VECTOR VARIATIONAL INEQUALITIES IN A HAUSDORFF TOPOLOGICAL VECTOR SPACE

Sangho Kum

Department of Applied Mathematics, Korea Maritime University, Pusan 606-791, South Korea

e-mail: kum@hanara.kmaritime.ac.kr

1. Introduction

Since Giannessi [5] first introduced a vector variational inequality problem (in short, VVIP) in an Euclidean space, VVIP has been intensively studied by many authors; for example, Chen [2], Chen and Li [3], Lee et al. [8,9], Lin [10], and Siddiqi et al. [13] (see also the references therein). In a series of recent papers, Yao et al. [7, 15] obtained two types of existence results of VVIP. To be more specific, in [15], Yu and Yao introduced the concept of weakly C-pseudomonotone operator. With this generalized monotonicity assumption, they provided several existence theorems on VVIP and applications to vector complementarity problem. On the other hand, in [7], Lai and Yao derived similar kind of existence results on VVIP without the generalized monotonicity assumption as a continuation of the previous work [15].

In this paper, we formulate more generalized versions of VVIP than Lai and Yao [7], and Yu and Yao [15], so we extend and sharpen two main theorems in [7, 15]. The point of generalization is to give, in a Hausdorff topological vector space, noncompact versions of the theorems under some coercivity condition in the case that domain X

is convex unbounded. Fan's lemma [4] has been the only one tool to prove almost all existence results on VVIP so far. But we use the Fan-Browder type fixed point theorem as a basic machinary to derive our results.

2. Preliminaries

Let E be a Hausdorff topological vector space and E^* its topological dual space. We say that E^* separates points on E provided for each $0 \neq x \in E$, there exists an $f \in E^*$ such that $\langle f, x \rangle \neq 0$. Here \langle , \rangle denotes the usual pairing between E and E^* . A nonempty subset P of E is called a convex cone if

$$\lambda P \subset P$$
, for all $\lambda \geq 0$ and $P + P = P$.

Let X be a nonempty convex subset of E, F another topological vector space and $C: X \to 2^F$ a multifunction such that for each $x \in X$, Cx is a convex cone in F with int $Cx \neq \emptyset$ and $Cx \neq F$, and $G: X \times X \to F$ a function. G is said to be (1) weakly C-pseudomonotone if for any $x, y \in X$,

$$G(x,y) \notin -\mathrm{int}Cx$$
 implies $-G(y,x) \notin -\mathrm{int}Cx$; and

(2) v-hemicontinuous if for any $x, y \in X$ and $t \in [0, 1]$, the map

$$t \mapsto G(x + t(y - x), y)$$
 is continuous at 0^+ .

We denote by L(E, F) the space of all continuous linear mappings from E to F. Let $T: X \to L(E, F)$ be an operator. T is said to be

(1) weakly C-pseudomonotone if for any $x, y \in X$,

$$\langle Tx, y - x \rangle \notin -\mathrm{int}Cx$$
 implies $\langle Ty, y - x \rangle \notin -\mathrm{int}Cx$; and

(2) v-hemicontinuous if for any $x, y \in X$ and $t \in [0, 1]$, the map

$$t \mapsto \langle T(x + t(y - x), y - x) \rangle$$
 is continuous at 0^+ .

The vector variational inequality problem is to find an $x \in X$ such that

$$\langle Tx, y - x \rangle \notin -\text{int}Cx$$
 for all $y \in X$.

Now we introduce a particular form of Park [11, Theorem 1] which is modified into convenient shape in order to derive main results. This theorem is a generalization of the well-known fixed point theorem of Fan-Browder [1, Theorem 1].

Theorem A. Let X be a nonempty convex subset of a Hausdorff topological vector space E, K a nonempty compact subset of X. Let $A, B: X \to 2^X$ be two multifunctions. Suppose that

- (1) for each $x \in X$, $Ax \subset Bx$;
- (2) for each $x \in X$, Bx is convex;
- (3) for each $x \in K$, Ax is nonempty;
- (4) for each $y \in X$, $A^{-1}y$ is open;
- (5) for each finite subset N of X, there exists a nonempty compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, $Ax \cap L_N \neq \emptyset$. Then B has a fixed point x_0 ; that is, $x_0 \in Bx_0$.

