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THE HP-VERSION OF THE FINITE
ELEMENT METHOD UNDER
NUMERICAL QUADRATURE RULES

Ik-Sung KiMm

ABSTRACT. we consider the hp—version to solve non-constant co-
efficients elliptic equations —div(aVu) = f with Dirichlet bound-
ary conditions on a bounded polygonal domain Q in R2. In [6],
M. Suri obtained an optimal error-estimate for the hp—version:
llu —upll, o < Cp~(@=Dpmin(.o=D|jy||, o. This optimal result
follows under the assumption that all integrations are performed
exactly. In practice, the integrals are seldom computed exactly.
The numerical quadrature rule scheme is needed to compute the
integrals in the variational formulation of the discrete problem. In
this paper we consider a family Gp = {In} of numerical quadrature
rules satisfying certain properties, which can be used for calculat-
ing the integrals. Under the numerical quadrature rules we will give
the variational form of our non-constant coefficients elliptic problem
and derive an error estimate of |lu — ﬁg“lyn.

1. Introduction

The finite element method is a particular kind of Ritz-Galerkin pro-
cedure in which the approximating finite-dimensional subspaces are
composed of piecewise polynomials defined on a partition of the given
domain. The convergence is obtained by increasing the dimension of
these subspaces in some manner. There are three versions of the fi-
nite element method. The h-version is the traditional approach ob-
tained by fixing the degree p of the piecewise polynomials at some
value (usually p = 1,2,3)and refining the mesh in order to achieve
convergence. The p-version, in contrast, fixes the mesh and achieves
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the accuracy by increasing the degree p uniformly or selectively. The
hp—version is the combination of both.

In this paper, to solve non-constant coefficients elliptic equations
with Dirichlet boundary conditions on a bounded polygonal domain
Q in R? we consider the hp—version with a quasi-uniform mesh and
uniform p. In [6], I. Babuska and M. Suri already obtained the following
optimal estimate for the hp—version:

(L) fu—dll,

< Cp~ = Dpmnteo=Dy|| o for all u € HI(Q), o > 1,

where C' is independent of u, h, and p [but depends on € and o).

The above optimal result follows under the assumption that all in-
tegrations are performed exactly. In practice, the integrals are seldom
computed exactly. The numerical quadrature rule scheme is needed
to compute the integrals in the variational formulation of the discrete
problem. Thus we first consider a family G, = {I,,} of numerical
quadrature rules satisfying certain properties, which can be used for
calculating the integrals in the stiffness matrix of (2.17). Then, un-
der the numerical quadrature rules we will give the variational form
of our non-constant coefficients elliptic problem and derive an error
estimate of |lu — 172”1 o Where ﬂ;} is an approximation satisfying (3.6).
We also analyze the cases in which the overintegration may improve
the accuracy of the approximation to allow for optimal results.

2. Preliminaries

Let Q be a closed and bounded polygonal domain in R? with the
boundary I'. Let M = {J*},h > 0 be a quasi-uniform, regular family
of meshes J" = {22} defined on ), where QF is a closed quadrilateral,
and

(2.1) [nax diam(Q") = h  for all Q" J* € M.
he h

Further we assume that for each QF € 7" there exists an invertible
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mapping T} : Q— QF with the following correspondence:

(2.2) 1eQe—oz=TFE) e,

(2:3) TeUy(Q) —— t=10 (T e Up(Qh),

where {) denotes the reference elements 12 = [—1,1]% in R?
24) U@

= {1 : tis a polynomial of degree < p in each variable on ﬁ}
and

(25)  Up(Qh) = {t:t=toTl e Uy(Q)}.

We now consider the following model problem of elliptic equations :
Find u € H}(9), such that
(2.6) ~div(aVu) = f in Q C R?,

where two functions a and f satisfy a compatibility condition to ensure
a solution exists, and

(2.7) H}(Q) = {u € HY(Q) : u vanishes on T'}.
For the sake of simplicity, we assume that

(2.8) 0<A;<a(z) <Ay forall ze€fand
(2.9) f € La(Q).

