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Optimality theorems of Fritz John type are established for multiple
objective nonconvex optimization problems. Dual problems are given for
these problems and it is shown that duality theorems hold without any form
of contsraint qualifications.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we use the following conventions for vectors in the
n-dimensinal Euclidean space Rn;

x <y if and only if xi < yi, 1 = 1,2,...,n,

X <y if and only if xi <yi, i =1,2,...,n,

X<y if and only if x <y and x = y,

X < y is the negation of x < y,

X <y is the negation of x < y.

We consider the following multiple objective optimization problems:
(P) minimize f(x) subject to g(x) < O,
(PE) minimize f(x) subject to g(x) < 0, h(x) = 0.

The functions f:Rm — RP, g:Re — Rm and h:Re — Rk are assumed to be -

differentiable. We are mainly concerned with weakly efficient solutions for
(P) and efficient solutions for (PE).

DEFINITION 1.1 x is said to be an efficient solution (weakly efficient
solution) for (P) if is a (P)-feasible solution and for any (P)-feasible

solution x, f(x) < f(x) (f(x) < f(x)).
Similarly, we can define efficient solutions and weakly efficient solutions
for (PE).
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Recently, Singh [8] studied Kuhn-Tucker type optimality criteria for (PE)
under generalized convex assumptions. The first aim of this paper is to
establish Fritz John type optimality criteria for (PE) under generalized
convex assumptions.

Mond and Weir [7)] suggested various dual problems for single
objective(i.e., scalar) optimization problems which are different from
Wolfe [12] dual problems, and roved that duality theorems hold, under
generalized convex assumption, between primal problems and dual problems.
Recently, Weir [101, Egudo [5], and Weir and Mond [11] considered Mond-Weir
[71 type dual problems for (P) and (PE), and obtained some duality results
which are based on the proper efficiency, the efficiency and the weak
efficiency respectively. In this paper, we consider the following Mond-Weir
[71 type dual problems for (P) and (PE) which are slightly different from
dual problems of the three authors mentioned above.

(D) maximize f(v) subject to
(1) vutf(v) + vytg(v) =0,
(2) yigi(v) 20, i =1,2,...,M,
(3) (p,y) 2 0.

(DE) maximize f(v) subject to
(4) vutf(v) + vytg(v) + vzth(v) =0,
(5) ytg(v) 2 0,
(6) zth(v) 2 0,
(7 (#,y) 2 0, (m,y,z) = 0.

By the similar method to Definiton 1.1, we can define efficient solutions
and weakly efficient solutions for (D) and (DE).
Our dual problems, in the case of scalar optimization problems, are reduced
to problems which are very similar to those of Bector, Chandra and Bector
[3]1. The second aim of this paper is to obtain duality theorems which hold,
without any form of constraint qualifications and under generalized convex
assumptions, between (P) and (D), and between (PE) and (DE).

2. OPTIMALITY CRITERIA

Now, we study in this section Fritz John type (necessary/sufficient)
optimality theorems for (P) and (PE).

THEOREM 2.1 ([41,[111). If x is a weakly efficient solution for (P), then
there exist 4  RP and y € Rm such that
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vutf(x) + Wytg(x) = 0,
ytg(x) = 0,
(n,y) 2 0.

In the same method as the proof of Theorem 11.3.1 in [6], we can prove
the following theorem:

THEOREM 2.2. Suppose that the constraint function h is continuously

differentiable at x = Re. If x is a weakly efficient solution

solution for (PE), then there exist y € Rr, y & Rm and z = Rk such
that

vutf(x) + Vytg(x) + vzth(x) = 0,
ytg(x) = 0,
(u,y) 2 0. (m,y,z) = 0.

