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Summary

A recycling reactor system operated under sequential anoxic and oxic conditions was evaluated, in which the
nutrients of piggery slurry were anaerobically and aerobically treated and then a portion of the effluent was recycled
to the pigsty. The most dominant aerobic heterotrophs from the reactor were Alcaligenes faecalis (TSA-3),
Brevundimonas diminuta (TSA-1) and Abiotrophia defectiva (TSA-2) in decreasing order, whereas lactic acid
bacteria, LAB (MRS-1, etc.) were most dominantly observed in the anoxic tank. Here we have tried to model the
nutrient removal process for each tank in the system based on population densities of heterotrophic and LAB.
Principal component analysis (PCA) was first applied to delineate a relationship between input (microbial densities
and treatment parameters such as population densities of heterotrophic and LAB, suspended solids (SS), COD,
NH; —N, ortho-phosphorus, and total phosphorus) and output. Multi-layer neural networks using an error back-
propagation learning algorithm were then employed to model the nutrient removal process for each tank. PCA
filtration of microbial densities as input data was able to enhance generalization performance of the neural network,
and this has led to a better prediction of the measured data. Neural networks independently trained for each
treatment tank and the combined analysis of the subsequent tank data allowed a successful prediction of the
treatment system for at least 2 days.

Introduction

Piggery slurry may cause a serious degradation of water
quality such as eutrophication and spread of pathogens
in water bodies (i.e., lakes, rivers and groundwater as
water supply sources) (Shin e al. 1990). The daily

volume of livestock wastewater in Korea has reached

197,000 m>, half of the volume being generated from
dairy farms that are not under legal pollution control.
The amount of wastewater is relatively small compared
with total wastewater including industrial and domestic
wastewater (7% of the total), but contributes signifi-
cantly to the pollution of the receiving waters because
of its high organic nutrient concentration (>BOD
20,000 mg 1™!) (Shin er al) 1990 While an activated
sludge system has been proved to be effective in the
treatment of piggery slurry in large farms (more than
1000 heads), the system may not be appropriate in
small- or middle-scale farms (less than 1000 heads) in
the aspect of its operation cost.

Recently a new reactor system for swine wastewater
treatment operated under sequential oxic and anoxic
conditions has been developed, in which piggery slurry is
fermentatively and aerobically treated and then a
portion of the effluent recycled to the pigsty (Choi et al.
1999). In practice, this system seemed to significantly
remove offensive smells (at both pigsty and treatment
plant) and BOD, and turned out to be cost-effective for
relatively small-scale farms.

One of the well-known models applied for waste-
water treatment system is the activated sludge model
no. 1 (ASM 1) introduced by International Associa-
tion for Water Quality (IAWQ) (Henze et al. 1987).
Application of this structured model to a field waste-
water treatment system, however, may have some
limitations because many microbial reactions cou-
pled with environmental complexity are non-linear
and time-sensitive, and are often hard-to-measure
using a linear analysis system (Lee & Park 1999,
2000).
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On the other hand, neural network models that
imitate the functions of our human brain have been
successfully used to resolve many engineering problems
such as complex pattern recognition and control of
highly non-linear dynamic systems (Barto ef al. 1983;
Morgan & Scofield 1991; Lee ef al. 1992; Weigend &
Gershenfeld 1994). These models have the characteris-
tics of massive parallelism, many degrees of freedom,
and adaptive learning. It became recently known that
multi-layer neural networks could approximate a func-
tion in LP within an arbitrary accuracy (Hornik 1991),
and generalize a new dataset that was not used in the
learning process (Baum & Hausser 1989). Progress has
also been made in application of neural networks to
control biological and chemical engineering processes
including biological wastewater treatment (Cote et al.
1995; Zhao et al. 1997; Lee & Park 1999). There has
been, however, no report dealing with neural network
modeling for nutrient removal in a recycling swine
wastewater treatment process.

