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I. INTRODUCTION

In case when a knowledge about plants is deficient or imprecisely known,
adaptive control is one of methodologies which can deal with such plants
effectively. Especially, model reference adaptive control (MRAC) schemes can
completely control unknown plants as long as they are modelled as linear
time-invariant systems and satisfy some assumptions required to apply them.

Most of MRAC schemes work successfully in their typical control
environments. However, there are many cases where plant dynamics are
nonlinear time-varying and they cannot be approximated as linear time-invariant
models. In these cases, MRAC schemes may not work properly because of
mathematical restrictions.

An alternative approach which solves this problem is based on fuzzy logic[4’5].
Fuzzy logic is a very useful technique which can handle complex plants through
the use of an expert’s control strategy. However, when plants possess highly
nonlinear time-varying characteristics, the fuzzy logic technique alone may be
ineffective because it suffers from inherent nonlinear problems.

To solve such a problem, a new methodology of combining a model reference
adaptive control scheme with the fuzzy logic technique is developed. First, under
model reference adaptive control, a fuzzy model which characterizes the
nonlinear time-varying characteristics of the plant, called the error generator, is
obtained and its structure and parameters are identified using input/output data.
For identification of the fuzzy model, Takaki and Sugeno’s method™® is adopted.
Secondly, a fuzzy model-based compensator is designed for correcting the output
error, that is, making the output of the error generator converge to zero

asymptotically. Finally, the additional control input obtained from the fuzzy
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compensator 1s added to the control input generated by model reference adaptive
control.
In order to illustrate the effectiveness and robustness of the proposed control

scheme, computer simulations are conducted on a nonlinear plant.

[I. MODEL REFERENCE ADAPTIVE CONTROL

2.1 Structure of the Model Reference Adaptive System
First of all, consider a linear time-invariant plant as

p. x, = A,x, + byu (2.1a)

v, = hlx, (2.1b)

where x, is the =nX]1 state vector, u is the scalar input, vy, 1s the scalar
output, A, is an nX#x matrix, and %z, and b, are nx<1 matrices. The transfer

function W,)(s) of the plant can be represented as

Z,s)

Wy(s) = h)(sI—A,) ‘b, 2 FRAS) (2.2)

It is assumed that Wy(s) is strictly proper with Z,(s) a monic Hurwitz
polynomial of degree m (< n—1), R,(s) a monic polynomial of 7, and k, a
constant parameter. It is further assumed that m, # and the sign of k, are a

priori known.

The transfer function W,(s) of a reference model used here can be

represented by
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Zu(s)
” Ry(s)

M: W(s)==F% (2.3)

where Z,(s) and R,(s), respectively, are monic Hurwitz polynomials of

degree n—1 and » and £k, is a positive constant.

The deviation of the system from the desired behavior is measured by the

absolute value of the error between the plant and reference model outputs as

ef(t)2 |y, (t)— v(t)]. (2.4)

The objective is to determine suitable control law #%(¢) to the plant so that all

signals in the system remain bounded and

lim ley(t) | = lim | ¥,(t) — v,.(¢) | =0. (2.5)

The controller consists of a gain A(¢), an input feedback control loop with the

parameter vector 6;(¢) and an output feedback control loop with the parameters

Ho(i) and 0,(¢). It is described by the following equations

u(t) = 0"(H)w(t) (26a)
o(t) 2 [H8), 0 (1), y(t), 0 (D] T (2.6b)
0(¢) & [K¢), 67(2), 6)(2), 67(D] T (2.6¢)
w(t)=Aw,(t)+ 2u(t) : (2.6d)

wy(2) = Awy(t)+ 2 y,(t) (2.6e)
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where wy, @, €R77 0,0, €eR”" 1 6,k €R, Ais an (n—1)x(n—1) stable

matrix, ¢ is a scalar and det[sI—A] =A(s).
When the relative degree n'= 1, the parameter error vector ¢(¢) is updated

according to control law

p= 0=—sgn(k,) e (t)w(t). 2.7)

By lemma given in Narendra and Valavani's Workm, the state error e(t) and

the parameter error ¢(f) are bounded. Since e, as well as the output of the
reference model is bounded, v, is bounded and @(#) is bounded so that

e(t)—0 as t—oo or |e(t)| —0 as t—co.