In addition, we also assume that there exists a constant M > 1 such
that

(210) [T lmeoss» NI llpooqr SA for 0Sm<M,

-1
@211) [ TPlpoosts N2 loogr A for 0<m<M -1,

where JP and (j;’c‘)_l denote the Jacobians of T* and (T}*)”" respec-
tively.

Then, as seen in [8,theorem 3.1.2], we obtain the following correspon-
dence: For any a € [1,00], 0 <m < M,

(2.12)  TeWwme(Q) —t=Fo (T~ € Wm(Q})
with norm equivalence

(213)  CiA™ Dtll,, o < [l an < Coh™ |t

m,a,Q m,a,0h
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with the subscript o omitted when a = 2. Namely, we have

(2.14) CLA™ V|t an < 8,5 < Coh DIt g

Let us define
(2.15) S*(Q) = {u € H() : ugn o (T¢) € Up(Q) for all QF € Jh},
where ugqr denotes the restriction of u € H'(Q2) to QF € J", and
(2.16) Spo() = SH(Q) N HA(Q).
Then, using the hp—version of the finite element method with the mesh
J" = {Q}} we obtain the following discrete variational form of (2.6):

Find u} € Sh(Q) satisfying

(2.17) B(uz,v}’)‘) = (f, UZI;)Q for all v} € Spo(9),
where
(2.18) B(wv) = [ a%u-Vuds,

Q

the usual inner product

(2.19) (f,v)gz/ofvdx.

Let us now give some approximation results which will be used later.

LEMMA 2.1. For each integer | > 0, there exists a sequence of pro-
Jections

L : H(O) - U,(Q), p=1,2,3,--- such that
(2200 T%, =%, forall B, € Uy(Q),
(2.21)  |a- H;,ausyﬁ <Cp |, g forall @€ H™(Q)
with 0<s<[<r.

Proof. See [9,Lemma3.1].
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LEMMA 2.2. Suppose that Th . Q — QF is an invertible affine
mapping. Then for any u € H°(f)),0 > 0 we have

(2.22) inf [y ~ 9], < Chugyl__ .
6EUP() o,

where 1 = min(p,o — 1) and C is independent of h, p and u.
Proof. The proof is given in [6].

LEMMA 2.3. For each u € H°(Q) and QF € J" there exists a
sequence z) € Up(QF),p =1,2,--- such that for any0<r<o

(2.23)

h — —(o— h h
lluqn — z,,||TYQ,,: < Chlp=rtl)y=(o r>nu9,k,g|w: for all Q} € g",

where 1 = min(p,o — 1) and C is independent of h, p and u.
Proof. See [6, Lemma 4.5].

Let u € H((2),0 > 1 be the solution of (2.6) and u the hp—version
finite element solution of (2.17). Then, as seen in [6] we have an esti-
mate

(2.24) |ju — quLQ < Chmin(P,o~1)p—(a—l)”u”U,Q’

where C is independent of u, h and p.
3. The hp—version under numerical quadrature rules

We consider numerical quadrature rules I,,, defined on the reference
element ) by

n{m)

(3.1 In(f) = Y ar i@ ~ [ f@as,
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where m is a positive integer. Let G, = {Ix} be a family of quad-

rature rules I,, with respect to Up(ﬁ), p =1,2,3,---, satisfying the
following properties : For each I, € Gp,

(K1) @™ >0 and Zzj"€ Q for i=1,---,n(m).
(K2) In(f ) <Cillfllog forall fe Up(2).

~ 9 ~9 ~ o~ o~
(K3) Califlloa < Im(f ) for all feUp(Q),

where U,(Q) = c FeU,(@)} cU(9).

(K4) In(f) = /A F@)dz forall [ € Uym(),
Q
where d(m) > d(p) > 0.