This study was performed to elucidate the mechanism
of the recycling piggery slurry treatment process using
variables such as microbial population density and
treatment effects based upon suspended solids (SS), total
nitrogen (T-N), ammonia nitrogen (NH;—N), total
phosphorus (T-P), ortho-phosphorus (o-P) and chemical
oxygen demand (COD) as input Jr output variables.
These variables were used to establish a non-linear
model emulator using multi-level neural networks that
could eventually allow a real time monitoring and
prediction of the treatment system, and the system
optimization.

Materials and methods
Description of treatment system

A schematic diagram of the bench scale recycling
treatment system is shown in Figure 1. Influent com-
posed of piggery slurry and recycled effluent was
collected in tank 1, and the influent then flows into the
fermentation tank (tank 2; working volume 13.21). A
portion of the effluent was used as washing water for
pigsty in the full scale treatment system. There is a hole
between tank 2 and aeration tank (tank 3; working
volume 13.2 1) so that the fermented wastewater can be
transported into tank 3 where aerobic treatment occurs
under aeration conditions (7.8 v/v/m). Hydraulic reten-
tion times (HRT) of the fermentation and the aeration
tank were 3.6 days. The treated wastewater then goes
through sedimentation in tanks 6 and 7, and finally is
stored in tank 8. The volumes of the sedimentation
tanks A, B, C and D were 1.061, 0.874, 0.686 and
0.500 1, and the HRT for the corresponding sedimenta-
tion tanks were 6.80, 5.60, 4.40 and 3.21 h, respectively.
The bench scale treatment system was operated for
47 days.
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Figure 1. Schematic diagram of the recycling treatment system for
piggery slurry. (1) Influent tank; (2) fermentation tank; (3) aeration
tank; (4) blower; (5) antifoaming device; (6) sedimentation tanks (A—
D); (7) reservoir; (8) storage tank; (9) recycling flow; (10) for land
application as a fertilizer (Choi ez al. 2000).

The fresh piggery slurry used in this study was
sampled from a mixing and storage tank at Kimhae
Piggery Slurry Treatment Plant (Kimhae, Kyungnam,
Korea) and had the following parameter values COD
(ca. 4000 mg!™'), BOD (ca. 7000 mg1™!), T-N (ca.
2100 mg 17'), and T-P (ca. 172 mg1™!). The influent
consisted of fresh piggery slurry (33%, v/v), recycled
effluent (57%) and tap water (10%), and each batch of
the influent was supplied every 4 days (Choi ez al. 2000).
The average loading rates of the parameters such as
COD, T-P, 0-P, NH;—N and SS in the influent were
3341, 45.24, 43, 1431 and 0.54 mg I"!. Flow rate of the
influent was 2.6 ml min~' and the pumping was per-
formed using a peristaltic pump (Model No. AP-60101,
Won Corp., Seoul, Korea) with a pump head (Model
No. 7518-10, Cole-Palmer Instrument Co., Vernon
Hills, IL, USA) and silicone peroxide tubing (Model
No. EL-96400-14, Cole—Palmer Instrument Co., Vernon
Hills, IL, USA). The effluent was also pumped out from
the reservoir (tank 7) using a peristaltic pump system
(Model No. 7553-75, Cole-Palmer Instrument Co.,
Vernon Hills, IL, USA). Glucose was added to the
formulated influent to make a C/N ratio of 100:15 (Liao
et al. 1993) and a proprietary microbial agent (YC2000,
Yoonchang Agricultural Management, Inc., Cheju) was
also added up to 0.1% (w/v). The microbial agent was
added as a fee additive for pigs and as a seeding source
for the aeration tank as in the full scale treatment
system. We assumed that the microbial populations
from the agent were present in the piggery slurry and
added the agent to the influent (0.1%, w/v). The agent
was also added to the aeration tank of the treatment
system (0.1%, w/v), simulating the full scale treatment
system. The microbial agent was supposed to contain
microbial communities such as Bacillus sp., lactic acid
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bacteria (LAB) and yeast according to the manufactur-
er’s product information.

