Outlier Detection with Fractional Bayes Factor
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ABSTRACT

In this paper, we modify the fractional Bayes factor (FBF; O’Hagan,
1995) with the generalized Savage-Dickey density ratio (Verdinelli and
Wasserman, 1995) to overcome the unknown constant problem in Bayes
factor from the improper priors. This modified FBF are applied to de-
tecting outlier in random effect model with a mean-shift model. Finally,
we have a simulation with a hypthetical data set including an outlier
and analyze a real data set

KEYWORDS: Fraction Bayes factor; Mean-shift model; Outlier detection;
Savage-Dickey density ratio; Important sampling method.

1. Introduction

Recently, the Bayesian approaches as well as frequentists have had an
effort in the method of outlier detection Their methods are classified as two
main procedures, according to using alternative model for outliers or not.

The methods not using alternative model are proceeded with the predic-
tive distribution as in Geisser (1985) or posterior distribution as in Johnson
and Geisser (1983), Chaloner and Brant (1988) and Guttman and Pena (1993).

We use mainly the mean-shift model or the variance-inflation model as
an alternative model for outliers. Let y be a observation vector from N (x, a?).
The mean-shift model is that a spurious observation is distributed as N(u +
m,o0?). If m is not equal to 0, the corresponding observation is decided as
an outlier. Guttman (1973) applied the mean-shift model to a linear model.
The variance-inflation model is that an observation y; be from N(u, b;0?). The
observation, y; with b; >> 1, is treated as an outlier (Box and Tiao, 1968).
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Sharples ( 1990) showed how variance inflation can be incorporated easily into
general hierarchical models, retaining tractability of analysis.

In this paper, we will apply the mean-shift model to random effect model.
Let Y = (y;;)1xs be a data matrix from the model,

yij=u+ei+€ij; 2::1,...,], jzl,...,J, (11)

where p is the mean of Yij, and e; and €;; are independent normal variables
with 0 means and variances 02 and 02, respectively. But the fear exists that
one observations, yy,, may come from

Yk = L+ My + € + €xs, My £ 0, (1.2)

where my, is the mean-shift parameter for the spurious observation Ys. If
mys = 0, the observation, Yks, 1s not an outlier. But If mys # 0, yis is an
outlier.

Bayes factor is used mainly in Bayesian test. When Improper priors
are used, Bayes factor includes the unspecified constants. To overcome this
problem, O’Hagan (1995) proposed the fractional Bayes factor (FBF) in favor

of Ho,
B,(Y) = “Zj’g }’; , (1.3)

where for i = 0,1, ¢,(r,Y) = Jfﬁ:l((gt))){fglz))j% and 7 is the coefficient for

fractional approximation.

Nevetheless, these measures have some computational difficulties, yet.
Hence, we will compute FBF with following concept. Dickey (1971, 1976)
showed that if the Dickey’s condition, 7Y (€|w) = ¥ (€), is satisfied then Bayes
factor is expressed as By, = x¥ (wolY)/m¥(wo) in a simple hypothesis test,
which is called Savage-Dickey density ratio. Verdinelli and Wasserman (1995)
generalized it for the case unsatisfying Dickey’s condition.

Lemma 1.1. (Verdinelli and Wasserman, 1995) If we assume that (0 <
™V (wolY), 7N (wo0,€) < oo for almost all §, then the Bayes factor in favor
of Hy: w = wy is computed as

_ 7 (wolY) N Elwo ) 7o (€)
T e T ey -
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where E™ €l0,Y) denotes the expectation with respect to 7 (£|wo, Y), which
is called the generalized Savage-Dickey density ratio. If Dickey’s condition is
satisfied, the expectation term of the equation in (1.4) is disappeared.

In Section 2, we will compose Bayesian framework of random effects
model for outlier detection. We will modify and compute FBF for outlier
detection with the generalized Savage-Dickey density ratio concept in Section
3. In Section 4, illustrative examples will be given and proposed methods will
be performed.

