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ABSTRACT: A breaking-wave field caused by a submerged circular cylinder moving
steadily under the free-surface is studied. It has been shown by Hyun and Shin (1997) that
the breaking waves and the wake of cylinder interact strongly when the ratio of
submergence depth and cylmder approaches approximately to 1.5. This study is designed to
unveil the mechanism of interaction between breaker and cylinder using Particle Image
Velocimetry (PIV) at circulating water channel. The detailed structures of the vortical flow
is obtained from the velocity field measured by PIV technique. The vorticity distribution
behind the breaker and cylinder well demonstrate the vortices shedded from the cylinder as
well as those originated from the breaker. It has been obvious that the vortices from
breaker greatly affect the whole wake field at S/D=1.

1. INTRODUCTION

The mechanism of breaking wave generated by a submerged body steadily moving under
the free-surface has been undersood that the wave energy is transformed into the turbulent
energy to finally dissipate into small scale turbulence. It usually occurs near the crest of
gravity wave where the region of high vorticity, called "roller" or "breaker", is formed
(Lee, 1997). Recent studies on wave-breaking reveal that the breaking-wave phenomena
around a submerged body are governed not only by Froude number and the depth of
submergence but also by Reynolds number, meaning the viscosity plays a certain role in
the generation of breaking wave. Duncan (1983) confirmed the drag augmentation due to
wave-breaking is attributed to a part of viscous drag by measuring the head losses around
breaker. It has also been reported by Baba (1969) that the appearance of breaking wave
results in the increase of ship resistance as much as 15%.

Hyun and Shin (1997) investigated the forced breaking wave by a submerged circular
cylinder by measuring wave profiles, pressure distributions on body surface, head losses and
turbulent intensities. 1t was found that the interaction between the wakes of breaker and
body is the most notable feature, its pattern depending on the ratio of the depth of
submergence and the diameter of cylinder. Merging of the wakes of breaker and body
occurred relatively faster than could be predicted by a simple wake' theory. It has been
also shown that the wake of cylinder is distorted by the vortices generated by breaker so
that the highly asymmetric wake distribution is produced downstream of body. Level of
turbulence was also increased dramatically at and just downstream of breaker and its
intensity was decreased rather rapidly, implying the rather quick dissipation of turbulent
energy. Information was however restricted to time-averaged quantities so that the detailed
mechanism of the interaction between the vortices shedding from body and those originated
from breaker could not be clarified.

Recently, Sheridan et al. (1997) utilized the Particle Image Velocometry (PIV) technique
to reconstruct the instantaneous velocity and vorticity fields generated by a cylinder, and
showed the variety of interaction patterns, mainly characterized by the dramatic changes of
the magnitude and direction of resultant vortical flow developed ‘downstream of the breaker
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depending on the depth of submergence as well as Froude number.

The present study aims to understand the mechanism of vortical flow in viscous flow
field, and their effects on mean flow behavior to study the interaction of free surface and
wake of body in more details. Presented in this paper are the results of the visualization
of vortical flow structure around breaking waves and body, where mean flow as well as
instantaneous flow patterns have been acquired by using PIV. It has revealed some
important phenomena such as the generation and decay of vortices generated at body and
free surface, and their mutual interactions as the depth of submergence varies. While PIV is
definitely a powerful tool for the present purpose, further refinement of system is necessary
if we want to remove all the ambiguities on the acquired images around breaker since the
region of interest is quite narrow and hard to ensure enough resolution due to the reflection
of light on free-surface.

2. FACILITY, MODEL AND INSTRUMENTATION

Experiment was performed in circulating water channel (CWC) with its dimensions of 5m
in length, 1.8m in width and 1.2m in height. The maximum flow speed at test section is
2 m/s and the flow uniformity within 2-3% at the test section. A 7cm-diameter circular
cylinder of Im in length is made of acryl, and properly positioned at the desired depth of
submergence by the 3-axis traverse system. One side of cylinder is stuck to the wall of
CWC, while a thin flat plate is attached to the other side to avoid the interferences by
supporting strut and other stuffs.

Flow visualization system consists of a 6W Ar-lon Laser, fiber-optic cable and a probe
with cylindrical lens for the Laser sheet generation. In order to enhance the image quality
of visualization, the specially designed water-proof acryl cylinder, with a Laser sheet probe
in it, was installed directly inside a test section. Vinyl chloride polymer with a specific
gravity of 1.1 was used as a scattering particle, whose flow traceability was confirmed
through the preliminary test in uniform flow.

Using PIV, the particle velocity of tracers, uniformly distributed in flow field, can be
obtained by measuring the displacement of particle and its time interval, assuming that the
trace particle is in steady linear motion during time interval between two picture frames.
An 8-mm Camcorder of 1/60 sec and 640X 480 pixels was used together with an image
grabber to capture the instantaneous image frame at each 1/30" time step. The schematics
of PIV system is shown in Fig. 1. The single exposure/double frame and cross-correlation
technique was applied. That is, a captured image frame was separated into two frames,
namely the odd and even fields, and the trajectory of a single particle during 1/60" was
then traced by searching for the correlations between two images.

3. EXPERIMENTS

Coordinates and the schematics of breaking wave and following wavetrain are shown in
Fig. 2. Here the black region denotes the breaking-wave region, and the grey the region
where its influence is sustained. For the experiments, Froude number ( Fr=V/V gD ) was
set to Fr=0.567 where V and D denote the free-stream velocity and the diameter of
cylinder, respectively. The corresponding flow velocity was V=047m/s and the Reynolds
number (Re= VD/v) was Re=3.29x10°. Since the aspects of wave-breaking are strongly
affected by the depth of submergence of cylinder, the five different depths of submergence
are considered, i.e, S/D = 2.5, 1.88, 1.43, 1.0, 0.86. Here S/D=2.5 is for non-breaking
case, $/D=1.88 for condition of incipient wave breaking, and S/D = 1.0 and 0.86 for total
breakdown of free-surface.