Enumeration of microorganisms from the treatment
system

The bacterial community in the system was analysed
based on their isolation, identification and determining
the colony forming unit (population density) of domi-
nant populations on a solid medium. Heterotrophic
bacteria potentially involved in the piggery slurry
treatment within the system were isolated using the
appropriate media (Krieg & Gerhardt 1994). To enu-
merate LAB, de Man-Rogosa-Sharpe (MRS) medium
was used. LAB were grown at least 2 weeks before
identification and counting were performed. Other
heterotrophs were grown on TSA (Trypticase Soy Agar,
Difco) for at least 1 week, and then identified and
counted.

Analysis of piggery slurry samples from the treatment
system

Treatment parameters, such as SS, T-N, NH}—N, T-P,
o-P and COD, were measured for piggery slurry samples
taken daily following Standard Methods for the Exam-
ination of Water and Wastewater (American Public
Health Association 1992): COD by closed reflux, titri-
metric method, T-P and o-P by the ascorbic acid
method, SS by total SS cride method, and NH;—N by
the indophenol method.

Neural network modeling of the treatment system

For an optimization of piggery slurry treatment, it is
critical to understand the physiological activities of
microorganisms and their relationships, but may not be
easy to identify the complex relationships by the
conventional linear analytical methods. We therefore
decided to use a multi-layer neural network with an
error back-propagation algorithm to model the complex
relationships in the recycling system as described previ-
ously by Choi ez al. (2000). The developed model using
the neural network can be used as an emulator that
estimates the treatment system performance depending
upon microbial densities without performing an exper-
iment. We can derive an optimal treatment condition
based on a simulation using the emulator.

The rationale for modeling of the recycling system is
based upon a cause and effect relationships in the
sequential tanks. Population densities of dominant
heterotrophic microorganisms MRS-1, TSA-1, TSA-2
and TSA-3 isolated in this study were employed as
independent parameters because they could grow fast
and significantly affect the piggery slurry treatment
efficiency. Here ammonium oxidizers were not consid-
ered, despite their importance in the swine waste
treatment system, because of their slow growth and

difficulty in identification. COD, total-P, o-P, SS and
NH;—N were considered as nutrient removal parame-
ters. Thus, we built a multi-layer neural network in
which the input nodes consisted of four independent
parameters in the current tank and five treatment
parameters from the preceding tank, and the output
nodes generated the five treatment parameters in the
current tank.

The design and execution of the neural networks were
performed following the previous method of Choi er al.
(2000). Because of the difficulty of modeling the overall
characteristics of all tanks by a single neural network
due to the complex microbial interactions in the
sequential tanks of the treatment system, we employed
a neural network modeling of each tank, and then the
overall modeling of the whole treatment system was
carried out by the connection of each neural network.
Figure 2 shows a modeling protocol used for the
recycling system. Here principal component analysis
(PCA) was employed as a preprocessor of the neural
network. Input of the neural network was reduced to
three principal values from nine independent variables.
The output values of the neural network were COD, T-
P, 0-P, SS and NH;—N in the current tank as described
before (Choi ez al. 2000).

For a successful modeling, the connectivities within
neural networks in the current tank were adjusted so
that a best prediction of the measured values would be
obtained at the next treatment step using SS, NHI—N,
T-P, 0-P and COD as input variables (Figure 3).

Ammonium uptake and utilization test

The ability of the isolated heterotrophs to uptake
ammonium (NH}) was measured to analyze the am-
monium removal mechanism in the treatment system.
The dominant organisms (TSA-1, TSA-2 and TSA-3)

MRS-] ———»
TSA-1 ———»
TSA-2 —— cob
D1 T.p
TSA-3 —————» N I
COD PCA| D2 eural | ,.p
Network SS
T-P D3
op NH,*N
SS
NH,*N

