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1. INTRODUCTION

This article examines some of the common univariate and multivariate tests from
this viewpoint. It turns out that in all but one test considered, the use of hypothesis -
depentdent variance estimates leads to tests that are equivalent to the corresponding
traditional tests utilizing the hypothesis-indepentdent variance estimates. The realization

of this fact may be interestiong and educational to practitioners and students of statis-
tics.

2. UINVARIATE TESTS

The one sample ¢ test is commonly used to test the null hypothesis
Hy: p=p,,
based on a random sample from a normal distribution with unknown variance o2 Thi

s test is the likelihood ratio test as well as the uniformly most powerful unbiased test.
The statistic ¢ is given by

t=(x—pue)/(/n)"2,

where x is the sample average based on a random sample of size # . The sample

variance s? is an unbiased estimate of ¢ computed as
n —
P == 2 @—x)/(n-1)

The question of interest is why don’t we take advantage of the specified value of
# under the null hypothesis in computing as estimate of 0‘2, as
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F=st= g‘.l(x,-—pg Y2/ n?

In turn, why don’'t we use #; as our test statistic to test the hypothesis in 2.1
where
to=(x—pe)?/ (s§/n)'??
The answers to these questions are rather simple. It can be easily shown that the
t, statistic can be written in terms of the ¢ statistic as follows :

th=tl n/(n—1+#)] . @1

The one-to-one correspondence between the statistics f and £, and their corres-
ponding distributions (percentile points) are now apparent. Note that even though x
and sg are dependent, the distribution of #; can still be easily obtained from the distr-
ibution of # through (2.1). In summary, the ¢ and #; tests lead to the same inference
and hence are identical tests. It is intersting to note that a gain of one degree of
freedom really does not improve the test. So why bo-ther with the ¢ test ? For this
and related discussions, see Lefante and Shah (1986) and Good (1986).

In the same spirit, one can raise a similar question about the F statistic for test-
ing the equality of the 2 treatment means, that is,

Hy:m=py= ** =y,
in a completely randomized design. The same logic leads to a new statistic, Fy, which

can be expressed in terms of the usual F statistic as shown below :

F. — ireatment mean squares
0 total mean squares
(N-1DF
(k—1)F+(N—Fk) *

Once again, the one-to-one correspondence between the statistics F and Fy for the
completely randomized design and their correspondending distribution lead to the same
inference and hence are identical tests. So there is no need to bother with the ¥ test.

3. MULTIVARIATE TESTS

Now we continue with this same idea in the one-smaple and £ - sample multivar
iate tetsting procedures. Suppose that we have indenpent vectors X, + - - ,X, from

a p-variate normal population with unknown mean vector & and unknown covariance
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matrix 2. The usual test statistic for testing

Hy:6=§
is the Hotelling's Tz, which is given by
TP=n(X—-§)SUX-§&), 3.1)

where X is the sample mean vector and
5= R X~X) (X =X) [(n—1)
=

is the sample covariance matrix. If we replace S in (3.1) by the hypothesis-dependent
covariance estimate,

So= B (Xi~&) (X&) In,
do we get a different test ? That is, does
T =n(X—6&) Sy (X—§&)
lead to a different test? It is easy to show that Tf) can be expressed as
T§= T’ln/(n—D + T°],
which is a one-to-one function of 7%
Thus, for the same reasons given in the f test case, we conclude that the test pro
cedures based on 7° and 7% are identical. Interestingly, Kshirsager (1972, problem 40,
p. 490) has noted a statistic T"'2 which equals (n—1)T%/n. Finally, we investigate the

effect of hypothesis-dependent covariance esti-mates in the MANOVA setup for testing
the equality of several normal mean vectors. Let &; and 2; denote the unknown mean

vector and the unknown covariance matrix of th population, =1, - + - ,k Further
let the jth observation from the 7th population, and 7=1,2, + + *,n; be denoted by

Xy and the ith sample mean vector by X Define the hypothesis matrix
k

H= ¥ n(X; - X)(X;-X),

=]

— k . k

where X= Zln,-X,- / ( Zl n;), and the error matrix
i= i=

n;

k
E= XY X

=] j=

(XK= X )(Xu-%).
Then, the usual test statistics to test
Hy: &=+ - =§
are some real valued functions of the eigenvalues of HE ™' (Morrison 1990). For
example, Roy's root test statistic is &; = ¢,/ (1 + ¢, ), where ¢, is the largest ei-

genvalue of HE ‘among the s nonzero eigenvalues of HE ~!. The Lawley-Hotelling
test statistic is tr (HE "' ). Again, the question of interest is whether we get differen
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t test procedures if we use hypothesis-dependent error matrix
k n — —\/
E, = ?31;2-:1 (Xi—- X)Xy - X)
instead of E. We show that two commonly used real valued functions of the ei-
genvalues of HE;}, namely the largest eigenvalue and the trace of HEp ', lead to
the well-known test procedures available in the literature.
First let us consider the largest eigenvalue of HE, ' as a test statistic to test H.
Noting the relation that Ey=H+E, it can be easily shown that the largest eigen-

value of HE; ! is indeed Roy’s root test statistic 8. If we propose tr(HE;") as a
test statistic, then this leads to a different test than the Lawley-Hotelling test. Howeve
r, this is the well-known Pillai’s trace test statistic, as

tr(HE; )= tr[H(H+E) 1.
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