We also get a family G, o = {Im,q} of numerical quadrature rules
with respect to Sh(Q), defined by

n(m) n(m)
(32) Lnan(far) = Y wifan(e]) = Z DT TRET) (fap o TE)(ET)
Jj=1
I (T} far)
and
33)  Ima(f) = Y, Imar(fan):
Qhejh

In particular, one may be interested in Gauss-Legendre(G-L) quad-
rature rules. Let L, denote the cross-products of g—point G-L rules

along the 51 a.nd % axes on {) = I x I, given by

q(f Z Z wi wi f(z];) for all fe Lg(ﬁ),

i=1 j=1
where z}, = (2{,7]) € (1 = I x T with the weights @7 and @7

We con51der a family {L,} >1(p) of G-L quadrature rules w1th respect
to Up(ﬁ) such that I(p) = p+1. Then, {L,} o>1(p) Satisfy the properties

(K1) —(K4). In fact, when ¢ > p+1 Lq(f) is exact for all f € Ud(q)(ﬁ)
-with d(q) > 2p+1 > 0, so that (K2) and (K3) hold with C; = C; = 1.

Now, we denote by DF the 2 x 2 Jacobian matrix of F : R? - R?,
and define two discrete inner products
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(34)  (w),qp = Imar (W) = In(T}(uv)gy) on Qf € T,

(3.5) (V) o= 2 (4, V), qn on L.
Qregh "

Then, under numerical quadrature rules I, in G, we obtain the
following actual problem of (2.17): Find 27']; € SI’},O(Q), such that

(3.6) Bna(ih,vt) = (f,0}),, for all v}y € Spo(Q),
where
(37) Bma(@hvh)= > I, ou(aVay - Vop)
Qhegh
— t
3 ILn(JFa(vahD(T] (@ (varD(TE )
QhEJh
au 61}
Z Z(aalj A 78:1: )va
Qh th,] 1 -7

and a;; are the entries of the matrix
t

Jk (D(T") (D (T") )
Here, @ , a;; , u and vh denote the restrictions agn , (aza)gh , (Uh) o

and (o) an respectively.

Let us now derive an estimate of the error ||u _62”1,9 for the
hp—version under numerical quadrature rules I,,. In fact, |ju — ﬂ;‘” 10
depends on two separate terms. The first dependence is on the error
llu — "H1 q given in (2.24). Next, the smoothness of a has influence
upon the error. We will start with the following Lemma.

LEMMA 3.1. Let u be the exact solution of (2.6) and ul that of

(2.17). Let uh be an approximate solution of u which satisfies a discrete

variational form (3.6). Then there exists a constant C independent of
m such that
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(38) u—dgl,

: |B(uy, wp) = Bma(vh, wh)]
<C inf {llu—vpll,,+ sup P2 PPy

vpESH 4(R) ! w"EShO(Q) ”w;’;lll’g

Proof. Let vz’,” be an arbitrary element in 53,0(9)- Then we have
(39)  fu—uhl, o < llu—-vbll, o+ lIof - T,
From the ellipticity of B, o(-,-), for a constant C; > 0

~h 2 .
(3.10) Clllv;’,‘ —uglll’n < Bm,g( uz,vg uz’;)
= |Bm,a(vy, vy — Up) — (f,v;,'-u;f)l
= |Bp,, Q(’U vy, —-uh) - B(u ﬂg)[

Hence, taking the infimum with respect to v;,‘ € S;}’o (2) we have

(311) fu—at,

h ,h h h ~h
< C lnf {” _ 'Uh” IB(up vp —u )_ mQ( p? p _up)I}
= hesh U= Yllq h _gh :
P €Sp.0() ’ ”vp - P”l,ﬂ

The Lemma follows from taking w;,' = v;,‘ - ﬂ; € Sho().

The following Lemma will be used later.

LEMMA 3.2. Let u,,, wp € U, (Q) and f e Loo(Q). Then, for all
Uy €Uy(Q), fr € U(Q) with 0<q<p and 7= dim)—p—-¢>0
we have
(312)  |(fp, Wp)g — (f Up, D), 53

< C{llfrllocoalltp = Ballo g + 11F = frllg o allTnllon } I@pllo g

where C' is independent of p,q and m.
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Proof. For any f, € U-(Q) we have

(3.13) | (

U U
< l (f apa@p)A - ( rap’w ") | + | (frapa@p)ﬁ - (frap,@p)m,ﬁ l
+ W

Thank to (K4),

(3.14)  (frDg, BWp)g — (frig,Bp),g = 0 for any 9, € Uy ().
Hence,
(3.15) | (frup>wp) (frupv Wp),, & al