Figure 2. A schematic diagram describing training strategy for the
neural networks in this study. MRS-1, TSA-1, TSA-2 and TSA-3
denote each population density of the bacterial strains. COD, T-P, 0-P,
SS and NH;—N are parameters for the wastewater treatment. PCA,
D1, D2 and D3 denote principal component analysis and dimensions
obtained after the analysis, respectively (Choi et al. 2000).
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Figure 3. Modeling of the recycling treatment system using series of neural networks.

were grown in the mineral salts medium (Koh et al.
1993) containing glucose (0.4 or 3.2% w/v) as a sole
carbon source. Unless the organisms were grown on the
medium, they were grown in citrate mineral salts
medium (Otte ez al. 1996). The nitrogen source for
these media was (NH4),SO,4. The inoculated media were
incubated at 26 °C and under rotary shaking (190
rev min~'), and the growth was measured spectropho-
tometrically (525 nm). The ammonium concentrations
before inoculation and at stationary phase were mea-
sured and the ammonium removal efficiency was calcu-
lated.

Results and discussion

Analysis of microbial population dynamics and its relation
to piggery slurry treatment

The most dominant heterotrophic bacteria in the treat-
ment system were four aerobic bacteria and three LAB.
The identified organisms were TSA-1 (Brevundimonas
diminuta), TSA-2 (Abiotrophia defectiva), TSA-3 (Alca-
ligenes faecalis) and MRS-3 (Streptococcus sp.) (Choi
et al. 2000). The putative Bacillus sp. and yeast from the
microbial agent were not observed here probably
because of their inability to compete with the indigenous
microbial populations in the system.

The most dominant aerobe was Alcaligenes faecalis
TSA-3. The most dominant species of LAB was strain
MRS-1. Population dynamics of the representative
aerobic bacterium Alcaligenes faecalis TSA-3 during
the 47-day running period was shown for each tank
(Choi er al. 2000). This strain was observed in both
influent and fermentation tanks, so that it appeared to
survive and grow under low oxygen tension and anoxic
conditions. A known species of Alcaligenes faecalis was
able to oxidize ammonia under aerobic conditions and
denitrify nitrate ions via NO and N,O gases under
anoxic conditions (Papen er al. 1989; Anderson er al.
1993). Another strain of the same species was found to
accumulate NO; during exponential growth (Otte ez al.
1996). The next most dominant groups of heterotrophs
were TSA-1 (Brevundimonas diminuta) (Figure 4) and

8
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Figure 4. Population dynamics of a heterotrophic bacterium (Brevun-
dimonas diminuta TSA-1) in the recycling treatment system ((@)
Influent tank; (O) fermentation tank; (V) aeration tank; (V) sedimen-
tation tank A; (l) sedimentation tank D).

TSA-2 (Abiotrophia defectiva). The population of the
strain TSA-1 was dominant in the aeration tank than in
the fermentation as shown in Figure 4.

The ammonium removal efficiency reached 41% as a
maximum. The reason for this rather low efficiency was
not clear but an unbalanced (presumably, lower) C/N
ratio would be one of the causes. Here, however, the
offensive ammonium smells were significantly reduced in
the effluent.

Nitrogen removal through nitrification by ammonium
oxidizers and other nitrifiers is also likely since the
ammonium oxidizers were observed in the full scale
system (unpublished data of the corresponding author).
Anacrobic denitrification would be possible in the
fermentation tank, although we did not try to measure
nitrogen gas evolution. Actually in the fermentation
tank, we were able to observe evolution of unidentified
gases that might include CO,, N,, and organic gases.

A further description of other microbial population
dynamics and potential activities was made in the
previous report (Choi et al. 2000): the overall COD
removal efficiency was 54%; the ortho- or total phos-
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phorus removal effect was at least 40%; the removal
effect of SS was 63%. It was assumed that the
phosphorus removal resulted from an uptake of phos-
phorus by cells under aerobic conditions and a subse-
quent sedimentation of the cells. Surplus phosphorus to
be uptaken may be transformed to poly-phosphate as a
storage material within the cells (Hiraishi ez al. 1998).
A discharge of phosphorus is known to occur under
anaerobic conditions (Bond ez al. 1999).