2. Bayesian Formulation in Random Effects Model

Consider an observation matrix, Y = {vijii =1,...,1,5 = 1,...,J},
from the model in (1.1) and (1.2). To decide whether yj, is an outlier or not,
we want to test the hypothesis Hy : there is no outlier in Y versus Hj : y, is
an outlier. This test is same with testing hypotheses, for each k and s,

Hy:mys =0 versus Hy : my, # 0. (2.1)

For the convenience, we define the variance ratio as ¢ = Jo?/0? and
hence the parameter vector is @ = (u,0%,¢). Then, the likelihood function
under Hy is given by

1 (512+1J(§..—u)2
202 1409
where g, = Y ui/J, 9. = 2. yi/1J S = J¥i(% — §.)% and S3 =
i Zj(yij - 3711)2-

(From now for notational convenience, let my, = m. Next, we find the
likelihood function under H;. The data Y including yxs — m in stead of yy,,

{vis, (1,5) # (k,8), yrs — m}, (2.3)

can be treated as data set without outlier under H;. Let ¥, Gms., S2,, and 52,
be §., Gk, S and S7 computed with data in (2.3) in stead of Y, respectively.
Then, §m. = §. —m/1J, §mk. = . —m/J, §2, = S? — 2(G. — §.)m + II—“JlmQ,
and S2, = 52 — 2(yrs — Gr.)m + %mz. Hence, the likelihood function under

Lok, 0%, ¢) o< o~ (1 + 6)~1/2 exp{ - +59), (22)
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H1 is

2 U —
Ll(/"’? m, 021 (b) X O'_IJ(l + ¢)_1/2 exp[—- 212 { S'ml + Il']—E-yg

1  IJ-1T+1 I-1
x LO(/J'70-2>¢)'exp[ 2 2{( IJ(1+¢) -2 IJ )m2

1 _+1_ (Fk. — §.))m}]. (2.4)

B | 52

_2(

¢(yks_/1')+1+¢

Assume that we have no priori information about the parameters and
hence the noninformative priors should be used for null and alternative. ;From
Tiao and Tan (1966) and Box and Tiao (1973), we can have the prior density
for null hypothesis as follows;

o (1,02, ¢) = o (1 + ¢)7". (2.5)

Since mean-shift parameter m is assumed to be independent of {4, 02, $}, the
prior under H, can be found as

1 (s m, 0%, @) = m (m) - mf (u, 0%, 9), (2.6)
N

where m (m) =1 and 7 (u, 02, ¢) = 75 (1, 0%, ¢) and hence 7V (p, 02, ¢p|m) =
7§ (1, 0%, ¢), i.e. the Dickey’s condition in Lemma 1.1 is satisfied.

We doubt an observation, yks, in Y being an outlier. The FBF can
be used for overcoming the unknown constant problem of Bayes factor with
improper priors. The noninformative priors (2.5) and (2.6) are assumed for
null and alternative hypotheses, respectivley. Then, the FBF in favor of Hy in
(2.1)

BT(Y) = (2.7)

where for ¢ =0, 1,

j ] ]71-0 (/J, 7¢)L0(p'7 02)¢;Y)d/’l’d02d¢
I I 7§ (1, 02, 6)Li(p, 02, ¢; Y)dpdo?dg’

go(r, Y) =

and

f / f f W{V(/‘IH m, 023 ¢)Ll (/'La m, 021 ¢a Y)d,udmd02d¢
T 17N (u,m, 02, ¢)L5 (1, m, 02, ¢;Y)dudmdo2de’

ax (T7 Y) =

-124-



Outlier Detection with FBF

In the equation (2.7), the unknown constants in the Bayes factor from
improper prior densities are canceled. But there remain the computational
burden and the integration problem about m in FBF. Hence, we will modify
FBF with the generalized Savage-Dickey density ratio and integrate with the
importance sampling method.

3. Computation of FBF

For the notational convenience, let 8 = (m, &) with § = (p, 0%, ¢). Let
mo = 0. We wish to test the null hypothesis Hg : m = mg versus alternative
H, : m # mg with prior distributions 7y (€) and 7N (m, &) under Ho and Hi,
respectively. The Bayes factor is computed as the ratio of mar ginal densities for
data under Ho and Hi. It is often difficult to find its analytic form. For these
cases, we compute approximately the marginal densities, such as Laplace’s
approximation (Tierney and Kadane, 1986; Kass, Tierney, and Kadane, 1990),
Bartlett adjustment method (DiCiccio and Stern, 1994) and bridge sampling
method (Meng and Wong, 1996).