3. Main Results

First we give the generalized linearization lemma as follows:

Lemma 3.1. Let E, F be two Hausdorff topological vector spaces, X a nonempty convex subset of E. Let $C: X \to 2^F$ be a multifunction such that for each $x \in X$, Cx is a convex cone in F with $intCx \neq \emptyset$ and $Cx \neq F$, and $G: X \times X \to F$ a vector valued function. Define $P = \bigcap_{x \in X} Cx$ and consider the following problems:

- (I) Find $x \in X$ such that $G(x, y) \notin -intCx$ for all $y \in X$;
- (II) Find $x \in X$ such that $-G(y, x) \notin -\text{int}Cx$ for all $y \in X$. Then:

- (i) Problem (I) implies Problem (II) if G is weakly C-pseudomonotone.
- (ii) Problem (II) implies Problem (I) if the following conditions are satisfied;
 - (1) G is v-hemicontinuous;
 - (2) for each $x \in X$, $G(x, \cdot)$ is P-convex, that is, for any $y, z \in X$ and $\alpha \in [0, 1]$, $G(x, \alpha y + (1 \alpha)z) \in \alpha G(x, y) + (1 \alpha)G(x, z) P$; and
 - (3) for each $x \in X$, $G(x, x) \in P$.

Proof. (i) Let $x \in X$ be a solution of Problem (I). Then $G(x,y) \notin -\text{int}Cx$ for all $y \in X$. Since G is weakly C-pseudomonotone, $-G(y,x) \notin -\text{int}Cx$ for all $y \in X$. Hence, x is a solution of Problem (II).

(ii) Let $x \in X$ be a solution of Problem (II). Then we have

$$-G(y,x) \notin -\mathrm{int}Cx \quad \text{for all} \quad y \in X.$$
 (3.1)

Suppose to the contrary that x is not a solution of Problem (I). Then there exists $\hat{y} \in X$ such that

$$G(x,\hat{y}) \in -\mathrm{int}Cx,$$
 (3.2)

Let $x_t := x + t(\hat{y} - x)$ for $t \in [0, 1]$. Since X is convex, $x_t \in X$. Also $G(x_t, \hat{y}) \to G(x, \hat{y})$ as $t \to 0^+$ because G is v-hemicontinuous. From (3.2), there exists a $\hat{t} \in (0, 1]$ such that

$$G(x_t, \hat{y}) \in -\text{int}Cx$$
, for all $t \in (0, \hat{t})$. (3.3)

Fix $t \in (0, \hat{t})$. By the *P*-convexity of $G(x_t, \cdot)$, we have

$$G(x_t, x_t) = G(x_t, t\hat{y} + (1 - t)x) \in tG(x_t, \hat{y}) + (1 - t)G(x_t, x) - P.$$

From (3.3) and assumption (3), we have

$$-(1-t)G(x_t, x) \in tG(x_t, \hat{y}) - G(x_t, x_t) - P$$

$$\subset -intC(x) - P - P$$

$$\subset -intCx - Cx - Cx$$

$$\subset -intCx.$$

Hence $-G(x_t, x) \in -intC(x)$, which contradicts (3.1).

Remark. Lemma 3.1 is a generalization of the generalized linearization lemma in [15].

By Lemma 3.1, we obtain the following existence theorem of a vector inequality under the generalized monotonicity condition.

