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Abstract

Haldane and Rezayi.

The fractional quantum Hall effect(FQHE) is based largely on Laughlin’ s theory for the
primary filling fractions y— 1/m , where m in an odd integer. Laughlin’ s picture was obtained
by exact numerical diagonalization of the full interacting Hamiltonian for a small number of
electrons (N=5,6,7,...) constrained to move on a spherical surface in a radial magnetic field[1].
The total flux 47R*B through the sphere of radius R is equal to an integer, 28, times the
quantum of flux, ®,=hc/e. The eigenvalues of kinetic energy are given by EL=(£%)§) [li+1)-
$? ], where the angular momentum eigenvalue / can take on the values S, S+1 , S+2 ...
Clearly the lowest Landau level has /=8 , and the nzh excited Landau level has l=S+n,
There are 28 +1 degenerate single particle states in the lowest Landau level. For the
Laughlin v = 1/m state 2S has the value m(N-1) , so that for N=8, the v = 1/3 state has
28=21. Numerical calculations for up to ten electrons have been carried out for special values
of the filling factor v[2,3].

The energy spectrum obtained in this numerical calculations gives a set of energy values for
each value of the total angular momentum L. An illustrative case is the spectrum for an eight
electron system for 28=21, 20, 19, 18, 17, and 16. The value 28=21 corresponds to the Laughlin
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liquid state. The ground state is an L=0 single, and it is well separated from a low lying set of
excited states. For values of 2S close to the value for a Laughlin state, we can write 28=2S,_1+
ngy — Nee » Where nQE and ngy are the number of quasielectron and number of quasihole
excitations, respectively. Thus the systems with 28=20 through 16 correspond to values of
ngn—Nqe 8oing from -1 to -5. The lowest energy sectors of these spectra have ngy=0. Thus
nez=1 through 5 for these five values of 2S. The first excited sector is expected to contain one
additional QE - QH pair. It would be useful to be able to determine the energies and angular
momenta of the states in the low lying energy sectors without having to perform very large
numerical diagonalizations. It may be possible to accomplish this by using the numerical
calculations to construct a Fermi liquid model of the CF excitations.(4,5,6]

In the Composite Fermion medel introduced by Jain[7], a fictitious flux 2p®, (where p is an
integer) is attached to each electron. For a filling factor vthe applied magnetic field B satisfies
B - AIN=®,/ v, where A is the area of the sample. For the v=1/3 state we choose p = -1, s0
that the fictitious magnetic field B produced by the fictitious flux is oriented opposite to the
applied field B, The fictitious charge is taken equal to the charge on the electron, then each CF
experiences a mean field B’ —B+B= B/3. In the spherical geometry this transforms the value
of 2S into an effective flux 25" =2S",_,+ngn ~ Nge acting on the Composite Fermions[8].

For an N particle system 28*,_,=N - 1. § plays the same role for the CF that S plays for
the original electron. The angular momentum of a particle in the lowest CF Landau level must

be equal to S”, giving for the angular momentum of a quasihole excitation
lQH=S'='12_‘(N+nQH— nQE— 1) (1)

Because the quasielectron excitations are Composite Fermions in the normally empty first
excited CF Landau level [o;=8"+1=lgz+ 1.

The energy of a QE - QH pair is just the CF cyclotron energy. However, a single QE or QH
must interact with the Laughlin “vacuum state”. In this case it can be taken the results of
exact numerical diagonalization for N electrons on a sphere as “experimental” data.

For example, the Laughlin condensed state of an eight electron system occurs at 25=21 and
has angular momentum L=0. A single quasielectron is present at 28 =20 with L=4, a single
quasihole occurs at 28=22 with L=4. The energies £o¢ and &y are simply the difference
between the minimum energy, E(L=0), of the Laughlin condensed state at 25=21 and the
minimum energy E(L=4) at 25= 20(QE) or at 25=22(QH). In considering the
quasiparticle(QP is either QE or QH) states, we keep the number of electrons and the radius of
the sphere constant, but change the value of 2S. We can obtain the QE and QH energy as a
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function of N . Extrapolation to N '—0 should eliminate finite size effects and give values of
£gi and &,y appropriate for large systems[9).

For states with more than a single quasiparticle excitation, we can determine the allowed
values of the total angular momentum by simple addition of the angular monenta of the
individual quasielectron and quasiholes treated as distinquishable sets of Fermions.

In the Landau theory the energy of an interacting electron system is given by the sum of the
energies of the individual quasiparticles plus a term representing the interaction of the
quasiparticles with one another. Thus far we have neglected the interaction term. Thus the
energy of a state containing ny, quasielectrons and ngu quasiholes would be simply Ngg Eget
nou £qn- The energy of a state containing ngr quasielectrons and nyy, quasiholes can be written

as

1
E:EO+QE’,8QPnQP+ 7 QEQP’ VQP,QP' (LQP,QP' )nQanp (2)

The last term represents the sum of the energy changes caused by the interaction of pairs of
quasiparticles whose total angular momentum is Lgpgr . The QP-QP interaction function Vor
or (L) can be obtained by comparing the exact numerical energies for the states containing a
single pair of quasiparicles (2QE, 2QH or 1QE+ 1QH) with the sum of the individual
quasiparticle energies. In the figure we plot the g and gy, which obtained from the numerical
calculations as a function of the inverse of the number of electrons. We believe that systems
with large numbers of electrons can be treated using the phenomeno-logical Vor-op to

determine how the states in the low energy sectors are affected by QP — QP interactions.
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FIG. ¢£gg and &gy obtained from the numerical calculations as a function of the inverse of the
number of electrons. The open symbols includes the “self-energy” correction suggested by
Haldane and Rezayi. Energies are in units of e* / l; , where l; is the magnetic length for the

field appropriate to the Laughlin v=1/3 state.
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The problem of determining the relative or total angular momentum of pairs of
quasipriticles when you know that the total angular momentum of three, four or more
quasiparticles is equal to some value L is non-trivial. For the Fermi liquid theory approach it
is conceptually simpler to use semiclassical quantization and to describe quasiparticle
coordinates in terms of energy, E, and a “time along orbit”, S, where the motion is a periodic
function of S with period 27 /w,. The interaction of a pair of quasiparticles (¢, S’) and (g, S)
will then be a periodic function of S" —S and will depend upon whether ¢ and £ describe QE
or QH excitations. The Landau interaction function fgpgp (8" —S) can be thought of as a two by
two matrix with diagonal elements QE - QE and QH - QH, and off-diagonal elements QE -
QH. The function can be expanded in Fourier series, since it is periodic in S’ -8, and the

Fourier coefficients will play a significant role in describing excited states.
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