[I. DESIGN OF MODEL REFERENCE ADAPTIVE CONTROLLER
WITH A FUZZY MODEL-BASED COMPENSATOR

When the plant is linear time-invariant as described in the previous chapter
the model reference adaptive control scheme is sufficient to achieve good control
performance. However, there are some situation, as in many real control
environments, where the plant evolves nonlinear time-varying characteristics
during its operation. In these cases, this adaptive control scheme is not
applicable because some assumptions are no longer satisfied. Intuitively, it can
be assumed that the output error would be generated due to the time-varying
characteristics of the plant, denoted as the error generator. In order to eliminate
the output error, the adaptive controller must be compensated while plant
dynamics change. This motivates the developement of a further enhanced control

scheme.
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3.1 Fuzzy Modelling of the Error Generator

If the behavior of the error generator is analyzed, it could be achieved to
obtain an additional control input so that the output of the error generator
converges to zero in the steady state. To do this, first a fuzzy model
characterizing the error generator is obtained. Then, a fuzzy model-based
compensator is designed in such a way that the output of the identified fuzzy
error generator is made as small as possible and resultantly an additional control
input is added to the control input produced by the MRAC.

In this paper, the Takaki and Sugeno’s method” is used to build a fuzzy
model which is of the following discrete~time form. This model is composed of
fuzzy “if-then” rules which represent locally linear input/output relations whose
consequent part is denoted as "subsystem of the error generator”. The rules are

expressed as:

L IFx (B is Al and - - - and x,(k) is Al
THEN xl(k-f- 1)= an xl(k) + ag xz(/e) + - .. +
ap1 %5(R) + by u (k) (3.1a)
L' IFx(B) is A and - - - and x(k) s Al
THEN xl(k+l)= a”xl(k) + a21x2(k) + - .. +
a,,,xp(k) + b,uc(k) (Slb)
where L'(i= 1,2,--,0) is the i-th implication, / is the implication number,

% (R (G =1,2,,p) is the 7-th linguistic variable representing a state variable

of the fuzzy system, x'(k+1)( i=1,,0) is the output from the :-th rule,



mAY AEAARS AT FA BAVIE RE VIEEd A -gA0)7] 331

a; and b; arc conscquent parameters, and A, are fuzzy sets whose

membership  functions — are represented by continuous piecewise-polynomial
functions.

Given a set of the input( xy, -, Xy, u.), the output x(k+1) of the fuzzy
system is obtained by
SAG (e, 1A, kD)

2 (AL ()%, xAx,)

x(k+1)=- (3.2)

where the symbol * denotes a triangular norm. In this work, algebraic product

is employed.

7=1
101 Ai(xy)
7=1

Defining 8= yields

1=

x(k+1)= Z‘B,-( ay;x(k) + agx(k) + + - +a,;x,(k) +b; u (k)

= Z\(alixl(k) B l+ aZixZ(k) B l.+-.. + ap ixp(k) ‘8 1'+' bluc(k) ,8 i) ) (33)

Once the fuzzy model for the error generator has been constructed, its
parameters can be obtained using input/output data of the model reference
adaptive system in the steady state. The parameters of the fuzzy model are

identified according to the identification procedure suggested by Sugeno and
Kangm.

