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0. Introduction

The constrained nonlinear programming problem is generally expressed
as follows ; [minimize f(x),x=Rm,subject to ci(x) = 0,i€E,ci(x) 20,1
e I 1. The main purpose is to obtain the local and global solutions
of this problem. In 1943, R. Courant [6] first considered a penalty
function ¢(x.u) = £(x)+1/2u ¥ Lci(x)12 and showed that constrained

ier

problems are reduced to unconstrained problems. Since the beginning
of 1960’s, this penalty method has made a great progress and has been
studied. C.W. Caroll [2], A.V. Fiacco and G.P. McCormick [9] have
researched interior penalty methods and their penalty function is
o(x,p)=f(x)+pY [1/ci(x)]1. On the other hand, exterior penalty

ier

methods have been investigated by K.Truemper [15]1. P.Loridian and
J.Morgan [131,and their penalty function is ¢(x,m)=F(x)+pP(2) (if X is
feasible,P(x)=0, and if x is not feasible P(x) > 0).

Recently, many authors ([31, [4]1, [5], [10], [121) have studied exact
penalty methods which change the constrained nonlinear programming
problem to a single unconstrained nonlinear programming problem. We
can divide the methods largely in two in which utilize either the
nondifferentiable exact penalty function or the differentiable exact
penalty function. Of the two methods, we are more interested in the
second methods.

We will describe in detail the results of many authors’ researches.
By using the nondifferentiable exact penalty function o(x,u)=£(x)+u
max0,lcil.ci : i € E, je I }, D.P. Bertsekas [1] and D.G.
Luenberger [14] obtained the following consequences 3
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1. Let 2* be an isolated local minimum satisfying together with
corresponding Lagrange multiplier vectors A* and up*, the following
assumption. :
Assumption ; f,ci=C? and zT [ V2f(x)+%i €EgAi*Veci(x*)+Xj €1 a;j*V2ci
(x*)1z > O for all z = 0 with Vci(x*)z=0(i=E)and Vc;j(x*)z=0(jI’
={j€I:cj(xx)=0}). In addition, satisfies the strict complementarity
assumption. Then, if > X|ri*[+Xla;j*|,x* is an isolated unconstrained
local minimum of ¢(x,u).

2. Let X=R» be a compact set such that, for all x=ZX, the set of
gradients {Vci(x)} is linearly independent. Then, there exists a
u*> 0 such that for every pd> p*, (a) If x* is a critical point of
¢(x,n) and 1*<X, there exist a*,A* such that (x*,a*,A*) is a
Kuhn-Tucker point. (b) If (x*,a*, A*) is a Kuhn-Tucker point and r*e
X,then bed is a critical point of o(x,n).

M.R. Hestness [11] considered the penalty fuction (for ).
and obtained solutons by unconstrained minimization problems. In
1979, G.Dipillo and L.Grippo [71 pointed out the defects on the
Hestness’ method and proposed their own exact method to utilize the
differentiable penalty function. For their penalty function is
and their results is as follows ;

1. Let (xx ,Ax) be a critical point of L(x, A). Assume that M(x*).
[ac(x*)/ax]T has full row rank and xTVxL(x*, A*)x )0 for all x,
with x # 0 and [ac(x*)/axlx = O where L(x, A) = f(x) + ATc(x). If x*
is a local minimum, then there exists a u* > 0 such that for all u >
u* , (x*,A*) is an isolated local minimum of ¢(x,A,u)

2. Let X x A be a compact subset of X* x Re and assume that N(x)V
c(x) is nonsingular for all x  X. Then there exists a p* > 0 such
that for all p# > p* if (x*,1*) is an unconstrained local minimum of
¢(x,A,u) belonging to X x A, then x* is a local minimum.

G. Dipillo, L.Grippo [81,C.Vinante,and S.Pintos [16] extended those
results to the case that I = ¢ and E = ¢.

C.Vinante and S.Pintos utilize the differentiable exact penalty
function ¢( x,A,u,a) = £(x) + ATc(x) + pllvE(x) + Ve(x)All2 - glidlz ,
where dj = -min [0,ci(x) + (1A3/2, (1 + 4dr;)].