Theorem 3.1. Let E, F be two Hausdorff topological vector spaces, and let E^* separate points on E. Let X be a nonempty convex subset of E, and K a nonempty weakly compact subset of X. Let $C: X \to 2^F$ be a multifunction such that for each $x \in X$, Cx is a convex cone in F with $int Cx \neq \emptyset$ and $Cx \neq F$, and $G: X \times X \to F$ a function. Define $P = \bigcap_{x \in X} Cx$ and $W: X \to 2^F$, $Wx = F \setminus (-int Cx)$. The graph Gr(W) of W is weakly closed in $X \times F$. Assume that the following conditions are satisfied:

- (1) for each $x \in X$, $y \mapsto G(x, y)$ is weakly continuous and P-convex;
- (2) G is weakly C-pseudomonotone and v-hemicontinuous;
- (3) for each $x \in X$, $G(x, x) \in P$; and
- (4) for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $-G(y,x) \in -\mathrm{int}Cx$.

Then there exists an $\bar{x} \in K$ such that $G(\bar{x}, x) \notin -\text{int}C\bar{x}$ for all $x \in X$.

Proof. Define two multifunctions $A, B: X \to 2^X$ to be

$$Ax = \{ y \in X \mid -G(y, x) \in -\text{int}Cx \},$$

$$Bx = \{ y \in X \mid G(x, y) \in -\text{int}Cx \}.$$

- (i) By the weak C-pseudomonotonicity of G, $Ax \subset Bx$.
- (ii) For each $x \in X$, Bx is convex. Indeed, when $y, z \in Bx$ and $\alpha \in [0, 1]$,

$$G(x, \alpha y + (1 - \alpha)z) \in \alpha G(x, y) + (1 - \alpha)G(x, z) - P$$

$$\subset \alpha(-\operatorname{int}Cx) + (1 - \alpha)(-\operatorname{int}Cx) - P$$

$$\subset -\operatorname{int}Cx - Cx$$

$$\subset -\operatorname{int}Cx.$$

Hence $\alpha y + (1 - \alpha)z \in Bx$, as desired.

(iii) For each $y \in X$, $A^{-1}y$ is weakly open. In fact, let $\{x_{\lambda}\}$ be a net in $(A^{-1}y)^c$ weakly convergent to $x \in X$. Then $-G(y, x_{\lambda}) \notin -\mathrm{int}Cx_{\lambda}$, hence $-G(y, x_{\lambda}) \in Wx_{\lambda}$. Since $(x_{\lambda}, -G(y, x_{\lambda})) \in Gr(W)$ and weakly converges to (x, -G(y, x)) by virtue of (1) and the weak closedness of Gr(W), we have $-G(y, x) \in Wx$, i.e., $-G(y, x) \notin -\mathrm{int}Cx$. Thus $x \in (A^{-1}y)^c$. Therefore $(A^{-1}y)^c$ is weakly closed, hence $A^{-1}y$ is weakly open.

(iv) By the hypothesis (4), for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $-G(y,x) \in -\mathrm{int}Cx$. Thus $Ax \cap L_N \neq \emptyset$.

(v) B has no fixed point. If not, there exists an $x \in X$ such that $G(x,x) \in -\mathrm{int}Cx$. By (3), $G(x,x) \in -\mathrm{int}Cx \cap P \subset -\mathrm{int}Cx \cap Cx = \emptyset$, a contradiction. Indeed, if there were a $v \in -\mathrm{int}Cx \cap Cx$, then $0 = -v + v \in \mathrm{int}Cx + Cx \subset \mathrm{int}Cx$. This implies Cx = F because $\mathrm{int}Cx \ni 0$ is an absorbing set in F, which contradicts the assumption $Cx \neq F$. Therefore B has no fixed point.

From (i)-(v), we see, by Theorem A, that there must be an $\bar{x} \in K$ such that $A\bar{x} = \emptyset$, namely,

$$-G(y,\bar{x}) \notin -\mathrm{int}C\bar{x}$$
 for all $y \in X$.

Appealing to Lemma 3.1, we have

$$G(\bar{x}, y) \notin -\mathrm{int}C\bar{x}$$
 for all $y \in X$.

As a direct consequence of Theorem 3.1, we have the following.

