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1. Introduction

Since Giannessi [5] first introduced a vector variational inequality problem (in short,
VVIP) in an Buclidean space, VVIP has been intensively studied by many authors; for
example, Chen [2], Chen and Li [3], Lee et al. [8,9], Lin [10], and Siddiqi et al. [13] (see
also the references therein). In a series of recent papers, Yao et al. {7, 15] obtained two
types of existence results of VVIP. To be more specific, in [15], Yu and Yao introduced
the concept of weakly C-pseudomonotone operator. With this generalized mbnotonicity
assumption, they provided several existence theorems on VVIP and applications to
vector complementarity problem. On the other hand, in [7], Lai and Yao derived similar
kind of existence results on VVIP without the generalized monotonicity assumption as
a continuation of the previous work [15].

In this paper, we formulate more generalized versions of VVIP than Lai and Yao
[7], and Yu and Yao [15], so we extend and sharpen two main theorems in [7, 15]. The
point of generalization is to give, in a Hausdorff topological vector space, noncompact

versions of the theorems under some coercivity condition in the case that domain X
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is convex unbounded. Fan’s lemma [4] has been the only one tool to prove almost all
existence results on VVIP so far. But we use the Fan-Browder type fixed point theorem

as a basic machinary to derive our results.

2. Preliminaries

Let E' be a Hausdorff topological vector space and E* its topological dual space.
We say that E* separates points on E provided for each 0 # z € E, there exists an
f € E* such that (f,z) # 0. Here (, ) denotes the usual pairing between E and E*. A

nonempty subset P of F' is called a convez cone if
APCP, forall A >0 and P+P=P.

Let X be a nonempty convex subset of E, F another topological vector space and
C : X — 2F a multifunction such that for each z € X , Cz is a convex cone in F' with
intCz # 0 and Cz # F, and G : X x X — F a function. G is said to be

(1) weakly C-pseudomonotone if for any =, y € X,

G(x,y) ¢ —intCz implies — G(y,z) ¢ —intCx; and
(2) v-hemicontinuous if for any z, y € X and ¢ € [0,1], the map
t— G(z+t(y—x),y) is continuous at 0F.

We denote by L(E, F) the space of all continuous linear mappings from E to F.
Let T': X — L(E, F) be an operator. T is said to be
(1) weakly C-pseudomonotone if for any z, y € X,

(Te,y - z) ¢ —intCx implies (Ty,y —x) ¢ —intCz; and
(2) v-hemicontinuous if for any z, y € X and t € [0, 1], the map
t— (T(x+t(ly —z),y—z)) is continuous at 0.
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The vector variational inequality problem is to find an z € X such that
(Tw,y — x) ¢ —intCz for all ye X.

Now we introduce a particular form of Park [11, Theorem 1] which is modified into
convenient shape in order to derive main results. This theorem is a generalization of

the well-known fixed point theorem of Fan-Browder (1, Theorem 1].

Theorem A. Let X be a nonempty convex subset of a Hausdorff topological vector
space E, K a nonempty compact subset of X. Let A, B: X — 2X be two multifunc-
tions. Suppose that

(1) for each z € X, Az C Buz;

(2) for each ¢ € X, Bz is convex;

(3)

(4) for each y € X, A~y is open ;

(5)

of X containing N such that for each z € Ly \ K, Az N Ly # 0. Then B has a fixed

point xg; that is, z¢o € Bxg.

for each z € K, Az is nonempty ;

for each finite subset N of X, there exists a nonempty compact convex subset Ly

3. Main Results

First we give the generalized linearization lemma as follows:

Lemma 3.1. Let E, F be two Hausdorff topological vector spaces, X a nonempty
convex subset of E. Let C : X — 2F be a multifunction such that for each z € X, Cx
is a convex cone in F with intCz # @ and Cz # F, and G : X x X — F a vector valued
function. Define P = NzexCx and consider the following problems:
(I) Find z € X such that G(z,y) ¢ —intCz for all y € X;
(I1) Find x € X such that —G(y,z) ¢ —intCz for all y € X.

Then:
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(1) Probleni (1) implies Problem (1) if ¢/ is weakly C-pscudomonotone.
(ii) Problem (II) implies Problem (I) if the following conditions are satisfied;
(1) G is v-hemicontinuous;
(2) for each z € X, G(z,-) is P-convex, that is, for any y, z € X and
a € [0,1], G(z,ay + (1 — a)2) € aG(z,y) + (1 — @)G(z, 2) — P; and
(3) for each z € X, G(z,x) € P.

Proof. (i) Let 2 € X be a solution of Problem (I). Then G(z,y) ¢ —intCxz forally € X.
Since G is weakly C-pseudomonotone, —G(y, z) ¢ —intCr for all y € X. Hence, z is a
solution of Problem (II).