Filtration of the input data by PCA

The input and output dimensions of the neural networks
in this study were 9 and 5, respectively as described
previously by Choi et al. (2000). The nine input dimen-
sions include four microbial population densities and
five treatment parameters as shown in Figure 2. The
nine input dimensions were independent parameters
because they were considered as cause parameters for
the treatment system. The five treatment parameters
were picked as dependent parameters because they were
affected by the preceding input parameters. These five
dependent parameters were frequently used as monitor-
ing parameters for the wastewater treatment in general.
Training data measured for 47 days were not enough to
figure out the complex correlation between the input
and the output in each tank, and also it was rather hard
to expect a generalization. Moreover, there were some
noises in the data due to a measuring error or unstable
biological process. In order to reduce the input and
output dimensions, and to remove the noisy data, we
first used the PCA method to analyse the training data.
PCA projects high dimensional data onto low dimen-
sional coordinates that consist of principal component
axes.

In this study, we used three axes as orthogonal
coordinates. These axes were obtained by PCA, remov-
ing the data with one-to-many mapping that could give
different output from the same inputs.

Modeling of treatment system by neural networks

Among 47 trained data to learn the neural network, we
reserved datasets numbers 6, 11, 16, 21, 31, 36, 41, 46
and 47 for the test phase. These were randomly selected
and used as test data to evaluate the generalization
performance of the neural network. Except the test data,
training data were used to train the weights of the neural
network. The neural network had one hidden layer with
30 nodes that were determined by an ad hoc method and
non-linear function of hidden and output layers. The
weight values were adjusted by an error back-propaga-
tion algorithm.

The learning curves showed decreasing errors depend-
ing upon the iteration during the training phase (Fig-
ure 5). Here all of the output parameters were
successfully trained with the optimal number of hidden
nodes determined by trial and error. We used the
pattern type error back-propagation learning algorithm

4.0

—e— Influent

-0~ Fermentation
—w»— Aeration

3.0 —v-- Sedimentation A
—& Sedimentation D

3.5

Error

4000 6000

Epoch

Figure 5. Leamning curves of each neural network in the training
phase. Note that the errors decrease as the number of epoch increases.

(Simon 1999). The weight values of the neural network
in the pattern type learning method were updated for
each training pattern, and all of the data were repeatedly
used to reduce the epoch error. The epoch error was the
average of each pattern error. In order to increase the
generalization performance, we considered the cross-
validation process that used one-half of the data for the
training and the other half for cross-validation (Weig-
end & Gershenfeld 1994).

Through computational experiments we could estab-
lish that the learned neural networks successfully imi-
tated each tank of the treatment system and well
approximated the target values of the input pattern.
Figure 6 (A-D) showed the prediction results of COD,
NH;—N, 0-P and SS values using the neural network
without or with PCA, respectively. The numbers (1-5)
on the X-axis represent the influent tank, fermentation
tank, aeration tank, sedimentation tank A and sedi-
mentation tank D of day 46, respectively while the
numbers(6-10) represented the five equivalent tanks
of day 47 in order. Although both the recycled water
and the new piggery slurry added would adversely affect
the prediction performance in various tanks including
influent tanks, in particular, the prediction results
generally agreed with the measured data except the
outlier of SS (0.88) at the influent tank of day 47. The
outlier value was not plotted in Figure 6(D). Our
treatment system is recycling, and thus the treated
wastewater is recycled into the influent tank from
sedimentation tank D. Moreover, a portion of the
untreated piggery slurry also entered the influent tank.
In further research, we need to examine the effects of
the recycled water quantity and the amount of added
piggery slurry as additional inputs of the neural net-
work.

