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(0) Introduction

K. Menger (3] introduced the notions of satistical metric spaces which could be considered
the generalization of metric spaces, and Sehgal and Bharucha-Reid [7] proved a fixed point
theorem on the Menger Space. Recently J.I. Chang and C.W. Kim gave generalized fixed
point theorems on Menger spaces.

The aim of this paper is to investigate common fixed point theorms.

We can obtain information from many common fixed point theorem on metric spaces on
normed spaces which were studied by many authors. In section 1 we introduce the notions
of Menger spaces and their topological properties. In section 2,3, we prove various types of

common fixed point theorems on Menger spaces.
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(1) Basic definitions

Let R be the set of reals and R*={xeR|x>0}. A mapping F: R—R* is said to be a
distribution function if it is nondecreasing left-continuous with inf F=0 and sup F=1. The

set of all distribution functions will be denoted by L.

Definition 1.1. A statistical metric space (SM-space) is an ordered pair (S, ),
where S is a (nonempty) set and ¥ is a mapping of SXS into L (we shall denote F#(p,q)
by F,;) satisfying

(SM-D) F,(x)=1 for all x>0 if and only if p=q
(SMTID Fe(0)=0
(SM-UID) F,,=F,,
(SM-IV) if Fy(x)=1 and Fo,(3)=1, than F,(x+y)=1,
for p, q, =S and x, yeR.
Definition 1.1 suggests that F,(x) may be interpreted as fhe probability that the distance

between p and g is less than x.

Definition 1.2. A Menger space is a triple (S,.5%,4), where (S, %) is a SM-space
and 4: [0,1]1X[0,1]-[0,1] is a mapping satisfying
(4-1) 4(a,1)=a, 4(0,0)=0
(4-1) 4(a,b)=4(b,a)
(4-1) 4(c,d)=4(a,b) if c>a and d=b
U-T) A(40a,b),0)=M(a, 4, )
(4-V) Fpu(x+3) 2 4(F0(x), For(3))
for all p,q,7S and for all x>0, y>0.
A mapping 4: [0,1]X[0,1]-[0, 1] satisfying (4-1)—(4-N) is said to be a 4-norm.
The topology of a SM-space was introduced by Schweizer and Skla [5]. Let peS and
&, be positive reals. Then an (&, M)-neighborhood of p is defined by
Ny(&,M)={ge S| Fye(&)>1—\}.
Due to [5] and [6], if [(S,#,4) is a Menger space, and 4 is continuous, then it is a
Hausdorff space satisfying the first axiom of countablhty induced by the famlly {Np(b,\)l
peS, £>0,0>0} of neighborhoods.

Definition 1.3. Let (S, 5, 4) be a Menger space. A sequence {p.} in S is said to be
fundamental in S if for each &>0, A>0, there exists an integer M(E&,\), such that F, ,
(&>1—\ whenever =, m>M(&,\).
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A Menger space S is complete if each fundamental sequence in S converges to an element
in S.

The following theorem establishes a connection between metric spaces and Menger spaces.

Theorem 1.1. [7]. If (S,d) is a metric space, then the metric d induces a mapping
F: SXS—L, where F(p,q) (p,qeS) is defined by F(p,)(x)=H (x—d(p,q)), %R,
where H(x)=0 if x<0 and H(x)=1 if x>0. Further, if 4:[0,11X[0,1]—[0,1] is defined
by A(a,b)=min{a,b}, then (S,5,4) is a Menger space. It is complete if the metric d is
complete.

The space (S, 5, 4) so obtained is called the induced Menger space.

(2) Common Fixed Point Theorems for Two Mappings

Definition 2.1. Let (S, %) be an SM-space. Let : R—R be an upper semicontinuous
mapping from the right such that ¢(x)=0 if ¥<0 and 0<$(x)<x for all x>0. Two
mappings Ty and T of S into itself are said to satisfy the CT-mapping condition if for all
p,q in S and for all x>0, Friyrae ($(x)) =Fp(x).

Theorem 2.1. Let (S,?',:A) be a complete Menger space and 4 be a continuous
function satisfying 4(x,x)=x for each x&[0,1]. If Tyand T: are mappings of S into itself
satisfying the CT-mapping condition, then T and T: have a unique common fixed point p
in S.

Proof. Consider a point p, in S and define a sequence {p,} by pr=T1ps, P2=Tap1, Ps=
Tips, -5 Dan=TePan-1, bans1=TiP2a, ---. Since Ty and T3 satisfy the CT-mapping condition,

we haVe Fp2n+1p2n+2(¢<x)) =FT1P2"1-2,2,1+1(¢(9€)) Zsznpzn_*_l(x), for all x> 0- Slmilarly, Fpan2n+l
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in S.