Corollary 3.1. Let E, F, E^*, X, K, C, W , and P be the same as in Theorem 3.1. Let $T: X \to L(E, F)$ be weakly C-pseudomonotone and v-hemicontinuous. Assume that for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $\langle Ty, y - x \rangle \in -\mathrm{int} Cx$. Then there exists an $\bar{x} \in K$ such that $\langle T\bar{x}, x - \bar{x} \rangle \notin -\mathrm{int} C\bar{x}$ for all $x \in X$.

Proof. Putting $G(x,y) = \langle Tx, y - x \rangle$ in Theorem 3.1, we get the result. Indeed, it is straightforward to check the conditions (1)-(4) of Theorem 3.1 except the weak continuity of $y \mapsto \langle Tx, y - x \rangle$ for each $x \in X$, in other words, the continuity of Tx: $(E, w) \to (F, w)$. But this directly follows from the definition of the weak topologies for E and F. (See Kelly and Namioka [6, 16.1 (iv) p.140]).

Remark. Corollary 3.1 is a noncompact generalization of Yu and Yao [15, Theorem 3.1] in a Hausdorff topological vector space E on which E^* separates points. They assumed E to be a Banach space. We used Fan-Browder type fixed point theorem as a basic tool to prove the existence of solution of VVIP whereas Yu and Yao [15] did Fan's lemma.

Now we provide an existence result of VVIP without the generalized monotonicity assumption.

Theorem 3.2. Let E, F, E^* , X, K, C, W, and P be the same as in Theorem 3.1. Let $G: X \times X \to F$ a function satisfying the following conditions:

- (1) for each $x \in X$, $y \mapsto G(x, y)$ is P-convex;
- (2) for each $y \in X$, $x \mapsto G(x, y)$ is weakly continuous;
- (3) for each $x \in X$, $G(x, x) \in Cx$; and
- (4) for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $G(x,y) \in -\mathrm{int}Cx$.

Then there exists an $\bar{x} \in K$ such that $G(\bar{x}, x) \notin -\text{int}C\bar{x}$ for all $x \in X$.

Proof. Define a multifunctions $A: X \to 2^X$ to be

$$Ax = \{ y \in X \mid G(x, y) \in -\mathrm{int}Cx \}.$$

- (i) For each $x \in X$, Ax is convex and A has no fixed point as seen in the proof of Theorem 3.1.
- (ii) For each $y \in X$, $A^{-1}y = \{x \in X \mid G(x,y) \in -\text{int}Cx\}$ is weakly open. In fact, let $\{x_{\lambda}\}$ be a net in $(A^{-1}y)^c$ weakly convergent to $x \in X$. Then $G(x_{\lambda}, y) \notin -\text{int}Cx_{\lambda}$, hence

 $G(x_{\lambda}, y) \in Wx_{\lambda}$. Since $(x_{\lambda}, G(x_{\lambda}, y)) \in Gr(W)$ and weakly converges to (x, G(x, y)) by virtue of (2) and the weak closedness of Gr(W), we have $G(x, y) \in Wx$, i.e., $G(x, y) \notin -intCx$. Thus $x \in (A^{-1}y)^c$. Therefore $(A^{-1}y)^c$ is weakly closed, namely, $A^{-1}y$ is weakly open.

(iii) By the hypothesis (4), for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $G(x,y) \in -\mathrm{int}Cx$. Thus $Ax \cap L_N \neq \emptyset$.

From (i)-(iii), we see, by Theorem A, that there must be an $\bar{x} \in K$ such that $A\bar{x} = \emptyset$, namely,

$$G(\bar{x}, x) \notin -\mathrm{int}C\bar{x}$$
 for all $x \in X$.

Remark. Observe that the condition (3) of Theorem 3.1 is replaced by a weaker one "for each $x \in X$, $G(x, x) \in Cx$ " in Theorem 3.2.

As an easy consequence of Theorem 3.2, we have the following.

