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1. Introduction

Duality theorems for single objective fractional optimization problems
have been of much interest in the past [1, 4, 8, 10, 11, 12]. Recently there
has been of growing interest in studying optimality theorems and duality
theorems for multiobjective fractional optimization problem [2, 3, 5, 13, 14,
15). In particular, Singh [12] considered a nondifferentiable single objective
fractional optimizational problem in which numerators of objective functions
involves the square roots of quadratic forms and established optimality the-
orems and duality theorems in the framework of the Hanson-Mond classes of
functions. Also Bhatia and Jain [1] extended Singh’s results to a nondiffer-
entiable multiobjective fractional optimization problem in which numerators

of objective functions involves the square roots of quadratic forms.

In this paper, we consider the following nondifferentiable multiobjective

optimization problem (P)

fi(z) + (@Dy2)'?  fi(z) + (kaw)1/2)
hi(z) hi(z)

subject to g(z) <0, r € X,

(P) Minimize F(z) = (

where X is an open convex subset of R", each fi : X - R, h; : X = R,
i =1,2,---,k, g: X - R™ are differentiable and D;, : = 1,2,---,k are
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symmetric positive semidefinite matrices. Let X, denote the set of feasible
solutions of problem (P). We assume that X, is compact and h;(z) > 0 on
Xo, ¢t = 1,2,---k. All vectors are considered to be column vectors. For
simplicity, we avoid the use of the superscript t over a vector to label it as
row vector. For instance, instead of writing z'D;z, we simply write zD;z,

etc.

A sufficient optimality theorem for a feasible solution of (P) to be prop-
erty efficient is given. A dual problem for (P) is considered and certain

duality theorems are obtained under the p-convexity assumptions.
2. Preliminaries

Now we give the definitions and results needed in later sections.

Definition 2.1. A feasible solution z° € X, is said to be an efficient

solution of (P) if there exists no other feasible solution x € X, such that
Fi(z) < Fi(2°), i=1,2,--,k F(z)# F(z°).
Definition 2.2. A feasible solution z° € X is said to be an properly

efficient of (P) if it is efficient for (P) and if there exists a scalar M > 0 such
that for each 1,

fi(z®) — fi(z)
fi@ =) =M

for some j, Fj(z) > Fj(z°) whenever z is feasible for (P) and Fj(z) < Fj(z°).

Lemma 2.1 [6]. Let D be an n xn real, symmetric, positive semidefinite

matrix. Then, for any z € R", y € R,

zDy < (zDz)'*(yDy)'/*.
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Lemma 2.2 [2]. Let 2° € X,. If (2°,y%) is properly efficient for the

following multiobjective optimization problem (P') with y = y%, where

0o _ f,~(w°)+(m°D,-:c°)1/2
yz - h,‘(:to) ’

i=1,2,--,k

then z° is properly efficient for (P).
(Ph) Minimize [fi(z) + (¢D1z)'/? = y1ha(z), -+,

fr(z) + (zDix)? — yrha(z)]

subject to g(z) <0, z€X, y€R"

Theorem 2.1 [2]. Suppose that z° is properly efficient solution of (P)
and the set Z° is empty. Then there exists A\; > 0,7 =1,2,---,k,

k

ZA,- =1,40>0,i=1,2,---k, *€ R™,v? >0, w] € R", 1 =1,2,---,k,
=1

such that

k
> AV£i(a®) + Diw} = Vylhi(a")] + Vo'g(c°) = 0

=1 .
v0g(z°) >0,
wD;w? <1, 1=1,2,---,k

(.’L‘Ol),‘:l:o)]/2 = xODiw?’ 1=1,2,---,k.
For a feasible solution z° of (P), following Mond and Schechter [9], we define

k 0
ZO = U,-=IZ,- ’
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where
Z? = {2:2Vgj(2®) <0forall j € Q and
2[Vfi(2®) — VyPhi(z®)] + 2D;2°/2z°D;2® < 0 if 2°D;z° > 0,

2[Vfi(2°) — VyPhi(z®)] + (2D;z < 0 if 2°D;2° = 0}
fori =1,2,---,k, where @ = {j : g;(z°) = 0} and

o _ fi(z®) + («°Dia®)!/2

0 ) =1,2,---, k.
yz hi(l‘o) t 17 ) )

Definition 2.3. Let f be a real valued differentiable function defined
on a subset X of R®. Then f is said to be p-convex if there exists some real

number p such that for each z, u € X

f(2) = f(u) 2 (= — w)Vf(u) + pllz — ul|*.

3. Sufficient optimality theorem

Now we establish a sufficient optimality theorem for (P) under the p-

convexity assumptions
Theorem 3.1. Suppose that there exists a feasible solution z° of (P)
k
and a scalar \; > 0,1 = 1,2,---,k, Z/\,- =149 >0,:=12,---,k,
i=1
W eR™ v9>0,w!e R, i=1,2---,k with

o _ fiz®) + (z°Diz®)!/?