The following theorem establishes a connection between metric spaces and Menger spaces,

Theorem 1.1. [7]. If (S,d) is a metric space, then the metric d induces a mapping
F: SXS—L, where F(p,q) (p,qeS) is defined by F(p,q)(x)=H (x—d(p,q)), x=R,
where H(x)=0 if x<0 and H(x)=1 if x>0. Further, if 4:[0,1]X[0,1]—-[0,1] is defined
by A(a,b)=min{a,b}, then (S, 5,4) is a Menger space. It is complete if the metric d is
complete.

The space (S, %, 4) so obtained is called the induced Menger space.

(2) Common Fixed Point Theorems for Two Mappings

Definition 2.1. Let (S,.%) be an SM-space. Let: R—R be an upper semicontinuous
mapping from the right such that ¢(x)=0 if x<0 and 0<¢(x)<x for all x>0. Two
mappings T3 and T: of S into itself are said to satisfy the CT-mapping condition if for all
?,q in S and for all x>0, Fryrze (9(x)) 2F, ().

Theorem 2.1. Let (S,.?",fd) be a coniplete Menger space and 4 be a continuous
function satisfying 4(x,x)=x for each x=[0,1]. If Tiand T: are mappings of S into itself
satisfying the CT-mapping condition, then Ty and T: have a unique common fixed point p

in S.

Proof. Consider a point p, in S and define a sequence {p.} by p1=Tips, P2=Tap1, Ps=
Tips, -5 Dew=Tsban-1, Drnss=TiP2a, ---. Since Ty and T satisfy the CT-mapping condition,
we have Fog 190, 0a(P)) =F705,7009,11(P(8)) Z Fpp 09, (%), for all x>0 Similarly, Fpy,p9,44
(P(x)) 2 Fpy_1p,,(%), for all x>0. Hence, Fpoppi (D) 2 Fy,_ 15, (%), for all x>0 and n=1,
/EETEN Now, we claim that the sequence {p.} is a Cauchy sequence in S. Suppose not. Then
there exist an €>0 and A>0 such that for any positive integér 1, we can find »n, m with
n>m>1, n:an odd integer m:an even integer and ‘ . ‘

Fpp, (P(E)<1—N, Fp, 15, (p(E) Z=1—N.
For this, we can choose an x>0 such that Fj, (%) >1—\. Since lim ¢"(#)=0, we may
choose a positive integer N with ¢¥(x)<PH(8). Since Fp,p, (d(x)) = Fy, 1, (x) for all
x>0, and #=1,2,-, we have Fy, . () 2F,,  ($p())2F,,,,, ,(¢"(2)) 2 F, 5 (x) 21—N, for
all #>N. Suppose that 1 is sufficiently large such that 1>N+1 and &—¢(&)=¢!(x). Since
Fy 0, (#(E))21—N, we have
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Fpy 1y (2 ACF,, 1y (6D, F,y, . (6—$(E))
>4(1—», 1))
=1—A.
Since Ty and T satisfy the CT-mapping condition,
Fouon(b(ED)=Fr1p, 72, (P(ED2F,), 5, () 21—
Since F, , ($(&))<<1—», 1—A>1—\. This is a contradiction. Thus {p»} is a Cauchy
sequence in S.
Since (S,%,4) is complete, {p,} converges to a point p in S. Now, we shall prove that
Ty,=p, Typ=p.
For all x>0, we have
Fry 00 (B) =Fr1srapg, | (92D 2 Fypy, (1)

we have
FTIP,(x)=lim inf FT1pPzn+z(x)
21im inf Fppy, ., ()
=F,y(%)
=1.
Thus, Ti,=p. Similarly, Tay=p.
Now suppose that g is another common fixed point of Ty and T in S. Then,
Fou(p(2))=Fr, 1, ($(%)) 2 Fpe(x) for all x>0.
Similarly, F,($2(x))>F,e(p(x)). Hence was have
Fpe(9" (%)) = Fpo(x) for all >0 and for n=1, 2,
Since lim ¢"(x)=0, for any &€>0 and AM>0 there exist an x>0 ann a positive integer #
such that Fp(2)>1—M\ and ¢"(x)<&. Therefore, we have Fp(%)>1—\, so that Fp(x)=1
for all x>>0. Hence p=q.

As immediate corollaries, we have the followings

Corollary 2.1 [2]. Let (S,d) be a complete metric space and ¢ be as in definition
3.1.1. If Ty and T; are mappings of S into itself such that d (Ty,, T2) <$(d(D,q)) for all

all p,q in S, then T and T. have a unique common fixed point p in S.

Corollary 2.2. Let (S, %, 4) be a complete Menger space and be a continuous fun-
ction satisfying 4(x,x)>x for each x€[0,1]. If Ty and T; are mappings of S into itself
such that there exists a constant k£, 0<<%2<1 such that for all p,q in S.

Fr ,ry,(kx) 2 Fpo(x) for all <0, then Ty and T: have a unique common fixed point ¥ in

S.
We can consider another type of a common fixed point theorem in a complete Menger
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space.