(ii) Let z € X be a solution of Problem (II). Then we have

-G(y,z) ¢ —intCzr forall y € X. (3.1)

Suppose to the contrary that z is not a solution of Problem (I). Then there exists § € X
such that
G(z,9) € —intCz, (3.2)

Let z¢ :=z +¢(§ — z) for t € [0,1]. Since X is convex, z; € X. Also G(x;,9) —.G(z,9)
as t — 0% because G is v-hemicontinuous. From (3.2), there exists a € (0, 1] such that

G(zt,9) € —intCz, forall t e (0,%). (3.3)
Fix ¢ € (0,{). By the P-convexity of G(z,-), we have

G(IL‘t, a:t) = G(.’L‘t,tg + (1 e t)x) € tG(iBt,Q) + (1 - t)G(iL‘t,Cﬂ) - P.
From (3.3) and assumption (3), we have
—(1 = t)G(x¢,z) € tG(xt,9) — G(xt,x1) — P
C —intC(z) - P-P

C —intCzx — Cz - Cz
C —intCz.
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Hence —G(x¢,z) € —intC(x), which contradicts (3.1).
Remark. Lemma 3.1 is a generalization of the generalized linearization lemma in [15].

By Lemma 3.1, we obtain the following existence theorem of a vector inequality

under the generalized monotonicity condition.

Theorem 3.1. Let E, F be two Hausdorff topological vector spaces, and let E*
separate points on E. Let X be a nonempty convex subset of E, and K a nonempty
weakly compact subset of X. Let C: X — 2F be a multifunction such that for each
r € X, Cz is a convex cone in F' with intCz # 0 and Cx # F,and G : X x X — F
a function. Define P = NgexCz and W : X — 2F, Wz = F'\ (—intCz). The graph
Gr(W) of W is weakly closed in X X F. Assume that the following conditions are
satisfied :
(1) for cech @ € X, y — G(x,y) is weakly continuous and P-convex;
(2) G is weakly C-pseudomonotone and v-hemicontinuous;
(3) for each z € X, G(z,z) € P; and
(4) for each finite subset N of X, there exists a nonempty weakly compact convex subset
Ly of X containing N such that for each z € Ly \ K, there is a y € Ly satisfying
~C(y,x) € —intC'r.

Then there exists an & € K such that G(Z,z) ¢ —intCZ for all z € X.

Proof. Define two multifunctions A, B: X — 2% to be

Az = {y € X | =G(y,z) € —intCxz},
Bzr = {y € X | G(z,y) € —intCz}.
(i) By the weak C-pseudomonotonicity of G, Axr C Bux.
(ii) For each x € X, Bx is convex. Indeed, when y, z € Bz and «a € [0,1],
G ay + (1 — a)2) € aGi(a,y) + (1 - @)C(z, ) — P
C a{—intCzx) + (1 — @)(=intCz) — P
C —intCzr — Cx

C —intCz.
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Hence ay + (1 — )z € Bz, as desired.
(iii) For each y € X, A~y is weakly open. In fact, let {z\} be a net in (A~1y)® weakly
convergent to x € X. Then —G(y,z5) ¢ —intCzy, hence —G(y,zx) € Wz, Since
(zx, —G(y,x2)) € Gr(W) and weakly converges to (z, —G(y, z)) by virtue of (1) and
the weak closedness of Gr(W), we have —G(y,z) € Wz, ie., ~G(y, z) ¢ —intCz. Thus
x € (A71y)°. Therefore (A~1y)e is weakly closed, hence A~y is weakly open.
(iv) By the hypothesis (4), for each finite subset N of X , there exists a nonempty weakly
compact convex subset Ly of X containing N such that for each z € Ly \ K, there is
ay € Ly satisfying —G(y,z) € —intCx. Thus Az N Ly # 0.
(v) B has no fixed point. If not, there exists an z € X such that G(z,z) € —intCz. By
(3), G(z,z) € —intCx NP C —intCz N Cz = 0, a contradiction. Indeed, if there were
av € —intCr N Cx, then 0 = —v 4 v € intCz + Cz C intCu. This implies Cz = F
because intC'z 3 0 is an absorbing set in F » which contradicts the assumption Cz 5 F.
Therefore B has no fixed point.

From (i)-(v), we see, by Theorem A, that there must be an Z € K such that AT = (),
namely,

—G(y,7) ¢ —intC: for all ye X.

Appealing to Lemma 3.1, we have

G(Z,y) ¢ —intCz for all y € X.

As a direct consequence of Theorem 3.1, we have the following.