Corollary 3.2. Let E, F, E^*, X, K, C, W , and P be the same as in Theorem 3.1. Let $T: X \to L(E, F)$ be a map satisfying $x \mapsto \langle Tx, y-x \rangle$ is weakly continuous. Assume that for each finite subset N of X, there exists a nonempty weakly compact convex subset L_N of X containing N such that for each $x \in L_N \setminus K$, there is a $y \in L_N$ satisfying $\langle Tx, y-x \rangle \in -\mathrm{int}Cx$. Then there exists an $\bar{x} \in K$ such that $\langle T\bar{x}, x-\bar{x} \rangle \notin -\mathrm{int}C\bar{x}$ for all $x \in X$.

Proof. Putting $G(x,y) = \langle Tx, y - x \rangle$ in Theorem 3.2, we get the result directly.

Remarks. (i) Corollary 3.2 is a noncompact generalization of Lai and Yao[7, Theorem 2.2] in a Hausdorff topological vector space E (not necessarily a normed or Banach space) on which E^* separates points. E^* is assumed to separate points on E so as to ensure that the weak topology for E is Hausdorff so that we can use Theorem A. The property that E^* separates points on E happens in every Hausdorff locally convex space (see Rudin [12, Corollary, p.59]). However, the converse is not true. Consider the

metric space l^p , $0 . Then <math>(l^p)^*$ separates points on l^p but not locally convex space (see Rudin [12, Exercise 5 (d), p.82]).

(ii) Corollary 2.3 of Lai and Yao [7] may not be true. This is because they deduced it from the false fact that a weakly convergent net is strongly bounded in a Banach space. Of course, every weakly convergent sequence in a Banach space is strongly bounded by the Uniform Boundedness Principle (see Kelly and Namioka [6, Problem A, p.105]). However, as for a net, it is not sure. In addition, Corollaries 2.4 and 2.5 of Lai and Yao [7] may not be true because Corollaries 2.4 and 2.5 are deduced from Corollary 2.3.

References

- 1. F. E. Browder, The fixed point theory of multivalued mappings in topological vector space, *Math. Ann.* 177 (1968), 283–301.
- 2. G. Y. Chen, Existence of solutions for a vector variational inequality: an extension of the Hartman-Stampacchia theorem, J. Optim. Theory Appl. 74 (1992), 445-456.
- 3. G. Y. Chen and S. J. Li, Existence of solutions for generalized vector quasivariational inequality, *J. Optim. Theory Appl.* **90** (1996), 321-334.
- 4. Ky Fan, A generalization of Tychonoff's fixed point theorem, *Math. Ann.* **142** (1961) 305-310.
- F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, in "Variational Inequalities and Complementarity Problems" (R. W. Cottle, F. Giannessi and J. L. Lions, Eds.), pp. 151-186, John Wiley and Sons, Chichester, England, 1980.
- J. L. Kelly and I. Namioka, "Linear Topological Spaces", Springer-Verlag, Berlin/Heidelber York, 1963.
- 7. T. C. Lai and J. C. Yao, Existence results for VVIP, Appl. Math. Lett. 9 (1996), 17-19.
- 8. G. M. Lee, D. S. Kim, B. S. Lee and S. J. Cho, Generalized vector variational inequality and fuzzy extension, *Appl. Math. Lett.* 6 (1993), 47-51.

Sangho Kum

- 9. G. M. Lee, B. S. Lee and S. S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203 (1996), 626-638.
- L. J. Lin, Pre-vector variational inequalities, Bull. Austral. Math. Soc. 53 (1996), 63-70.
- 11. S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in "Fixed Point Theory and Applications" (K.-K. Tan, Ed.), pp. 248-277, World Scientific, River Edge, NJ, 1992.
- 12. W. Rudin, "Functional Analysis", McGraw-Hill, New York, 1973.
- A. H. Siddiqi, A. H. Ansari and A. Khaliq, On vector variational inequalities, J. Optim. Theory Appl. 84 (1995), 171-180.
- 14. X. Q. Yang, Vector variational inequality and its duality, *Nonlinear Anal.* 21 (1993), 869-877.
- 15. S. J. Yu and J. C. Yao, On vector variational inequalities, *J. Optim. Theory Appl.* 89 (1996), 749-769.