In this section, FBF of O’Hagan (1995) is modified with the Savage-
Dickey density ratio in Lemma 1.1 to reduce their computational burden as
follows. Let r be the approximation coefficient for FBF. See O’Hagan (1995)
for more detail of 7.

Lemma 3.1. For an appropriate 7, the FBF is expressed as
By, = By - BN, (3.1)

where BY, and BJ, are the Bayes factors using likelihood f(Y|m,§) and
fr(Y|m, &) with the given improper priors, respectively.

Proof. Let m;(Y) and m;,(Y) be the marginal densities of data with likeli-
hood functions f(Y|m,€) and fT(Y|m,§) under H;, = 0,1. Then,

qo(r,Y)
q(r,Y)
[ 7N (&) f(Y|mo, £)dE , [ [ 7T (m, €)f(Y|m, §)dmdg
[N (&) f (Y [mo, £)de’ [ [ wl (m, €) f7(Y|m, €)dmdE
Sy (&) f(Y|mo,§)dE JfaN(m, &) f(Y|m, §)dmdE
[ [ (m, &) f(Y|m,§)dmdg Sy (&) fr(YImo, €§)d€

T
BOI
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mO(Y) ml,r(Y)_ N N
ml(Y) mO,r(Y) _BOI BrlO'

In the above notations , the marginal densities my ,(Y) = mo(Y) and
m1(Y) = m(Y) and hence By = BNy with + = 1. Let c(r,m, &) =
T (Y|m, €)dY and c(r,&) = [ ST (Y|mo, €)dY. The marginal densities can be

ex;;ressed asmy(Y)=[[ % -c(r,m, &) fT(Y|m, &) dmdg and mo,(Y) =
/ :(rf )) - o(r, &) fT(Y|my, &)de. Then, c(r,m, &) x fr(Y|m, &) and c(r, &) x

” . . V. 1I‘N(m,€)
f7(Y|mg, &) can be considered as the marginal densities for Y and m

and -QT:(I:({)) can be regarded as prior densities for (m,€) and ¢, respectively.

Hence, we can treat Bl as a Bayes factor. Since BY is also a Bayes factor for
a simple test, we can apply the Savage-Dickey density ratio concept to these
two Bayes factors. But in practice, the computations of c1(r,m, &) and c(r, &)
are not needed. Hence, the SDFBF is found as in the following theorem.

Theorem 3.2. With an appropriate r, the FBF in favor of Hy :m = mg can
be computed as

™ (molY)  E'ElmoX)[nl (£) /N (g]mo)]

mhe(mol¥) i @imo NN () /b (¢lmo]

By, = (3.2)
where Y (€|mo, Y) = 1 (mo, €1Y) /2l (mo|Y), T (molY) = [ 7. (mo, £]Y)
€, m' (mo, €|Y) = w{v(m,§)fT(Ylm,£)/m1,(Y). and Eg(g)(-) denotes the
expectation with respect to the density g(¢).

Proof. By Lemma 3.1, FBF is the product of two Bayes factors in (3.1), which
are expressed by Lemma 1.1 as follows;

w_ oY) ae)
0 = ey El i)

and
mor(Y) _ 7 (&) £7(Y|mo, €)de
ml:T(Y) mlyr(Y)

Wév(f)f'(Y,mo,E)Wf\,fr(Elmo,Y)
= W{\,fr(molY) '/ml,r(Y)’ﬂ'{Yr(mOIY)ﬂ'{YT(glmO,Y)

B%l = l/Bﬁoz
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Since ﬂ-{\,[r(m0|Y) = Wf’r(mo, le)/ﬂ-{\,{r(£|m0’ Y)a

o (&) f7(Y |mo, §)m], (€m0, Y)
”hm(Y)WﬁAﬂknEVY)

B = nll(molY) [ dg

e [ A
— may) - [ (éﬁﬁ"g‘)’?{z)
_ __ﬂjr;;nm'? g ()l (€ mo))

Since Bj, = BJ /BN, from Lemma 3.1, the proof is completed.

