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1. Introduction

While introducting the concepts of hypothesis trsting to beginning
statistics students, the analogy between the process of jury trial of an
accused and the process of hypothesis testing is often drawn. The hy-
pothesis testing approach is also compared with the approach of “proof
by contraction”. The students are repeatedly reminded about the logic
of proceeding under the assumption of the null hypothesis being true
unless contradicted through the sample evidence(at some specified level
of significance).

As various hypothesis testing procedures are introduced, some stu-
dents become puzzled by the fact that the information specied in the
null hypothesis is not fully utilized in some of the tests, especially in
computing the variance estimates. For example, under the one sample
t tests, the sample mean, T, is utilized (instead of the specified mean,
fo)in computing the variance estimate, while in testing for the binomial
proportion, the specified proportion value, py, is utilized in computing
the variance estimate.

This article examines some of the common univariate and multivariate
tests from this view point. It turns out that in all but one test consid-
ered, the use of hypothesis-dependent variance estimates leads to tests
that are equivalent to the correspondending traditional tests utilizing
the hypothesis-independent variance estimates. The realization of this
fact mat be interesting and educational to practitioners and students of
ststistics.

2. Univariate Tests
The one sample ¢ test is commonly used to test the null hypothesis

Ho : pp = po
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based on a random sample from a normal distribution with unknown
variance o2. This test is the likelihood ratio test as well as the uniformly
most powerful unbiased test. The test statistic ¢ is given by

t = (& — po)/(s*/n)'/?,

where & is the sample average based on a random sample of size n. The
sample variance s? is an unbiased estimate of o computed as

6t =s%= Z(m —3)%/(n-1).

The question of interest is why don’t we take advantage of the specified
value of p under the null hypothesis in computing as estimate of o, as

n
32 = o2 = (2 = po)? I
i=1

In turn, why don’t we use tg as our test statistic to test the hypothesis
in (2.1) where
- 2 1( 2 /\1/2
to = (% — po)? /(s /n)'/??
The answers to these questions are rather simple. It can be easily

shown that the ¢, statistic can be written in terms ofthe ¢ statistic as

follows:
to =t[n/(n —1+tH))/% (2.1)

The one-to-one correspondence between the statistics ¢ and tp and
their corresponding distributions(percentile points) are now apparent.
Note that even though z and s2 are dependent, the distribution of g
can still be easily obtained from the distribution of ¢ through (2.1). In
summary, the ¢t and %, tests lead to the same inference and hence are
identical tests. It is interesting to note that a gain of one degree of
freedom really dose not improve the test. So why bother with the ¢
test? For this and related discussions, see Lefante and Shah(\1986) and
Good(1986).  In the same spitit, one can raise a similar question about
the F statistic for testing the equality of the k teratment means, that is,

Ho:pi=p2=--= p,
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in a completely randomized design. The same logic leads to a new statis-
tic, Fy, which can be expressed in terms of the usual F statistic as shown
below:

treatment mean squares

Fo =

total mean squares
(N-1)F
(k—1)F+(N—k)
Once again, the one-to-one correspondence between the statistics F and
Fy for the completely randomized design and their corresponding dis-

tributions lead to the same inference and hence are identical tests. So
there is no need to bother with the Fj test.

3. Multivariate tests.

Noe we continue with this same idea in the one-sample and k-sample
multivariate testing procedures. Suppose that we have independent vec-
tors X1, ..., X, from a p-variate normal population with unknown mean
vector ¢ and unknown covariance matrix Y . The usual test statistic for
testing

Ho : §{ =&
is the Hotelling’s T?, which is given by
T* =n(X — &)'S™(X - &), (3.1)

where X is the sample mean vector and
S=Y (Xi-X)(X -X)/(n—1)
=1

1s the sample covariance matrix. If we replace S in (3.1) by the hypothesis-
dependent covariance estimate,

So =3 (Xi— @)(X: = &) /n,

do we get a different test? That is, dose
Ty = n(X — &)'S5 H(X - &)
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lead to a different test? It is easy to show that T¢ can be expressed as
T = T*[n/(n — 1) + T7,

which is a one-to-one function of 72.

Thus, for the same reasons given in the t test case, we conclude that
the test procedures based on T? and T? are identical. Interestingly,
Kshirsager(1972, problem 40, p.490) has noted a statistic T2 which
equals (n — 1)T¢ /n.

Finally, we investigate the effect of hypothesis-dependent covariance
estimates in the MANOVA setup for testing the equality of several nor-
mal mean vector and the unknown covariance matrix of sth population,
¢ =1, ... k. Further let the jth observation from the 7th population,
t=1,...,kand j = 1,2, ... ,n; be denoted by X;; and the jth
sample mean vector by X;.

Define the hypothesis matrix

H= f: ni(X; - X)(X; - X,

=1

where X = Ele n,;f,-/(z:f___l n;), and the error matrix

k  n;
E=) Y (Xi - X:)(Xij — Xu).

=1 j=1
then, the usual test statistics to test

Ho:6o="---=¢&

are some real valued functions of the eigenvalues of HE~!(Morrison
1990). For example, Roy’s root test statistic is 8, = ¢,/(1 + ¢,), where
¢, is the largest eigenvalue of HE~! among the s nonzero eigenvalues
of HE~'. The Lawley-Hotelling test statistic is tr(HE~!. Again, the
question of interest is whether we get different test procedures if we use
the hypothesis-dependent error matrix

k n;
Eo =) ) (X - X)(Xi; — XY

1=0 j=1
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instead of E. We show that two commonly used real valued functions of
the eigenvalue of HE; !, namely the largest eigenvalue and the trace of
HE;!, lead to the well-known test procedures available in the literature.
First let us consider the largest eigenvalue of H E; ! as a test statistic
to test Hy. Noting the relation that Ey = H + E, it can be easily shown
that the largest eigenvalue of HE; ! is indeed Roy’s root test statistic 0,.
If we propose tr(HE; ') as a test statistic, then this leads to a different
test than the Lawley-Hotelling test.
However, this is the well-known Pillai’s trace test statistic, as tr(HE; ') =
tr[H(H + E)™1].
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