3.2 Design of a Fuzzy Model-based Compensator

To design a fuzzy compensator, the consequence part of the identified fuzzy

model is rewritten in a vector-matrix form as:
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L' IF x(k) is Al and - - - and x,(R) is Al
THEN x'(k+1)= A,;x(k) + Bou.(k) (i=1,2,-,) (3.4)

where the state vector x 7(k) = [x,(B), - - - %,(k)] and A; B, are constant

matrices. When a pair of { x(%), u(k)} is given, the final output of the fuzzy

system is inferred by

ZZ; w{k) [A; x(k) + Biu, (k)]

il w (k)

1=

(3.5)

x(k+1)=

with w,(k) = ]Iill Ai(x;(k), where Af(x,-(k)) is the membership grade of the

fuzzy set A! at x{k). It is assumed that Z“ w(k) > 0 and wlk) =0

(i=1,2,, D for all .

Thus, if a fuzzy controller is designed through a knowledge of the fuzzy

model and the regulation input can be obtained so that the output x(£+ 1)
converges to zero in the steady state, the overall control system could be

controlled in a stable fashion. The j ~th control rule has the following form and

acts only on the 7-th rule of the fuzzy system.

Control rule i : IF x,(k) is A} and - - - and x,(k) is A}
THEN u )= —K, (k) (i=1,2,. ) (3.6)

where K; (i=1,-,1) denotes a feedback gain which is appropriately selected

to ensure satisfactory responses and stability. The final output of the fuzzy

compensator is given by
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" 5 0 (WK xR |
u k)= — —= (3.7
2R

Thus the 7-th subsystem of the fuzzy control system is expressed as

Control subsystem & IF x,(k) is A} and - and x,(k) is A
THEN x'(k+1) = (A; — B;K,) x(k)
(3.8)

and the overall output of the fuzzy control system can be obtained as.
3 3 0l (A, BK) (B
2 2 wbo

x(k+1)= (3.9)

Therefore, the total control input #(¢) used to control nonlinear time-varying
plant is obtained by adding the additional control input #%.(#) from the fuzzy

compensator to the control input from the MRAC. Fig. 1 depicts the overall
control system which combines the MRAC system with the fuzzy control

system.
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Fig. 1. The proposed control system

V. SIMULATION STUDIES

Consider the following nonlinear time-varying plant with a

bounded disturbance.

plant : y= y+(2.0+ cos(D)y*+ u+u+v
disturbance : »(#)=0.5sin(®) + cos 2He+0.5¢%cos(d),



HHY AENARE 9 WA HA)E 2= FRd e Aol 135

The following reference model was used.

reference model y=—y+vr

The model reference adpative control loop developed in Chapter 2 was
constructed and a fuzzy compensator was incorporated. To build the fuzzy

compensator, a fuzzy model was identified from input-output data of the model
reference adaptive system with a sinusoidal input, #(#) = cos (8 +5cos(5¢).

The sampling time was set as T=001. Through the identification procedure
using a sct of observed data, { e;,de,, u.(®), and e)(k+1)}, the fuzzy model

together with the root mean square value was obtained in the following form.

IF de (k) isE . THEN e,(£+1)=1.0021 ¢,(£)+0.009 de, (£)+0.0005 u (k)
-3.5 8.0

IF de\(k) is | THEN ey(f+1)=1.0009 e,(£)+0.01 de;(5)-0.0002 u.( &)
35 80

Performance index= 0.0229

I of this model and the control rule with a stable

feedback gain K= [200 -1] vielded:

The type-B connection®

S' IR de (k) s & THEN e, (k+1)=09362 e; (k)-0.009 e, (k—1)
-35 8.0

S* IR dey (B) is A THEN e, (k+1)=1.0107 ¢; (B)-001 ¢, (k— 1)
-35 8.0
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4.1 Tracking performance

The step response of the overall control system with the selected model is

given in Fig. 2. It can be seen that the proposed system exibits good tracking
and steady-state performance behaviors even if the plant has highly nonlinear

characteristics.