We now prove the following Fritz John type sufficient optimality
theorems for (PE);

THEOREM 2.3. Let = RP, y € R® and z « Rk and x = R», along with
B, y and z, satisfy the following conditions:

(8) Vutf(x) + Vytg(x) + Vzth(x) = 0,
(9) ytg(x) = 0,

(10) g(x) <0,

(11)  h(x) =0,

(12) (n,y,z) 2 0.

If f is pseudoconvex at x, and gr and h are strictly pseudoconvex at

X, where I = {i : gi(x) = 0}, then x is a weakly efficient solution
for (PE).

proof. Suppose that x is not a weakly efficient solution for (PE).
Then there exists x* € Re such that f(x*) < f(x), g(x*) < 0 and h(x*)
= 0. since f(x*) < f(x), and f is pseudoconvex at x, we have

(13) (x* - x)tvf(x) < 0.
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Since gi(x*) < gi(x) and g1 is strictly pseudoconvex at x, we have
(14) (x* - x)tvgi(x) < 0.
Since h(x*) < h(x) and h is strictly pseudoconvex at x, we have

(15) (x* - x)tvh(x) < 0.

Let J={i: gi(x) < 0}. Then, from (9) and (10), I u J = {1,2,...,m}

and for all j € J, yi = 0. Hence, form (12), (13), (14) and (15), we
have

(x* - x)[vutf(x) + Vytg(x) + vzth(x)] <O,

which contradicts (8). Hence the result holds.
REMARK 2.1. Theorem 2.3 is a generalization of results in [1] and [9].

THFOREM 2.4. Let 4 € Re, y = Rm, z € R% and x € Re,.along with
and z, satisfy the following conditions;

(16) vutf(x) + Vytg(x) + vzth(x) = 0,
(17) ytg(x) = 0,

(18) g(x) <0,

(19)  bh(x) =0,

(20) (u,y,2z) 2 0. (m,y,z) = 0.

Assume that

ga) f is quasiconvex at X and ytg + zth is strictly pseudoconvex at X
r

(b) utf is quasiconvex at x and ytg + zth is strictly pseudoconvex at
Xs Or
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(c) f is quasiconvex at x, ytg is strictly pseudoconvex at x and .zth
is quasiconvex at x; or

(d) ptf is quasiconvex at X, ytg is strictly pseudoconvex at x and zth
is quasiconvex at X,

then x is an efficient solution (weakly efficient solution) for (PE).
proof. (a) Suppose that x is not an efficient solution for (PE). Then
there exists x* € Re such that f(x*) < f(x), g(x*) < 0 and h(x*) = 0.
By the quasiconvexity of f at x, we have (x* - x)*Vf(x) < 0.Thus u >0
implies that

(x* - x)evptf(x) < 0.
Therefore, from (16), we have

(x* - x)tlvytg(x) + vzth(x)] 2 0.
Thus, by the strict pseudoconvexity of yg + zh at x, we have

ytg(x*) + zth(x*) > ytg(x) + zth(x).

Since h(xx) = 0, from (19), we have ytg(x*) > ytg(x). From (17), we
have

ytg(x*) > 0.
vhich contradicts the fact that ytg(x*) < 0. Hence the result holds.
(b) Suppose that x is not an efficient solution for (PE). Then there
exists xx € Re such that f(x*) < f(x), g(x*) < 0 and h(x*) = 0. Since
g 2 0 and f(x*) =< f(x) we have ptf(x*) =< ptf(x). Thus, by the
quasiconvixity utf at x, we have

(x* - x)tvptf(x) < 0.

By the same method as the proof of the part (a), we can prove he part
(b).

(c) Suppose thar x is not an efficient solution for (PE). Then there
exists xx € Re such that f(x*) < f(x), g(x*) < 0 and h(x*) = 0. Then,
by the quasiconvexity of f at x, we have (x* - x)tVf(x) < 0. Since u 2
0, we have
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(21)  (x* - x)evptf(x) < 0.
Since zth(x*) = zth(x) and zth is quasivonbex at x, we have
(22)  (x* - x)tVzth(x) < 0.
From (16), (21) and (22), 23 have
(x* - x)tvzts(x) 2 0.

