati

A plant to be controlled is expressed as the following unstable nonlinear differential

equation with a bounded disturbance.

plant L Y,= 9, 4053+ ututov, y,(0) =1, y,0) =0

disturbance : v = 0.5 sint+ e; cos2t+ 0.5€3 cos?

At first, the standard MRAC must be applied to the given plant under the assumption
that the given plant is linear time-invariant, in order to acquire input /output data from the
MRAC system for the identification of an error generator. To do this, a reference model

was conveniently chosen to satisfy SPR condition since the relative degree of the given
plant is #* = 1. In order to analyze the MRAC system, two kinds of reference signals

was used. The unit step function was used to analyze the transient response and the

sinusoidal function with two distinct frequencies was used to analyze the tracking

performance.
reference model D Ym=—Yut+ 7, ¥,(0)=0
unit step reference input : 7= u,(¢)

sinusoidal reference input : 7= cos¢+ 5cosbH¢

Input/output data, which are used for the fuzzy identification of an error generator, were
acquired for the MRAC system when the given sinusoidal input as the reference input was
used.

Fig. 8 presents the unit step responses of the given plant, the reference model and the
MRAC system.

Fig. 9 shows the time responses of the given plant, the reference model and the
MRAC system for the sinusoidal input which is persistently excited. According to the
Fig. 8 and Fig. 9, the outputs of the standard MRAC system cannot follow those of

the reference model but they are bounded within a certain limit. In view of the above,
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Fig. 8 Output comparison for the unit step reference input
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Fig. 9 Output comparison for the persistently excited sinusoidal input

it is known that the MRAC structure is apparently inadequate to control the unstable

nonlinear plant but it

correctly accomplishes

the control action for the linear

time-invariant subsystem of the given plant so that the output of the MRAC system is

bounded.



Jonghwa Kim, and Gang-Gyoo Jin

el1(k), e1(k+1)

delta e1(k)
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Fig. 10 Input/output data used for the identification of an error generator
(@) e (k) and e (k+1) () de (k) () ulk)
Since the plant output is bounded by the MRAC in spite of the unstable plant, it is
possible to acquire input/output data from the plant in the MRAC system so as to identify

an error generator.

Fig. 10 shows the data that are used for the identification of the error generator as a
fuzzy model when the sinusoidal reference input is used. The sampling period 47 = 0.1
second was used.

Using the data e (k), de (k) (=[e (k) —e (k—1)]1/4T), u(k) and e, (k+1) acquired
from the MRAC, Takaki and Sugeno’s fuzzy model for the error generator was identified
according to the procedure presented in Fig. 5. Although five fuzzy models dependent
upon the partitions of the input spaces for the e;(k£) and 4de (k) were identified, the
following simple model was chosen as the resultant identification model for the error
generator, which has the least performance index defined as the root mean square of the

output errors.

- Q
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Rule1: IF e (k) is k

-1.0 25
THEN el(k+1)= 0.9988 e,(4)+0.0096 de\(%)+0.009 ) (&)
= 1.0948 e,(£)-0.096 e;(k—1)+0.009 2}(k)

Rule 2 : IF e,(k) is A

-1.0 25
THEN &}(k+1)=0.997 e,(k)+0.0109 de,(k)-0.013 w5 (k)

=1.106 e,(£)-0.109 e;(k—1)-0.013 u7 (k)

The feedback matrices for fuzzy control rules were selected such that the damping ratios
are nearly 0.7 to regulate the consequent equations of the above fuzzy subsystems, that is,
K,=1[21.0 22.9] and K,=[—12.0 —15.64]. Therefore, the resultant fuzzy control
input can be calculated by using (3-12). The additional control input from the fuzzy
controller which is added to the control input from the MRAC, can be calculated by (3-13).