Note that this form of FBF is called Savage-Dickey FBF (SDFBF). By
multiplying an independent quantity 7] (mg) to both numerator and denomi-
nator of the expectation terms in (3.2), we can replace 77’ (§|mo) by ¥ (mo, &)
in (3.2),

B Emo) [N (¢) e (glmo)] BT EImo [ () /! (mo, £)]
B €m0 (g) el (Elma)] BTSNl (€)1 (mo, )]

This computing approach is convenient in practice. Especially, the FBF is
reduced under the condition of Dickey as follows;

(3.3)

Remark 3.3. If the Dickey’s condition is satisfied, the SDFBF in (3.2) is
reduced to the form that expectation terms disappear.

Bf, = 77 (mo|Y) /71 (molY)- (3.4)

Now, we compute SDFBF for the outlier detection in model (2.1). First,
we should find the marginal posterior density of m.

Lemma 3.4. The prior densities in (2.5) and (2.6) are assumed under Ho and
H,, respectively. We use {L;(p,m,0%,¢)}" of equation in (2.4) as a likelihood
function. Then, the marginal posterior density for m 1s

W

7r17,(le) = Crﬁpr,qr(m

)(S?nQ)_(P?“FqT)WT;Pr’ 0 <7 S 1 (35)
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where

el *° W 2 T Yr
c-t =/_mﬂpr,qr(Wm+1)W P Smat M dm, 0<r<1 (3.6)
521 and S2, are defind in (24), W,, = 52,/52 m2 Pr = (rl = 1)/2, ¢q, =
r1(J —1)/2 and B, ;(z) = [ i~ 1 —t)J ldt 0<r<i1.
Proof. The joint posterior density for (u,m, o 2 ) is

71'1,1'(”, m, 0'2, ¢ly, S%’ Sg) o 0-—(7‘IJ+2)(1 + ¢)_(7-]+2)/2
Sml + ]‘](ym - M)Q

So the marginal posterior density for m is computed as

memlY) o [T [ (om0, 61Y ) dyudod

+ 825}

2
®® _(r1J+2) —(r142)/2 T Sh
o< [ / TR T exp( (52, + L)
{ 50 (1+¢)}*dodg
r S2
x /O (1+¢)—(r1+1)/2/(02)—(TIJ+1)/2eXp{_202 52, + 1+1¢)}

do’de
o (rI+1)/2/ o2 Spi (r1J-1)/2
N — )0 2g,
X fy (roytenast, g Sy ¢

With transformation Z,, = W,, /(Wi + 1+ ¢), we have

W,
(rI4+1)/2 (r1J— 1)/25 (r1J— l)d
me(mlY) o [T(14g)- 1+ 175 $
Wm
o (ST2n2)—(pr+qr)WT;pr]Wm“ er—l(l )Q'r"].dZ
0
_ _ W
= (S’l'2n2) (pr+qr)mer/8Prer(Wm+1)'

We compute the SDFBF in (3.2) for our Bayesian outlier detection ap-
proach with appropriate r.

Theorem 3.5. The SDFBF in favor of Hy in (2.1) is written as

W
By, (Y) = ng—pﬂrSg(pr—pwr—q)

, (3.7)
C”' 6PT7QT('VVL+1)
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where the normalized constants C:! is defined in (3.6), p, 4, Pr, Gr, Wi, Sa1
S2,, and f3; ;(x) are defined in (2.4) and (3.6).

Proof. Since the Dickey’s condition is satisfied, the marginal posterior density
for m with likelihood, {L1(i,m, 02, ¢)}", was found in the Lemma 3.4 and
m(m|]Y) = m,(m|Y) with r = 1, the proof is complete by Remark 3.3.

The normalizing constants C. in (3.6) are impossible to find analytically.
So the sampling based computing methods are needed to estimate them, such
as importance sampling method. Let

W

gr(m) = 5pr,qr(’w—/—+‘1

)W‘p’(52 2)—(pr+qr)

m m

The quantity C, can be found by computing

et = [ getmam = [ S rm)am = B

where I(m) is a certain probability density with same support of g-(m). After
we generate {m®), ..., m®} from the distribution with density I(m), we can
estimate the value of C-! by Monte Carlo method,

AL 1 & g (m9)
1+ Z ,
g G o I(m) (3:8)

The choice of I(m) is very important. We suggest to use the normal
density with mean 7 and variance s2, as an importance function /(m), where
m and s2, are the sample mean and sample variance of the sample generated
from g,(m) with sampling method, such as the Metropolice algorithm.