2

-1
5 TO i5

Fig. 2 Step response of the proposed system t(sec)

4.2 Responses to disturbance cHange and parameter variations

Fig. 3-4 show the robustness of adaptive fuzzy control scheme through the

disturbance change and parameter modification.

Disturbance change : v(f) =sin (0.26) +tan(0.38) (t>5).

1
Vi
0.5
o A
-0.5
-1 [ 10 TS
1 disturbance change t(sec)

Fig. 3 Output response of the proposed system
to a disturbance change (yp=0)
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Plant parameter modification @ y= y4 (4.0+ 2.0 cos(H)y* + u+ u+ v
Yy

T0 =

t(sec)

Fig. 4 Output response of the proposed system
Lo a parameter change

It is obvious that the proposed control system maintains the steady- state output
in spite of the disturbance and parameter changes.

4.3 Stability

Among all the problems regarding the proposed control system, its stability is

obviously one of major concerns. To check the stability of the overall system,
it is sufficient to demonstrate that the fuzzy control system is stable. For the
subsystems  S' and S% of Model 2-2, two matrices were obtained as

a,=[0-9362 —0.0091]’ A=

1.0171 ~0.01]
1 0 ’

1 0

The choice of a positive definite matrix P=[3'5 —1

0 ] satisfied the condition
AJPA,~ P for al

1€{1,2}. This means that the fuzzy control system can

be asymptotically stabilized by selecting a stable feedback gain.
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V. CONCLUSION

In this work, a new methodology of combining a model reference adaptive
control scheme with the fuzzy logic technique was developed for controlling

nonlinear time-varying systems. First, a fuzzy model representing the nonlinear

time-varying characteristics of a plant, denoted as the error generator, was
obtained and its parameters were identified. Secondly, a fuzzy model-based
compensator was designed for correcting the output error. Finally, the additional
control input obtained from the fuzzy compensator was added to the control
input generated by the MRAC.

The effectivenesss of the proposed control system has been demonstrated
through computer simulations on a nonlinear plant. The results have shown that
the proposed control system is capable of successfully tracking the set—point and
regulating itself to new environments with improved responses. Moreover, the
results have demonstrated that it has robustness to disturbance changes and

parameter variations of the plant.

REFERENCES

[1] K. S. Narendra, Y. H. Lin and L. S. Valavani, "Stable Adaptive
Controller Design, Part II: Proof of Stability”, IEEE Trans. Automat. Contr.
Vol. AC-25, pp. 440-448, 1980

[2] K. S. Narendra and L. S. Valavani, "Stable Adaptive Controller
Design-Direct Control”, IEEE Trans. Automat. Contr., Vol. AC-23, pp. 570~
583, 1978

[3] Z. Qu, ]J. F. Dorsey and D. M. Dawson, "Model Reference Robust Control of
SISO Systems”, IEEE Trans. Automat. Contr, Vol. 39, pp.
2219-2234, 1994



W AH JHAARNS 918 57 wATE 2 1EEd HEH0Y] 339

(1] W, Siler and L Ying, "Fuzzy Control Theory: The Lincar Case”, Fuzzy
Sets and Svst, Vol 33, pp. 275 290, 1989

[5] W. Siler. I Ying and J. J. Buckley, "Fuzzy Control Theory: A Nonlincar
Case”, Automatica, Vol. 26, No.3, pp. 513-520, 1990

(6] 1. Takagi and M. sugeno. "Fuzzy  Lentification  of  Systems  and its
Applications  to Modeling  and  Control”, IEEE  Trans. Svst. Man  and
Cvhernet., pp. 116 132, 1985

(7] M. Sugeno and G, T. Kang, “Structure Identification of Fuzzy Model”, Fuzzy
Sets and Svyst, Vol 28, pp. 1532, 1988

[R] K. Tanaka and M. Sugeno, “Stability Analvsis and Design of Fuzzy

Control Svstems”, Fuzzy Sets and Svst., Vol 45, pp. 135156, 1992



&/Collection |