Thus, by the strict pseudoconvexity of ytg at x, we have y‘g(x‘j >
ytg(x). From (17) we have

ytg(x*) > 0,
which contradicts the fact that yg(x*) < 0. Hence the result holds.

(d) Suppose that x is not an efficient solution for (PE). Then there
exists x* € R» such that f(x*) < f(x), g(x*) < 0 and h(x*) = 0. since
# =2 0 and f(x*) < f(x), we have utf(x*) < ptf(x). Thus, by the
quasiconvexity of utf at x, we have

(x* - x)tvptf(x) < 0.

By the same method as the proof of the part (c), we can prove the part
(d).

REMARK 2.2. Bector and Bector [2] proved a Kuhn-Tucker sufficignt
optimality theorem for the scalar minimization problem under the
assumption (a) in Theorem 2.4.

3. DUALITY THEOREMS

We now prove the following weak duality and strong duality relating
(P) and (D) : '

THEOREM 3.1. If, for any (P)-feasible solution x and any (D) feasible
solution (v,my), f is pseudovconvex at v and g is strictly
pseudoconvex at v, then f(x) < f(v).

Proof. Suppose that there exist a (P) - feasible solution x and a (D)
-feasible solution (v,u,y) such that f(x) < f(v). Then, the
pseudoconvexity of f at v implies that

-8 -
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(23) (x - v)tvf(v) < 0.
Case 1: y=0.

From (3), we have g > 0. Thus (23) implies that (x - v)twutf(v) < O.
this contradicts (1).

Case 2: y = 0.
Let M={ it yi > 0} and i € M. From (2) , we have gi(v) 2 0. Since,
gi(x) s 0, we have gi(x) < gi(v). Thus, the strict pseudoconvexity of
at gi at v implies that (x - v)tvgi(v) < 0. Consequently, we have

(24) (x - v)tuytg(v) < 0.
On the other hand, (23) implies that
(25)  (x - v)tvptf(v) < 0.
From (24) and (25), we have

(x - v)tlvptf(v) + vytg(v)l < Q,

which contradicts (1). Hence the result follows.

THEORFM 3.2. Let x be a weakly efficient solution for (P). Then there
exist # € Rr and y € R= such that (v,u,y) is a (D) -feasible soluion
and the objective values of (P) and (D) are equal. Moreover, if , for
any (P)-feasible solution x and any (D)-feasible solution (v,u,y), f
is pseudoconvex at v and g is strictly pseudoconvex at v, then (v,u,y)
is a weakly efficient solution for (D).

Proof. By Theorem 2.1, there exist # = Rr and y € Rm such vutf(x) +
Vytg(x) = 0, ytg(x) = 0 and (p,y) = 0. Since, y 2 0, g{x) < 0 and
ytg(x) = 0, we have yigi(x) = 0, i=1,2,..... , m, Thus (v,p,y) is a
(D)-feasidble solution and clearly the objective values of (P) and
(D) are equal.

By Theorem 3.1, f(x) < f(v) for any (D)-feasible solution (v,4,y).
Since (v,s,y) is a (D)-feasible solution, (v,u,y) is a weakly
efficient solution for (D). Hence the result holds. '

Now, we prove the following weak duality and strong duality for (PE)
and (DE):

THEOREM 3.3. If, for any (PE)-feasible solution x and any
(DE)-feasible solution (v,u,y,z),

(a) f is quasiconvex at v and ytg + zth is strictly pseudovonvex at v;

-79 -
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or

(b) f is quasiconvex at v and ytg + zth is strictly pseudoconvex at v;
or

(c) f is quasiconvex at v, ytg is strictly pseudoconvex at v and zth
is quasiconvex at v; or

(d) ptf is quasiconvex at v, ytg is strictly pseudoconvex at v and zth
is quasiconvex at v,
then f(x) < f(v).