In order to enhance efficiency of PCA employment,
we compared the mean square errors of the predicted
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Figure 6. Prediction of various treatment parameters COD (A), NH;—N (B), 0-P (C) and SS (D) by the neural network modeling. The numbers
(1-5) on the X-axis represent the influent tank, fermentation tank, aeration tank, sedimentation tank A and sedimentation tank D of day 46,
respectively while the numbers (6-10) represent the five equivalent tanks of day of 47 in order.

results when the PCA filtration was used and not used.
The scaled mean square errors were calculated based
upon Equation (1)

1 & 2
scaled MSE = N—;(h - 1) (1)

where i=1,2...N indicate each tank as described
above. #; and y; are scaled target and scaled prediction
results of the proposed neural network, respectively. The
scaled data were obtained by the following equation.

(x - f1)

S

where u means scaled result, and x is real data before the
scaling. f; and f5 are constant scaling factors. As shown
in Figure 6, the proposed neural network using PCA
could predict more accurately than the neural network
without going through PCA.

(2)

Conclusions

In this paper, we have proposed a novel monitoring
system of a piggery slurry recycling treatment process.
Multi-layer neural networks combined with PCA suc-
cessfully modeled the tank characteristics. It was pos-
sible to train the neural network with the given data by
reducing the input dimension with minimal loss of
information and removing the noisy data with one-to-
many mapping property. The proposed model may be
useful to develop a reverse neural network model that
could be used to determine optimal microbial densities
critical for a successful treatment of wastewater. The
long-term goal of this study will be to construct a real
time monitoring system of the recycling treatment for
piggery slurry using a multi-layer neural network with
an error back-propagation learning algorithm. The
multi-layer neural network will contribute to modeling
a complex relationship between 'the various population
densities of microorganisms and treatment efficiency of
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the recycling treatment system for piggery slurry and
possibly other livestock wastewaters.

Acknowledgements

We thank Mr. Hun-Jong Lee at Kimhae Piggery Slurry
Treatment Plant (Kimhae, Kyungnam, Korea) for
providing fresh piggery slurry. This work was supported
by the Korea Research Foundation (Grant #1998-024-
G-00041).

References

American Public Health Association, American Water Works Asso-
ciation & Water Environment Federation. 1992 Standard Methods
for the Examination of Water and Wastewater. pp. 2(53)-5(9).
Washington, DC: American Public Health Association. ISBN 0-
87553-207-1.

Anderson, I.C., Poth, M., Homstead, J. & Burdige, D. 1993 A
comparison of NO and N,O production by the autotrophic
nitrifier Nitrosomonas europaea and the heterotrophic nitrifier
Alcaligenes faecalis. Applied and Environmental Microbiology 59,
3525-3533.

Barto, A.G., Sutton, R.S. & Anderson, C.W. 1983 Neuronlike
adaptive elements that can solve difficult learning control prob-
lems. IEEE Transactions on Systems, Man and Cybernetics Part B
13, 834-846.

Baum, E.B. & Hausser, D. 1989 What size net gives valid generaliza-
tion? Neural Information Processing Systems 1, 81-90.

Bond, P.L., Erhart, R., Wagner, M., Keller, J. & Blackall, L.L. 1999
Identification of some of the major groups of bacteria in efficient
and inefficient biological phosphorus removal in activated sludge
systems. Applied and Environmental Microbiology 65, 4077-4084.

Choi, J.H., Chung, Y.R. & Koh, S.C. 1999 Microbial treatment of
swine wastewater by recycling reactor system with sequential oxic
and anoxic conditions. In Abstracts of Korea Environmental
Engineering Society. pp. 591-592. Seoul: Korea Environmental
Engineering Society. ISSN 1225-5025.

Choi, J.H,, Shon, J.I,, Yang, H.S., Chung, Y.R., Lee, M. & Koh, S.C.
2000 Modeling of recycling oxic and anoxic treatment system for
swine wastewater using neural networks. Biotechnology and Bio-
process Engineering 5, 355-361.