In this paper, we obtain a new penalty function by which the
constrained minimization problem is converted into the unconstrained
minimization problem. From this penalty function, we generate a
differentiable penalty function which is applicable to practical
problems,and show that the constrained problem is equivalent to the
unconstrained problem under certain assumptions. Onthe basis of this
equivalence,we make our penalty method.
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1. Preliminaries

We consider the constrained problem:;

[1.1] minimize f(x), subjeect to x € § = {x : g(x) = 0 }.where f
is a contiinuous funtion from R to R and g is a ccccontinuous
funtion from R to R. And, we introduce well-known optimality
conditions which we are going to make use of in section 2 and section
3.

THEOREM 1.1.(first-order necessary conditions)
Let fe ¢! and g€ C!.Suppose that x is a local minimum for [1.117.
Then there is a A € Re such that £’ (x)-ATg’ (x) = 0.

THEOREM 1.2.(second-order suffcient conditions)

Let f € ¢2 and g € €2, Let x be a point feasible to the
constraints of [1.1]. Suppose that the first-order necessary
conditions are satissfied at x and that zT[f*(x)-Zrjg*(x)1z> 0 for
all z,where g’ (x)z = 0.

Then, x is an isolated local minimum for [1.1].

In the sequel, the column of the matrix P will be denoted by
Pi and the jth row of P will be denoted by P;.

2. The inequality - constrained problem

We consider the inequality-constrained nonlinear programming
problem;

[2.1lminimize f(x),subject to x € § = {xr : g(x)<0},where f is
continuous funtion from R» to R and g is a continuous funtion from Re
to R, and assume that 0 € int S.

For each x € Re,we let A* be the optimal solution of the
maximization problem;

[ maximize f(x),subject to Ax € 5,0 <A <11],and h(x) = A*x.We put
d(x) = x - h(x) and P(x) = f[x - d(x) ]+ qlld(x)ll2 (g > 0).P(x) is
our penalty funtion.

THEOREM 2.1. If x is a local unconstrained minimum for P(x), then it
is a local minimum for [2.1].

Proof. We assume that d(x) # 0 and h(x)= A*x.For € with 0 <e<l,x -
ed(x)=[ er*+(1-¢) 1 x. By the definition of h,h[x-ed(x)]=r*x.d[x-
ed(x)] =x-ed(x)-h [ x-ed(x) 1 =(1-€)(1-1*)x.

Pl x-ed(x) ] =f{x-ed(x)-d [x-ed(x) ] } + qlld [ x-ed(x) ] |2

—-47 -
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=f(a*x) + qll(1-¢) (1-2*)x]|2
=f [x-d(x)]1+(1-€)qlf(1-1*)x||2
<f [x-d(x) ] +gll(1-1*)x]|2

=f [x-d(x) 1 +qll(d(x)]|2

=P(x).

Thus, P [x-ed(x) ] <P(x).If d(x)=0,P [x-ed(x)] <P(x) for € with 0<
£<1. This contradicts to the assumption.Hence,d(x)=0 and f(x)=P(x).
By the assumption, there is a neighborhood N{x ;8) such that P(x)>
P(x) for all x € N(x :8).Let xS N WN(x ; 8). Then, f(x)=P(x}>
P(x)=f(x).Hence, the above theorem holds.

THEOREM 2.2. Suppose that b is continuous. If x is a local minimum
for [2.11,then it is an unconstrained local minimum for p(x)

Proof. If the theorem is not true, there is an infinite sequence.of
points {xx} such that xx—x and P(xx) <{P(x).

f[xx-d(xx) ] <f[xx-d(xx)]+qd(xx)T.d(xx)
=P(xxk)
<P(x)
=f(x)

Hence f [ xx-d(xx)] <f(x). By the continuity of h,h(xx)—h(x)=x.
Hence,xk-d(xx)=h(xx)—x. This contradicts the assumption that x is a
local minimum for [2.1]1. Hence, the above theorem holds.