Proof. (a) Suppose that there exist a (PE)-feasible solution x and a
(DE)-feasible solution (v,#,y,z) such that f(x) < f(v). Then, by the
quasiconvexity of f at v, (x-v)tVf(v) < 0. Since u 2 0, we have

(26) (x - v)tvptf(v) < 0.

Since ytg(x) < 0 and zth(x) = 0, from (5) and (6), we have
ytg(x) + zth(x) < ytg(v) + zth(v)

Thus, by the strict pseudoconvexity of at v, we have

(27) (x - v)tivytg(v) + vzth(v)] < 0.

From (26) and (27), we have
(x - v)tivutg(v) +vytg(v) + Vzth(v)] <O,

which contradict (4). Hence the result follows.

(b) Suppose that there exist a (PE)- feasible solution x and a (DE)-
feasible (v,u,y,2z) such that f(x) < f(v). Since u > O,we have utf(x)sutf(v)
By the quasiconvexity of ut at v, we have

(x-wv)tvut f(v) <O0.
By the same method as the proof of the part (a), we can prove the part(b).
(c) Suppose that there exist a (PE)-feasible solution x and a
(DE)-feasible solution (v,u,y,z) such that f(x) < f(v). then,by the
quasiconvexity of f at v,(x - v)tvf(v) < 0. Since u > 0, we have

(28) ( x - v )t Vutf(v) <0

Since zth(x) = 0, from (6), we have zth(x) < zth(v) and hence by the
quasiconvexity of zth at v, we have

- 80—
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(29) ( x - v )t vzth(v) <0

since ytg(x) < 0, from(5), we have ytg(x) < ytg(v). thus, by the strict
pseudoconvexity of ytg at v, we have

(30) ( x - v )t wytg(v) <0
From (28),(29) and (30), we have

(x - v)t[Vutf(v) + vytg(v) + Vzth(v) 1 <O,
which contradicts (4). Hence the result follows.

(d) Suppose that there esist a (PE)-feasible solution x and a
(DE)-feasible solution (v,u,y,z) such that f(x) < f(v). Since u 2 0, we
have wtf(x) < amtf(v). Thus by the quasiconvexity of at v, we have

(x-v )t vutf(v) <0.
By the same method as the proof of the part (c), we can prove the part (d).

THEOREM 3.4. Let x be an efficient solution for (PE) and the constraint
function h be continuously differentiable at x. Then there exist u<ERP, ye
Rm and zeRx such that (x,u,.y.z) is a (DE)-feasible solution and the
objective values of (PE) and (DE) are equal. Moreover, if, for any
(PE)-feasible solution x and any (DE)-feasible solution (x, ,y,2),

(a) f is quasiconvex at v and ytg + zth is strictly pseudoconvex at v; or
(b) wtf is quasiconvex at v and ytg + zth is strictly pseudoconvex at v;
or

{c) f is quasiconvex at v, ytg is strictly pseudoconvex at v and zth is
quasiconvex at v; or

(d) wtf is quasiconvex at v, ytg 1is strictly pseudoconvex at v and zth
is quasiconvex at v,

then (x,x,y,2z) is an efficient solution for (DE).

Proof. Since x is an efficient for (PE). x is a weakly efficient solution
for (PE). By Theorem 2.2, there exist s <RP,y=R= and z=Rk such that
Vutf(x) + Vytg(x) + vzth(x) = 0,(u,y) 2 0 and (u,y,z)* O since vzth(x)
= 0, (x,u,y,2) is a (DE)-feasible solution and clearly the objective
values of (PE) and (DE) are equal.

By Theorem 3.3, f(x) < f(v) for any (DE)-feasible solution (v, u,y,2).

~81 -
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Since (x,,y,z) is a (DE)-feasible solution, (X, ,y,z) is an efficient
solution for (DE). Hence the result holds.
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