Cote, M., Grandjean, B.P.A., Lessard, P. & Thibault, J. 1995 Dynamic
modeling of the activated sludge process: improving prediction
using neural networks. Water Research 29, 995-1004

Henze, M., Grady, C.P.L., Gujer, W., Marais, G.V.R. & Matsuo, T.
1987 Activated Sludge Model No. 1. Scientific and Technical
Reports No. 1. IAWPRC, London.

Hiraishi, A., Ueda, Y. & Ishihara, J. 1998 Quinone profiling of
bacterial communities in natural and synthetic sewage activated
sludge for enhanced phosphate removal. Applied and Environmen-
tal Microbiology 64, 992-998.

Hornik, K. 1991 Approximation capabilities of multi-layer feed
forward networks. Neural Networks 4, 251-257.

Koh, S.C.,, Bowman, J.P. & Sayler, G.S. 1993 Soluble methane
monooxygenase production and trichloroethylene degradation by
a type I methanotroph, Methylomonas methanica 68-1. Applied and
Environmental Microbiology 59, 960-967.

Krieg, N.R. & Gerhardt, P. 1994 Solid, liquid/solid, and semisolid
culture. In: Methods for General and Molecular Bacteriology. eds.
Gerhardt, P., Murray, R.G.E., Wood, W.A. & Krieg, N.R., pp.
216-223. Washington, DC: American Society for Microbiology.
ISBN 1-55581-048-9.

Lee, D.S. & Park, J.M. 1999 Neural network modeling for on-line
estimation of nutrient dynamics in a sequentially-operated batch
reactor. Journal of Biotechnology 75, 229-239.

Lee, D.S. & Park, JM. 2000 Modeling for industrial wastewater
treatment process using hybrid neural networks. In: Abstracts of
Korea Society of Biotechnology and Bioengineering. pp. 125-128.
Taejon: Korea Society of Biotechnology and Bioengineering.
ISSN 1225-7117.

Lee, M., Lee, S.Y. & Park, C.H. 1992 Neural controller of nonlinear
dynamic systems using higher order neural networks. Electronics
Letters 28, 276-2717.

Liao, C.M., Maekawa, T., Chiang, H.C. & Wu, C.F. 1993 Removal of
nitrogen and phosphorus from swine wastewater by intermittent
aeration processes. Journal of Environmental Sciences and Health B
28, 335-374.

Morgan, D. & Scofield, C. 1991 Neural Networks and Speech
Processing. Boston: Kluwer Academic Publishers. ISBN 0-792-
391446-0.

Otte, S., Grobben, N.G., Robertson, L.A., Jetten, M.S.M. & Kuenen,
J.G. 1996 Nitrous oxide production by Alcaligenes faecalis under
transient and dynamic aerobic and anaerobic conditions. Applied
and Environmental Microbiology 62, 2421-2426.

Papen, H., Berg, R, Hinkel, I, Thoene, B. & Rennenberg, H. 1989
Heterotrophic nitrification by Alcaligenes faecalis: NO;, NOj,
N;O, and NO production in exponentially growing cultures.
Applied and Environmental Microbiology 55, 2068-2072.

Shin, H.S., Koo, J.K., Kim, J.O., Shin, HK. & Jeong, Y.K. 1990
Management alternatives of livestock wastes for water resources
conservation. Journal of Korea Solid Waste Engineering Society 7,
45-52.

Simon, H. 1999 Neural Networks. A Comprehensive Foundation.
pp. 156-173. Prentice Hall Publishing Co. ISBN 0-13-908385-5.

Weigend, A.S. & Gershenfeld, N.A. 1994 Time Series Prediction:
Forecasting the Future and Understanding the Past. New York:
Addison-Wesley Publishing Co. ISBN 0-201-626012.

Zhao, H., Hao, O.J., Fellow, A.S.C.E., McAvoy, T.J. & Chang, C.H.
1997. Modeling nutrient dynamics in sequencing reactor. Journal
of Environmental Engineering 123, 863-879.

World Journal of Microbiology & Biotechnology
(2003), 19:21-27

_53_