4. Tllustrative Examples

We perform simulations of SDIBF and SDFBF for detecting outliers ex-
plained in previous sections with a generated data including an outlier. This
data set is generated from the balanced random effect model in (1.1) with
mean = 5, 02 = 6 and 02 = 8. But the observation ys; is generated from the
model in (1.1) with mean p = 0 and same o2 and ¢, that is, it is generated
from the model in (1.2) with ms, = —5, which is set out in Table 4.1. As a
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real data, Dyestuff data in Table 4.2 is also analyzed with the proposed outlier
detection procedure. The procedures are executed for every observation in
data. For the computation of normalizing constant C,, we use the importance
sampling method.

The values of SDFBF for outlier detection in (3.7) in the generated data
set are computed and the results are listed in Table 4.3 The mean-shifted ob-
servation yso has the smallest value. Hence, we can conclude that out suggested
method is certified as a good procedure. However, the data in the 5-th batch
are far from center. ;From this, we can know that the 5-th batch random fact
es 1s a little far from center. This is coincided with the factor that the values in
the 5-th column of data in Table 4.1 are smaller than values in other columns.

Table 4.1. Generated data, including an outlier
Batch [ 1 2 3 4 5 6

obs. 1| 7.8925 -0.0030 10.1009 13.6895 0.5623 53777
obs. 2 | 12.6125 7.0934 5.0114 10.6080 -8.4583 10.1637
obs. 3| 43213 124114 7.9833 9.6563 0.7844 3.4680
obs. 4 | 13.1566 7.8590 11.1319 11.2744 5.6431 0.4790
obs. 5112.8839 9.0184 6.7217 3.8006 5.1731 7.5221

Table 4.2. Dyestuff data(Yield of Dyestuff of standard color)

Batch ] 1 2 3 4 5 6

obs. 11545 1540 1595 1445 1595 1520
obs. 1440 1555 1550 1440 1630 1455
obs. 1440 1490 1605 1595 1515 1450
obs. 1520 1560 1510 1465 1635 1480
obs. 1580 1495 1560 1545 1625 1445

T W N

In the real data, Dyestuff data, the values of SDFBF for all observations
are listed in Table 4.4. All observations are able to be decided as no outliers.
Since all values in the first column of Table 4.4 are similar to 1 but less than
1, the first batch random factor er may be determined as farther than other
batches.
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Table 4.3. SDFBF values for outlier in generated data

sk 1 2 3 4 5 6 ]
1.0673 0.6704 0.9292 0.8395 0.9109 1.0651
0.8869 1.0207 1.1297 0.9524 0.5180 0.8811
0.7738 0.8223 1.0103 0.9887 0.9223 0.8619
0.8672 0.9907 0.8910 0.9273 0.9014 1.0610
0.8770 0.9463 1.0602 0.7651 0.9191 0.9805

U W N =

Table 4.4. SDFBF values for outlier in Dyestuff data

lsk] 1 2 3 4 5 6 |
0.9915 0.9970 0.9900 1.0152 0.9966 0.9913
1.0178 0.9933 1.0012 1.0165 0.9879 1.0075
1.0178 1.0095 0.9875 0.9779 1.0166 1.0088
0.9978 0.9921 1.0112 1.0102 0.9867 1.0013
0.9829 0.1008 0.9987 0.9903 0.9892 1.0100

Tt W N —

5. Concluding Remarks

A Bayesian outlier detection method was suggested with the mean-shift
model by FBF in random effect model. Since the FBF are impossible to find
analytically with improper priors, we modified it as SDFBF. The SDFBF were
used to test whether m is zero or not. The performance of the approache is
decided as good in simulation study.

In the computation of normalizing constant C,, Meng and Wong (1996)’s
method are needed for their better estimators. However, the computational
difficulty with very long CPU time was an obstacle. Hence, we should study
more efficient algorithm. It should also be studied the simultaneous detection
method for two or more outliers.
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