< | (frup, Wp) g (frqu Wp)g | + | (fr”q’ wp) — (frip, ap)m,ﬁ B
By the Schwarz inequality we obtain

(3.16) | (frilp, Bp)g — (frDg, Bp)g |
< f (Up — 7g), fr( )) ('wpv@p)%
<C ”fr”o,oo,ﬁ”up - 'Uq”o,ﬁ ”wPHO,ﬁ :

Friiy
(

Also, from (K2) we have

(3-17) I (ﬁam@p)m,ﬁ (frup:wp)m 0 |

~ 1 1
< (fr(up ‘Uq),fr(up* Yq )12nﬁ( p’wp)fn’ﬁ
~ 1 1
< C“fr”o,oo,ﬁ(up — Ug, Up — Ug) 2 (1, wp)fn o

< Cllfrllo,c0 e = Vallo allDpllo g

Hence, combining (3.16) and (3.17) we estimate

(318)  |(Frilp, Wp)g — (Folp, @), 5|

< Cllfrllo,ooallEs = gllo all@plly g -

Similarly, since f € Lo () we obtain



IK-SUNG KIM
72

(3:19) |(fp, Bp)g — (frilp, Tp)g|
< ((f_f)upu(f fr)up) (wm@p)%
<

”f fr“0,00,@“up“(),Q”wP”o,ﬁ )

and

(320) |(frupawp) (f up7wl’)m Ql
< ((fr - f)up, (fr - f)up)fn,ﬁ(@ @P)fn,ﬁ
< Cllfr = Flloo a(lp: Bo),, (@p, D)7,

< C”fr f”o,oo,Q“upHo,Q”"UPHQQ-

The Lemma follows from (3.18), (3.19), (3.20) and (3.13).

As seen in Lemma 3.1, the last dependence of ||u — a}z}”1 q ison the
smoothness of a. In this connection, we let

where the subscript q will be omitted when ¢ = 2. Then, we obtain the
following results which give an estimate for the last term of the right
side in (3.8).

LEMMA 3.3. Let I,, € G, be a quadrature rule defined on Qc
R?, which satisfies d(m)—p—1>0. Let uve€ H°(Q), a € H*(?) and
a;j € H?(Q) for i,j =1,2, such that A = min(a,p) > 2. Then, for
any wz'} € S;,"O(Q) and an approximation u;‘ which satisfies (2.17)
we have

h h h h
(322) | B(up,w ) h m,Q(U’p7wp) |
R, .

< C{g“ DhHull,q + r~ A VRO D all, o Mllully 0},

where . = min(p,o — 1) and q is a positive integer such that 0 < ¢ <p
and r=d(m)—p—q>0.

_10_
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Proof. For arbitrary w) € S}((2) we have

(3.23) IB(u;‘,wh) Bmyg(ug,w]’;ﬂ

ot oot __ out ook
<C max max| aama,\ , 6::: - agaA ' 55, |
2ed " Y Q Ti m Q
For any @;; i,j = 1,2 and Q} € J" we let q be any integer such

that 0 < ¢<pand r=d(m)—p—q> 0. Then since @a;; € Loo(f),
due to Lemma 3.2 with 7, = 6% (T1}@?) and fr = T12(@@;;), we have

41 __ ouk 0w __ &ut om
(3.24) | ““’JaA’a@ . ““”aA’axJ R

m,Q
SR oul -
< C{IMZ@a:5)p 0.0 Il 52> o ~—(H1 ”)II
T2 _P
+|[a@;; - Oz (aa )IIOOOQII I| }|| 7, Ilo,ﬁ

Using Lemma 2.1 and Lemma 2.2 we easily see from the boundedness

of IT; and (2.14) that

ouk
(325) |22 - 2 (mahy
0,Q

0z; 07;
< Clluy - IGagll, 6 < Ca Vgl 4
< Cq=V{ll@—ap|l 5+ llall, 5}
< Cq= =D (h# B~ 1))lIU||<,,n;;
< Cq ™ Dh# ||l gn,

where ¢ = min(p,o — 1).

