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1. Introduction

The main purpose of this article is to investigate properties of natural random mixtures of
distributions introduced for the first time (so far as we are aware) by Van Assche (1987) and,
incidentally, to demonstrate the usefulness of direct methods of analysis based on calculation
of moments. The elementary tools employed are appropriate for classroom use in
undergraduate of elementary graduate courses in probability and statistics. The cases studied in
this article serve as examples demonstrating that utilization of first principles can sometimes be
more advantageous then more sophisticated techniques, such as those employed in Van
Assche(1987). The key to our approach is the realization that the class of distributions under
consideration can be represented in the form (1) shown in section 2.

2. Definition
To set the stage we briefly review the work of Van Assche ( 1987). He defined a random
variable Z* uniformly distributed between two random variables X, and X, by the formula

Pr{Z*< z]X, =x,,X, =x, ]
= forz max(x,, x,)
= for z min (x,,x,)

z-x

= L forx, <z<x,
X=X
z-x

= L forx,<z<x,
X X%

This is equivalent to defining

Z"‘=-§-(Xl +X2)+(W-%J|X, X, (@)

With W, independent of X; and X, ,distributed uniformly over the interval [0,1]. We will
consider only cases in which X, and X, are mutually independent.

M, in addition, X, and X, have a common distribution, (X, -X; ) has a distribution
symmetrical about 0, and distribution of Z* is the same as that of

1 1
Z"‘=—2-(Xl +X2)+(W--2—)|X, -X, | (29)

=WX, +(1-W) X, (2b)
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3. Moments
We use the notation ', (Y),( £, (Y)) to denote the rth(central) moments of a random
variable Y. From (2b), since W, X, and X, are mutually independent,

#,(Z) =E[Z']
=2(§)E[Wj(l'w)“"1ﬂ} X 47X, Ga)

Where £/, (X) is the jth crude moment of the common distribution of X, and X, . An equivalent
formula, based on (2a) and using the fact that E[(W-1/2)]=0 for j odd, is

A2 = (r_DZe:vm m E[( w- %JJ]

xE[27(X, -X,) (X, -X;)7)  (3b)
If We is distributed uniformly over [0,1], then
E[Wi(Q-W)7]1=B(j+Lr—j+1)

r
=(r—1)”‘( )
j

And (3a) takes the simple form
W@ =D 1 (), (0 @)
=0

[B(a,b) = I 0° ' (1- w)"" dw=T(a)[(b)/T(a + b)is the beta funcion}

Since, for any &, W(X,; + &) + (1+ W)X, + &) = WX, + (1 -W )X, +§, we can find the
central moments of Z, assuming that 2/, (X) = 0 without loss of generality, so that 1, X)= 4
(X). With this assumption. We have ‘

4(@) =E[Z]=0 (52)
V@)= @ =2 iy (0 =FvaX)  (5b)
and (5¢)

m@%{zm X +{ 0081,

From which we get the measure of kurtosis

B.@)= 1@V DY = @B+, (5
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As special cases we note (i) X normally distributed (B,(X) =3): B(Z) =3.15; (ii) X uniformly
distributed (B,(X)=1.8): B(Z)=2.07,; (iii) x exponentially distributed (B,(X) =9): B(Z) =4.5.
Note that for any distribution of X, BAX) > 1, so, form (5d), B(Z) > 1.35. This value is
attained when X is a symmetrical two-point distribution (Pr[X=a] = Pr[X=bJ=1/2, azb).
Then Formula (3a) applies for a general W distribution. For example, if W has a
symmetrical beta distribution with probability density function
I'(2a)
{T(@)}*
then E[W’(1-W)“']=a%a""(2a)"! with a™ =a(a +1),.....a+m-1).
From (3a) [taking 4/} (X) = 0],

wl1-w)*', 0<w<l;a>a,

a+l
2a+1

var(Z)=2E[W?]var(X)= var(X). (6)

As a increases from 0 to oo, var(Z) decreases from var(X) to (1/2) var (X).
If a = 1/2, so that W-distribution is U-shaped, var(Z) = (3/4) var (X), whereas for a = 3/2,
with a unimodal W-distribution, var(Z) = (5/8) var (X). In addition,

#,(Z)=2E[W*1u,(X) + 6 E[W* (1- W)* 1{p,(X)}’

1 2
2@ @ars) 0 AE M 013G D (L 0F] (D)

When a =1/2, B(Z) = (35/36) B(X) + 1/4; when a = 3/2, B,(Z) = (21/25) B,(X) + 3/5.
If the X-distribution is normal (B,(X)=3), then for a = 1/2, B(Z)=3 '/ ; for a =3/2, B,(Z) =
3.12.