3. The equality-contrained problem

We consider the equality-constained nonlinear problem 3[3.1]
minimize f(x), subject tox € § = {x : g(x)=0f, where f is a
continuous function form R to R and g is a continuous function form
Rr to R .

Let h(x) be the optimal solution of the minimization problem ;[3.2]
minimize [lix-zll2,subject to g(z)=0. Usually the vector h(x) .is
unique,but if it not,to complete the definition of h,the following
is used ; Define H(x)={h : x - h solves [3.2] }. Let h(x) be a vector
from H(x) such that f[h(x)] is minimal. And we let d(x)=x - h(x)
and P(x)=f[x - d(x)]1+q || d(x)lI2,(¢>0).P(x) is our penalty
function.

THEOREM 3.1. If x is a local unconstrained minimum for P(x),it is
a local minimum for [3.11.

Proof. By the same method of Theorem 2.1, we can prove the above
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result.

THEOREM 3.2. Suppose that h(x) is unique and continuous.If r is a
local minimum for [3.11,it is a local unconstrained minimum for P(x).

Proof. By the same method of Theorem 2.2, we can prove the above
result.

3.3. Suppose that f € €3 and ¢ = ¢3. Suppose that x is a
point such that g¢’(x) has full row rank,and that h(x) is unique and
continuousely differentiable in a neighborhood of x.If x ais an
isolated unconstrainted minimum for P(x),that is,if P’(x)=0 and P”(x)
is a positive definite matrix, then x satisfies the second-order
sufficient conditions for an isolsted local minimum for [3.11.

Proof.P(x)=f" [x - d(x)] [I - d'(x) ]+ 2qd(x)Td’ (x).
af [x - d(x) ] -
alxi - di(x)]

P*(x)=% [-a*(x)1+[T - d'(x)T]f*[x - d(x)]

n
[I - d"(x)]+2q} di(x)d*(x).
i=1
Consider any point x near x.Clearly h(x) is close to r and the matrix

g’ [h(x)] has rank m.By the first-order necessary conditions for [
3.2] ,there exists a A€R» such that 2[x - h(x)]- ¢ [h(x)]T=0.

g [h(x)1™ = -2[h(x) - x].
{g'(h(x) g’ [h(x)1T}-1g’ [h(x)Tg’ [h(x)]ITA
=-2{g’ [h(x)1g [h(x) 1T} 1g° [h(x)] [Rh(x)-x].

Hence, A = -2{4¢° [h(x)1g’ [h(x)1T}1g' [h(x)] [h(x)-x]. .
Therefore, d(x)-g’ [h(x) ] Tz’ [h(x)1g [h(x)1T}-1g’ [h(x)]=0.
Let 6(x)=I - ¢’ [h(x)1™{e" [h(x)]g [h(x)1T}1e" [h(x)].
Thena

(1) 6(x)d(x)=0,
By differentiating (1),we have

n
(2) 6(x)d’ (x) + I di(x) [€i(x)]’=0

i=1

(3) glx -d(x)] =g[h(x)] =0.
By differentiating (3),we have
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g [x-dx)] [I-d(x)
(4) .

¢ [x-dn1[I-dmn]
When d(x) = 0,(3) implies that g’(x) - g'(x)d"(x) = 0.

Hence
(5) g’ (x) = ¢’ (x)d’ (x).
From (2) and (5),
0 = 6(x)d(x)
= d' (x)-g’ [h(x)1™g [h(x)1g [h(x)1T}1g’ [h(x)1d (x)
=d’ (x)-g’ (x)T [g’ (x)g’ (x)T] -1g’' (x)d’ (x)
=d' (x)-g’ (x)T [g’ (x)g’ (x)T]1-1g’ (x).
Hence
(6) d' (x) =g (x)T [g'(x)g’ (x)T]-1g" (x).

By differentiating (4),we have

n agi [h(x)]

(1) 3§ ———[di(x)]1” + [I - d(x)T1g;*[h(x)] [I -d(x}]1=0.
i=1 oahi(x)
Because d(x)=0, the formula (6) can be used.
0 = P (x)

=f(x)[I -d(x)] + 2gd(x)Td(x)
=f(x)[1 - d(x)]

=f'(x) - £ (x)d’' (x)

=f’(x) - £ (x)g’ ()T [ g’ (x)g" (x)T] "1g’(x)

Let a(x)T = £ (x)g' ()T L[g (x)g' (x)T]-1-
Then,

(8) f'(x) - a(x)Tg’(x) = 0.