Also, clearly

oay ~
(326) Izl g < Cllapll, 5 < Cllall, g < Cllull, an
and

oy ~
(3.27) IIa II 8= Cllwpll, 5 < C!Iw"llmz-

¥11,
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On the other hand, by an interpolation result (see [9,Theorem 3.2],
[7,Theorem 6.2.4] ) it follows that for w € H"({2) with n > 2,

(328)  ||®— 2|

0,00,0 |
i ~ i
< Cllo-Tall}, g0 -T3a); g fr0<e<y.
Also, taking s =1+¢ and s =1 —¢ in(2.21) we have
(329) @ -IRdll, 5 <Cp Vi, s

Thus, since aa;; € H* (@) with A = min(a, p) > 2 it follows from
(3.29) that

(3.30) lea;; — Hz(aaij)”o,oo,ﬁ
< Cr OD[al, oM, = 17 ODREDlal gy,

Moreover, since ||H2(aa,~j)||0’oo,§ is bounded it follows from (3.25),
(3.26), (3.27) and (3.30) that
oul ok oul  owh
31 aa o2, o) (g, 2, O
(3:31) I(““]a@’ag-)ﬂ (““Ja@’ax,- |
Q m,Q
< C{g=CVRH|Jull, gn + = ADRED lall, gn Mpllully gp Hlwg |

where p = min(p,o — 1).

1,90

Consequently, we have
our owhr our owh
3.32 max max | [ a8;; =%, —=* —|aa;; ==, =%
( ) Qrey b | ( Y 0%, 0z; | . Yo%, 0z ; Al
m
< C{g O Vnr#|full, o + DR all, o Mpllull, o Hiwpll, o

where g = min(p, 0 —1). The Lemma follows from dividing by l]w{j“l Q

By a direct application of Lemma 3.3 and (2.24) to Lemma 3.1 we
obtain the following main Theorem which gives an asymptotic, H*((})-
norm error estimate for the rate of convergence under numerical quad-
rature rules.

THEOREM 3.4. Let I, € G, be a quadrature rule defined on Q C
R?, which satisfies d(m)—p—1> 0. We assume that u € H°(Q2),a €

,12_
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H*(QY) and a;; € HP(Q) for 1,7 = 1,2 such that A = min(e, p) > 2.
Then, for any positive integer q such that 0 < g < p , we have

(3.33)  |lu-— a{;um
< C{qg IR |ull, o+ r~ OV D all, o Mllull o},
where p = min(p,0 — 1) and r = d(m) —p — q.

proof. Taking v;} € S,’,',O(Q) with an approximation uz’; of u which
satisfies (2.17), we obtain from Lemma 3.1 that

(3.34) llu — agnm

B Uh wh - B uh,wh
< C{H h“ S | ( p? p) m,Q( D p)‘
P, wheSh () ”u’g” Q
p~“p,0 1,

}.

Since 0 < ¢ < p it follows from (2.24) and Lemma 3.3 that the first
term of the right side in (3.34) is dominated by its last term. Hence,
the proof is completed by a direct application of Lemma 3.3 to (3.34).

We see from Theorem 3.4 that the rate of convergence is essentially
given by

(3.35) O(q~(e~Dpmin(.o=1) 4 (d(m) — p — q)—(A—%)h(a_l))_

If m is large enough with ¢ = p, then the rate of convergence is asymp-
totically O(p~ (e~ Dpmin(P.o=1)) " which coincides with that of (2.24).
In the case where a is sufficiently smooth, i.e. « is large enough, even
when d(m) = 2p+1 with ¢ = p the first term in (3.35) may dominate, so
that the rate of convergence is asymptotically O(p~(e~Dpmin(po=1)),
More precisely, in G-L quadrature rules, using I, with (p + 1)-point
rules we would obtain an asymptotic rate O(p“("“l)hmi“(f”"‘l)). But,
when a is not smooth enough, the first term ¢~ (?~Dpmin(P.o=1) may
be dominated by the other term of (3.35). In this situation, using an
overintegration with a sufficiently large m we may reduce the error
||u — ?IQHLQ until the first term dominates again. In practice, when a

is not smooth we may increase the value of d(m) with g =~ p.

_13,.
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