Note that the U-shaped distribution (a = 1/2) produces the higher value for B,(Z). Both
distributions of Z are (slightly) leptokuric. ,

From (2a), with (X, + X;) and (X, - X,) mutually independent, E[Z] = 0, #(Z) =0 for r
odd, and

#,(Z)= Za‘,(zij] 2EX, +X,)]x EKW %] ]E[(Xl X)L (®

j=0

From which we get

var(Z)=%+2 var(X) (9a)
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And
#,(2)= 2+ 6 (W) +1241,(W). (9b)

Hence

12{ﬂ2 (W) -1 }
(1/4){p, (W)} +2{u, (W)} +4
If the support of the distribution of W is [0,1], then 2(W) < 1/4. Noting, in addition , that

B,(W) = 1, we have

(10)

P.(X)=3+

3
35ﬂz(z)53+z(ﬁ2(w)'l}- any
The distribution of Z is always leptokurtic.
If W has a symmetrical triangular {0,1] (tine) distribution with probability density function

Sfw(w) =4w OSWS-;-

= 4(1-w), -;—SWSI, (12)

then 2,(W) = 1/24, u (W) = 1/240 and, from(10), B.(Z) = 108/35= 3.086.

4. Distributions

We suppose that W, X, and X, are mutually independent and all have uniform [0,1]
distributions. In this case, the joint distribution of X; and X, is uniform over the square with
verices (0,0),(0,1), and (1,0). Whe evaluate F;(z) =Pr [Z< z] as Ex(Pr [Z < z| W]). Forz< 172,

bz @/2w 1L dw  rz-(1/2)1-w)
Fz(z)-! = dw+z Iw(l-w)+,f = dw

=(1-z)’log(1-z)-z*logz+z.
Similar calculations lead ot the same result for z > 1/2.
Hence

z ~2

F,(z)=(1-2)*log(l—-z)-z*logz +z, 0<z<l. (13a)

The probability density function of Z is

2 (2)=F,(z)=-2(1- z)log(1-z) - 2zlog z. (13a)

Figure 1 shows a graph of this function. If W =1/2, the distribution of Z would be a
symmetrical triangular("tine”) distribution of [0,1), so the distribution (13a and 13b) might be
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called a "uniformly randomly modified tine" distribution. This distribution would be expected
to be "between"” the uniform distribution (W= 0 or 1) and the tine distribution (W=12).

Parenthetically, we note that, from (2a), a simple Monte Carlo Procedure, using only
simulated uniform variables,

‘Figure1
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We can be used to simulate the distribution (13a and 13b).
Similar calculations for the case in which W has a tine distribution [see (12)] lead to
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1

F,(2)=4(1-z)* log(1-z) + 4z log 2+ 4z — 6% forOstE
=-4z’logz—4(1-z)*log2+3 -8z + 62> forOst—;—
=1-4z"logz - 4(1- z)* log 2 — 4(1- z) + 6(1 - z)? (14a)

and

JS2(2) =-8z*log z *-8(1-log 2)(1- z¥)
=-8z*logz*-2.455(1- z*), (14b)

Where z* = 1/2 +1/2 - z|.
Figure 2 shows a graph of the probability density function. It is similar in shape to that of

J2(2) in (13b).
A particularly simple case arises if the common distribution of X, and X, is Cauchy, with
probability density function

-1, -1 x-8Y "
A1+ o s 0<A

Figure2
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If the distribution of W has support [0,1] [so that neither W nor (1 - W) is negative], the
conditional distribution of Z, given W, is also the common distribution of X, and X,.

[See, e.g., Johnson and Kotz (1970,p. 156).] It is also, therefore, the unconditional distribution
of Z. this result does not depend on the distribution of W (it need not even be symmetrical),
provided only that its support is limited to [0,1].

If X, and X, have a common standard normal distribution, the conditional distribution of Z,
given W, is normal and expected value 0 and variance {W?+ (1 - W)?}. Hence .

Pr[ZSzIW]=<D( = 21/2]’
W +(1-w)*}

where

O(y) = (V2r)* ]'e('”z)"zdu

and _

Pr[Z < z}=E, (Pr[Z <z |W}). (15)
This result is valid for any distribution of W. If W has a uniform [0,1] distribution, then

1
‘ z (16)
Pr{Z <z]= aw.
[ z] JO{{W'Z +(1—W)2}”2}

This can be evaluated by quadrature.

5. Characterization
Equation (3a) can be written in the form

HU(Z) =24, (W)n! (X) + (function of g/(X),..., ', (X)). (17)

If the moments of W are known, those of X can be derived from those of Z by using(17)
with r =1,2, .. successively. If, further, the distribution of X is determined by its moments, then
the distribution of X is characterized by that of Z. This is so, in particular, if the support of Xis
bounded. This result holds for W having any distribution symmemcal about 1/2 with finite
moments of all orders.

6. Conclusion , ‘
We have described how moment methods can provide a way of dbtajning distributions and
characterizations of distribution of random mixture variables of form

or, more generally, Z=WX,+(1-W)X
= 1 2
=1
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where the X's are mutually independent and have a common distribution and the W's are
independent of the X's. The case in which the X's have standard uniform (0,1) distributions
leads to an interesting family of symmetric distributions.
The method can be extended straightforwardly to distributions of variables of type
Y=3[]x,
j=0 i=0
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