4. RESULTS AND DISCUSSIONS
Wave profiles at several S/D's are shown in Fig. 3, where the cylinder axial location and
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the location of ‘wave-breaking observed are marked also. The incipience of breaking wave
is characterized by the sporadic appearance of flow instability, something like ripples, in
first wave around S/D=2.15. This instability eventually become a stable breaking wave
when a submerged depth is decreased to S/D=1.88. As S/D reaches less than. 1.43, the
breaking wave dictates all the free surface. With extremely shallow water (S/D=1), the
wave-like surface profile over the body is nothing but the overflow of water over the
body as like the flow over hydraulic- dam. Interested reader may refer Hyun and Shin
(1997) for more details. _

In order to validate the accuracy of PIV system in - our CWC, the - preliminary
measurements were made for the uniform flow as well as the lower Froude number flow.
Figure 4 represents the uniform velocity field measured- at the test section of CWC at
V=047m/sec. The spatially-averaged mean velocity at test section was found to be V=0.455
m/sec, 3% lower than that by Prandtl tube. When considering the various uncertainties in.
CWC and the usual trend that Prandtl tube indicates 1~2% higher velocity than most of
other instruments, this result serves as a good measure of the reliability of PIV system.

Another validation test is the reproduction of Karman vortex street shedding from a
cylinder at several Reynolds numbers. Although Karman vortex street is not clearly shown
in Fig. 5 due to the limitations of relatively small window size-and high flow velocity, the
diffusion of vortex. street could be observed at Re = 11900, the typical phenomenon when
Re<10'. All three pictures in Fig .5 agreed qualitatively well with those presented at
several bibliographies (refer van Dyke (1982) for instance). The Strouhal number at
Re=32900 was obtained around St=0.17 to 0.186 depending on the way of counting the
shedding frequency, presumably due to the factors such as the traceability of particle and
the preciseness of image grabbing. On the other -hands, the mean velocity distribution of
flow field seen in Fig. -6(a) well demonstrated the wake pattern correctly, which was
obtained by averaging all the instantaneous velocity fields measured for about 4 seconds.

The variation of interaction pattern between the wake of -breaker- and the shedding
vortices from cylinder with respect to the depth of submergence can be seen in Fig. 7 to
Fig. 10. For S/D=1.88 where the wave-breaking begins to be steadily visible, highly
concentrated vorticity is confined very near the breaking inception point and shedded into
downstream parallel to x-direction. No interaction is yet observed between the breaker and
the cylinder, thus mean velocity distribution of body wake remains symmetric. Very narrow
band of velocity defect is merely noticed at the downstream of breaker.

It was found in Fig. 8 for S/D=1.43 that the interaction between the wakes of body’
and breaker begins to play a certain role such as distortion of body wake, which can be
seen in Fig. 8(a). This asymmetricity of body wake might be produced by the fact that the
axis of the wake of breaker is aligned toward the depthwise direction slightly. Although its
evidence could be clearly visible when observed by eye, it is not clear in Fig. 8(b)
unfortunately. The region of velocity defect near free-surface behind the breaker becomes
wider than at S/D=1.88.

Shallower depth of S/D = 1.0 exhibits the strong effects of breaker on body wake as
in Fig. 9. Strong vorticity field generated by a breaker dramatically changes the whole flow
field and develops into depthwise direction with steeper angle than that of S/D = 1.43,
pushing the vortices generated at the upper side of cylinder downward and thus causing the
wake of body severely asymmetric. This result is consistent’ with the result presented by
Sheridan et al. (1997). Consequently, the velocity defect zone downstream of breaker
extends widely, almost like deadzone.

Finally, for the case of S/D = 086 seen in Fig. 10, the wake of breaker distorts not
only the vortices generated at the upper side of body, but those at the lower side. The
vortices from the breaker are strong enough to create another set of vortical flow very near
the free-surface. It should be noted that the vorticity as well as velocity are nearly zero in
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the widely formed deadzone downstream of breaker between the vortex street produced by
breaker and that of secondary vortices.

It is concluded that the present experiment well demonstrated the instantaneous flow
field as well as the mean flow at several wave-breaking conditions, showing the active
effect of viscosity and the strong interaction among sets of vortices. It was found that all
the vortex streets developed downward with certain degrees of angle dependent upon the
depth of submergence of cylinder. In order to enhance the quality of experiments, the
resolution of image processing should be increased to treat the flow field more precisely,
especially very near the free-surface.

5. CONCLUSIONS AND RECOMMENDATIONS
The present experimental study on the flow field around breaking waves can be
summarized as follows;

(1) PIV technique has been successfully applied to research on breaking wave at
CWC. The preliminary measurements made for the validation of PIV system confirm that
PIV is capable of getting the mean velocity field within 3% in error and the instantaneous
velocity and vorticity fields qualitatively good.

(2) The vorticity distribution behind the breaker and cylinder well demonstrated the
vortices shedded from the cylinder as well as those originated from the breaker. When
wave-breaking began to be steadily visible at S/D=1.88, highly concentrated vorticity was
found to be confined very near the breaking inception point and shedded into downstream
parallel to x-direction.

(3) Results on shallower depth clearly exhibited the strong vorticity field generated by a
breaker and dramatic changes in the whole flow field. It was found that all the vortex
streets developed downward with certain degrees of angle dependent upon the depth of
submergence of cylinder.

(4) The resolution of image processing should be increased to treat the flow field near
the free-surface more precisely.
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