Corollary 3.1. Let E, F, E*, X, K, C, W, and P be the same as in Theorem 3.1. Let
T:X — L(E,F) be weakly C-pseudomonotone and v-hemicontinuous. Assume that
for each finite subset N of X , there exists a nonempty weakly compact convex subset
Ln of X containing N such that for each z € Ly \ K, there is a y € Ly satisfying
(Ty,y — ) € —intCx. Then there exists an & € K such that (Tz,z — &) ¢ —intCz for
allz € X,
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Proof. Putting G(x,y) = (I'r,y — z) in Theorem 3.1, we get the result. Indeed,
it is straightforward to check the conditions (1)-(4) of Theorem 3.1 except the weak
continuity of y — (Tx,y — z) for each € X, in other words, the continuity of Tz :
(£2,w) — (£, w). But this directly follows from the definition of the weak topologies for
E and F. (See Kelly and Namioka [6, 16.1 (iv) p.140]).

Remark. Corollary 3.1 is a noncompact generalization of Yu and Yao [15, Theorem
3.1] in a Hausdorff topological vector space E on which E* separates points. They
assumed E to be a Banach space. We used Fan-Browder type fixed point theorem as a
basic tool to prove the existence of solution of VVIP whereas Yu and Yao [15] did Fan’s

lemma.

Now we provide an existence result of VVIP without the generalized monotonicity

assumption.

Theorem 3.2. Let E, F, E*, X, K, C, W, and P be the same as in Theorem 3.1.
Let G : X x X — F a function satisfying the following conditions:
(1) for each z € X, y — G(z,y) is P-convex;
(2) for each y € X, x — G(z,y) is weakly continuous;
(3) for each z € X, G(z,z) € Cz; and
(4) for each finite subset N of X, there exists a nonempty weakly compact convex subset
Ly of X containing N such that for each £ € Ly \ K, there is a y € Ly satisfying
G(x,y) € —intCx.

Then there exists an Z € K such that G(z,z) ¢ —intCz for all x € X.

Proof. Define a multifunctions A : X — 2% to be
Ar = {y € X | G(z,y) € —intCz}.

(i) For each x € X, Aw is convex and A has no fixed point as scen in the proof of
Theorem 3.1.

(ii) For each y € X, A™'y = {z € X | G(z,y) € —intCx} is weakly open. In fact, let
{x»} be a net in (A~ 1y)¢ weakly convergent to z € X. Then G(zx,y) ¢ —intCzy, hence
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G(xa,y) € Wz Since (zx,G(za,y)) € Gr(W) and weakly converges to (z, G(x,y)) by
virtue of (2) and the weak closedness of Gr(W), we have G(z,y) € Wz, ie., G(z,y) ¢
—intCz. Thus z € (A~ ly)°. Therefore (A~'y)¢ is weakly closed, namely, A~ly is
weakly open.
(iii) By the hypothesis (4), for each finite subset N of X, there exists a nonempty weakly
compact convex subset Ly of X containing N such that for each € Ly \ K, there is
a y € Ly satisfying G(z,y) € ~intCz. Thus Az N Ly # 0.

From (i)-(iii), we see, by Theorem A, that there must be an & € K such that
AZ = (), namely,

G(Z,x) ¢ —intCZ forall z € X.

Remark. Observe that the condition (3) of Theorem 3.1 is replaced by a weaker one

“lor each x € X, G(z,z) € Cz” in Theorem 3.2.
As an easy consequence of Theorem 3.2, we have the following.

Corollary 3.2. Let E, F, E*, X, K, C, W, and P be the same as in Theorem 3.1. Let
T : X — L(E, F) be a map satifying  — (T'z,y—x) is weakly continuous. Assume that
for each finite subset N of X, there exists a nonempty weakly compact convex subset
Ly of X containing N such that for each z € Ly \ K, there is a y € Ly satisfying
(Tx,y — r) € —intCz. Then there exists an Z € K such that (TZ,z — &) ¢ —intCE for
allz € X.

Proof. Putting G(x,y) = (T'z,y — ) in Theorem 3.2, we get the result directly.

Remarks. (i) Corollary 3.2 is a noncompact generalization of Lai and Yao[7, Theorem
2.2] in a Hausdorff topological vector space E (not necessarily a normed or Banach
space) on which E* separates points. E* is assumed to separate points on E so as
to ensure that the weak topology for E is Hausdorff so that we can use Theorem A.
The property that E* separates points on E happens in every Hausdorff locally convex

space (see Rudin [12, Corollary, p.59]). However, the converse is not true. Consider the
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metric space {?, 0 < p < 1. Then (IP)* separates points on P but not locally convex
space (see Rudin [12, Exercise 5 (d), p.82]).

(i) Corollary 2.3 of Lai and Yao [7] may not be true. This is because they deduced it
from the false fact that a weakly convergent net is strongly bounded in a Banach space.
Of course, every weakly convergent sequence in a Banach space is strongly bounded
by the Uniform Boundedness Principle (see Kelly and Namioka {6, Problem A, p.105]).
However, as for a net, it is not sure. In addition, Corollaries 2.4 and 2.5 of Lai and Yao

[7] may not be true because Corollaries 2.4 and 2.5 are deduced from Corollary 2.3.
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