0 _ = e k
yl h'(xO) k) [ 1’2’ )
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such that
k
S MlVSi(z®) + Diwd = VyPhi(a®)] + Vo'g(a®) = 0
i=1
v0g(2°) =0,

wIDw?! <1, i=1,2,---,k,

(xoDi.T0)1/2 = .’ZJOD,'UJ?, 1= ]_’2,. .. k.

Further suppose that f; is p;-convex, —h; is p}-convex, 1 =1,2,--,
p Pi

gi is pj”-convex, j=1,2,---,m and that

k
> (i = Niyipi) + E 20,
=1

Then «° is a properly efficient solution of (P).
Proof. By (1), (5) and the p-convexity assumptions, we have
k

K
0< > Mlfi(z) = file®) + Y Xi(z — 2%) D}
i=1

i=1

k
= > Aiwllhi(e) = bl °)]+Z (g;(z) — 9;(=)].

By (2), v?gj(xo) — 0 and since z is feasible, v?¢g;(z) <0, 5 = 1,2,-

Hence (6) reduces to
.k k
0 <Y Alfi(@) = fie®)] + D Nilz —2°) Diw}
1=1 =1

k
- iny?[h,-(w) — hi(z°)).
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By (3), (4) and Lemma 2.1, we have

k k
0= Z/\i[fi(x) - fil@®)] + Z/\i[(IDifﬂ)l/z — (2°D;z°)1/?)

k
= Z/\iy?[hi(r) — hi(z?)).
=1

Hence we have

k

> Ailfilz®) + (2 D)2 — ()

k
<Y Alfi(@) + (2Di) 2 — yhi(a).

By Theorem 1 in [7], (z°,y°) is properly efficient for (P!). By Lemma 2.2,

z° is a properly efficient solution of (P).

4. Duality Theorems

Now we give the dual problem (D) for (P).

(D) Maximize G(s,v,y,wy, -, wg) =y = (y1,**,Y&)
subject to
k
Y MV Si(s) + Diw; — Vyshi(s)] + Vo'g(s) =0 (7)
=1
fi(8) + (sD;s) /% — y;hi(s) >0, i =1,2,--- K, (8)
w;Diw; <1, 1=1,2,---  k, (9)
(sD;s)Y/? = sDjw;, i =1,2,--- k. (10)
vg(s) >0, (11)
v>0,y>0, (12)
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: k
where \; >0,:=1,2,--- k and Z)\i = 1.
1=1

Theorem 4.1. Let z be any feasible solution of (P) and (s, v,y,w;, - - -

bl

w) be any feasible solution of (D) for any A > 0. Suppose that fi is p;-

convex, —h; is pf-convex, i = 1,2,--- k, and g; is pj*-convex,j =1,2,---,m

and that

k m
Z()‘ipi - Aiyip}) + Z'U]‘p;* > 0.
i=1 j=1

Then the following does not holds:

fi(z) + (:L'Dg:l:)l/2
' hi(z)

and

fi(z) + (zD;jz)'/?
hj(z)

Proof. Suppose that the following holds;

fi(z) + (zD;z)'/?
hi(z)

and

fi(z) + (zDjx)'/?
hj(z)
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Then by (8), (11) and (12), we have
k
0> Mlfi(e) + (2Diz)'/? — yihi(2)]
=1

k
— YO Nlfi(s) + (sDis)'/? = yihi(s)] + vg(z) — vg(s)

i=1

>

Z [(z — )V Si(s) + pillz = s?]

k
— 3" Xz = 9)Vyihi(s) + pillz = slI?)

=1

m
+ 3 [(z = 8)Vvjg;(s) + v} pjllz = s|°]
j=1

k
+Y Al(zDiz)'/? - (sD;s)'?]
(by the p — convexity assumptions)

k
> — ZA,(m—sDw,+ZA[(xDx)”2 (sDis)'/?]

1=1

k
+ 1) (hipi = Aivin) + Zv]p] |z — s||?
i=1
(by (7), (9), (10) and Lemma 2.1)
k
>[Y " (hipi — Aiyie?) + va,*]ﬂx — sf?
=1 =

>0.
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This is a contradiction. Hence the result holds.

Theorem 4.2. Suppose that z° is a properly efficient solution of (P) and
the set Z° is empty. Then there exists a feasible solution (z°,v°, ¥, wd, -,
w}) of (D) for some A > 0. Furthermore suppose that f; is pi-convex, —h; is

pi-convex,:=1,2,--- k, and g, is py*-convex, j = 1,2,.--,m and that

k
Y (ipi = Aiylpl) +Zv°p}‘*
i=1

Then (z°,v°,y% w?,---,wY) is a properly efficient solution of (D) and their
respective extreme values are equal.

Proof. By Theorem 2.1, (2°,v°% 4% w3, -, w9) is feasible for (D). By
Theorem 4.1, their respective extreme values are equal. Following Theorem

4 in [15], (2°,0°,y% wY, - -- ,wY) is a properly efficient solution of (D).
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