Fig. 11 and Fig. 12 show the transient responses of the suggested MRAFC system which
are compared with those of the reference model for the step input and the persistently
excited sinusoidal input, respectively. As can be seen, they follow the outputs of the
reference model very well and thus exhibit good tracking and steady state behavior even if

the given plant has a highly nonlinear characteristic.
It is necessary to check whether the overall control system is stable or not. This is
performed through demonstrating the asymptotic stability of the fuzzy control system.

For the following matrices T; and T, of the fuzzy control subsystems, if

T, = [ 0.1906 ~0.3(())2 ] T, [ 0.1950 —0.352]

a positive definite matrix P = [ 2_51 _%] is selected, then the condition (3-15) is

always satisfied for 7 = 1,2. Therefore, the fuzzy control system is asymptotically stable
and thus the MRAFC system is globally asymptotically stable.
In conclusion, the proposed method can be applied to control unstable nonlinear plants

with global asymptotic stability, as long as some assumptions in section 3.1 are satisfied.
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respectively. As can be seen, the plant outputs diverge to infinity because it is unstable.
The outputs of the MRAC do not follow those of the reference model but remain within
finite limits. Therefore, it is possible to apply the suggested method to control the given
plant.

The following fuzzy model is an error model which is assumed to be present the
nonlinear time-varying characteristic of the given plant. It was identified using the data

obtained from the output error of Fig. 14 as in simulation 1.

Rulel : IF Jde (k) is k

-35 8.0
THEN e} (k+1)=1.002 e, (£)+0.009 de, (k)+0.01 2} (k)

=1.092 e;(k)-0.09 e;(k—1)+0.01 2+ (k)

Rule2 : IF Ade (k) is A

-35 8.0
THEN &} (k+1)=1.001 e, (k)+0.01 de, (k)-0.002 2> (k)

=1.101 e,(k)-0.1 e;(k— 1)-0.002 %2 (%)

In order to regulate the above fuzzy subsystems, the feedback matrices K, and K, are
selected as K, = [19.0 21.9] and K, = [—57.0 —112.0]. The resultant matrices

T, and T, of the fuzzy control subsystems are given as

T, = [O92 S0309) g, - [ 0987 —0.34 ]

2.5 —1

For these system matrices if a positive definite matrix P = [ 101 ] is selected, the

asymptotic stability condition (3-15) is always satisfied for ¢ = 1,2. Therefore, since the
fuzzy control system for the error generator is asymptotically stable, the overall MRAFC
system is globally asymptotically stable.

Fig. 15 and Fig. 16 present the time responses of the MRAFC system compared with
those of the reference model. As expected, the transient response and the tracking
performance are enhanced that the MRAFC can follow the reference model. Even though
the given system is a nonlinear time-varying plant, the responses of the MRAFC are nearly

equal to those of the nonlinear plant in simulation 1.

_ /O _
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Therefore, it is concluded that the MRAFC structure can be applied to control unknown
unstable nonlinear time-varying plants if only an error model is identified correctly and a

fuzzy control system is asymptotically stable.
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Fig. 15 Output comparison for the unit step reference input
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Fig. 16 Output comparison for the persistently excited sinusoidal input
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V. CONCLUSION

A new adaptive control theory was developed for unstable nonlinear time-varying plants
such that a fuzzy control system is combined with the standard model reference adaptive
control theory. The fuzzy control system was used to compensate the nonlinear
time-varying characteristic of the given plant which is assumed be the output of an error
generator. To achieve this purpose, the fuzzy identification method was adopted and the
additional control input was generated such that the output of the identified error generator
converges to zero asymptotically.

By means of the simulation results, it was verified that the suggested MRAFC could
improve the transient response of the given unstable nonlinear and/or time-varying plant
with global asymptotic stability. That is, the transient and steady state output of the
MRAFC system followed that of the reference model quite well.

Although it may not easy to carry out the identification procedure for the fuzzy model of
an error generator, nevertheless, if the fuzzy model with the lowest performance index is
identified, the given system can be easily controlled by using the well-known linear control
theory. Also, since the identification procedure is carried out in off-line, it does not increase

the computational burden.
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