Hence, the first-order necessary conditions are satisfied at x for a constrained minimu
From(7) to (8),

n af(x) n agi(x)

n
PX [-di(x)]1” = I us(xXZ [-di(x)]“}
i=1  oxi j=1 i=1 9Xi
m
=[1-d(x)T]L[2 t{j{x)gj"(X)] [I-4d(x)]
J:
Hence,
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P*(x)
=[I-axT] [Zuilx)g(x)] [I-d(x)T]£(x)[I -d(x)]

+2qg’ (x)T [g’ (x)T] 18’ (x)g" (x)T [ 2 (x)g (x)T ]

=[I1-d(x)T] [£°(x) - L uj(x)g"(x)] [I -d'(x)] + 299’ (x)[g' (x)
g’ (x)T]-1g’ (x)
=6(x) [£"(x) - ¥ uj(x)g;"(x)]16(x) + 299" (x)T L g’ (x)g’ (x)T] -1g’ (x).
By the positive definiteness of P*(x),
zTe(x) [£7(x) - ¥ uj(x)g;"(x)16(x)z
=zT[£°(x) - 2 uj(x)g;"(x)1z > 0
for all z where g’ (x)z = 0.
Thus the second-order sufficient conditions are satisfied.
assumgetgggsg’ig )tggsfgi}gwigs f:il:g:ion Iy uSing apprOXimation and
M(x) = £f(x) - £ (x)g’ (x)T [ g’ (x)g’ (x)T ] -1g(x)
-1/2¢° (x)g’ ()7 [’ (x)g’ (x)T1 -1 |
(x)TL[g' (x)g’ (x)T]-1g"(x)g1"(x)g" (x)T L g’ (x)g’ (x)T ] '1g(x):|
E(X)T [g'(x)g’ (x)T]-1g" (x)gm"(x)g" (x)T [g" (x)g’ (x)T ] -1g(x)
+1/2g(x)T [ ¢’ (x)g’ (x)T] ~1g’ (x)£*(x)g’ (x)T L g’ (x)g’ (x)T ] -1g(x)
+qg(x) [ g’ (x)g’ (x)T]-1¢’ (x)T [ g’ (x)g’ (x)T ] -1g(x)

THEOREM 3.4. Suppose that f € C2 and ¢ & C2, Let x be an uncon-
strained local minimum for M(x). If g(x) = 0, then x is a constrai-
ned local minimum for [3.11.

Proof. Let x € S be any point close to x.
Since h{x) = 0, f(x) = M(x).
Since x is a local minimum for M(x), M(x) > M(x) = f(x).
Hence f(x) > f(x).

THEOREM 3.5. Suppose that f € C3 and g & C3, Suppose that x is
a point where g'(x) has full row rank, and that s satisfis the
second-order sufficiency conditions for an isolated local minimum.
Then x is an isolated unstrained local minimum for M(x) for any

valve of ¢ > 0.

Proof. Because x is feasible,
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(1) glx) =0
By the first-order necessary condition,
(2) £ (x)-f(x)g'(x)Lg' (x)g’(x)T]1-1g’(x) =0

Hence M’(x) = 0.
From (1) and (2),

M” (x) ={I-g(x)T [g(x)g'(x)T]1-1g’(x) } - [{f"(x)-Z:lu.i(X)
gi*(x)1-{ I -¢g(x)T [g(x)g’ (x)T]-1g’ (x) } + 2q9’ (x)T L[’ (x)g’

(x)T]-1g’ (x).

The second-order sufficient conditiions imply that M~ (x) is
positive definite for every g > 0.

Hence x is an isolated unconstraiined local minimus for M(x) for
any q > 0.

By using M(x),we obtainlocak minimizers for [3.11.

To get local minimizers for M(x), we make use of algorithms which
are generated by various methods.
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