Theorem 2.2. Let (S, 5, 4) be a complete Menger Space and 4 be a continuous
function satisfying 4(x,x)>=x for each xe[0,1]. Let ¢ be as in definition 2.1. If Ty and
T. are mappings of S into itself satisfying

¢h) FTIT%TQTI‘I@)(x))zFM(x) for all p,q in S and {for all x>0, then Ty and T, have a

unique common fixed point p in S.

Proof. Let U=T;T:, V=T:T:. Then by theorem 2. 1, we have a unique common fixed
point p of U and V.

T19=T1Vp=T1(TzT1p) =T1T2<T1p) =UT1,.
Tz,:TzUp:Tz(T].sz) =T2T1(sz) = VT”.

Hence Ti,, Ty are fixed points of U, V respectively.

By (1), FT,,T,,(‘#("))=FUT1,VT2,(¢(5‘))ZFT,,Tg,(«") for all #>0.

Similarly, FTlpTgp(¢3(x))zFT”T“(x). Hence, we have

FT”T"(df'(x))2FT”T2P(x) for all £>0 and for n=1, 2, -

By the similar method of theorem 2.1, we can prove that T1p=T32,.

By the uniqueness of the common fixed point of U and V, we have p=Tiy=T3,. Theore-
fore p is a common fixed point of T3 and To.

Jt is clear that the common fixed point of T; and T: is unique.

Corollary 2.3. Let (S,d) be a complete metric space and ¢ be as definition 2.1. If

T, and T are mappings of S into itself satisfying the following condition:

d(TyTsp, TaT1a) <(d(D, @) for all p,q in S, then T, and T; have a unique fixed point p
in S.

Corollary 2.4. Let (S, 4) be a complete Menger space and be a continuous fun-
ction satisfying 4(x,x) =% for each x[0,1].

If Ty, and T: are mappings of S into itself satisfying the following condition: there exists
a constant 2, 0<k<l, such that

FTszpTleq(kx)zFM(x) for all p,¢ in S and for all x>0, then T, and T: have a unique
common fixed point p in S.

A fixed point of a selfmapping T of S can be considered as a common fixed point of T
and I, the identity mapping of S. In certain cases, we can replace I by a continuous self-

mapping U of S and consider common fixed points of U and T.

Theorem 2. 3. Let (S, %,4) be a complete Menger space and 4 be a continunus

function satifying 4(x,x) >z for each x=[0,1]. Let ¢ be as in definition 2.1. Let U be
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a continuous mapping of S into itself and T be a mapping of S into itself commuting with
U such that Fryr($(%)) = Fpypye(x), for all P, g in S and for all x>0, If there exists a
point g in S such that we can choose a sequence {Ug,} recursively ‘given by Ug,=Tq,,

for #=1,2,--, then U and T have a unique common fixed point in S.

Proof. Fys, v, +(P) =Fre,rq, ($(x)) 2 Fye,u0,_,(x) for all x>0.

Now, we claim that {Ug,} is a Cauchy sequence in S. Suppose not. Then there exist an
€>0, and a A>0, for any positive integer 1, we can find n,m with z>m>1 such that

Fyo,ue,($(E)<1—N, Fye,_,ue,($(E))=1—.
For this, we can choose an x>0 such that Fyopey(#) 21—\

Since 1'1_.12 ¢"(%)=0, we may choose a positive integer N with ¢V+1(x) <¢(8), Fyg,yve,(P
(&) =Fyopa,(x)=1—) for all #>N.

Suppose 1 is sufficiently large such that 1>N-+2 and
E—p()LP3(x). Then we have

Fyo, 104,(8) 2 Fya,_,ye,(6(8)) 2 Fyaue(#)21—X and

Fua,‘_wa,,,_l(e)ZA(FU«J,,_IU‘:,,(‘JS@)), Fye,va,_(E—$(&)).
Therefore, we have 1—\>1—\. This is a contradiction. Therefore {Uqg.} is a Cauchy seq-
uence in S.

Since (S, %, 4) is complete, there exists a point p in S such that Ug, converges to p.

Since U is continuous,
{UUq,}={UTg,-1}={TUq.-1} converges to Up.
For all x>0, Fr,p,(¢(x))=Ilim inf anqﬂ_l(gb(x))
2lim inf Fyp?,_ ()
=FUPUP
=1.
Thns Tp=Up.

Now we prove that Up=UUp=TUp. For this, put qg=Tp=Up.

For all >0, we have
Faro( @) =Frpyrs(p() =Frpryp($(2)) 2 Fyp?p(2) =Fyyo(%).

Hence Foyo($"(2))=Fyye(x) for all x>0 and n=1,2,---. By the similar method of theorem
3.1, g=Ug.

Tq=TUp=UTq=Ug=q. Hence Up is a common fixed point of U and 7. Let ¢’ be a
common fixed point of U and T. Then for all x>0, we have Fol (0(2)) =Frors (¢(2))
Foad (£)=F,/ (%).

Hence Fo/(¢"(x) >F,(x) for all >0 and for n=1,2, ---.
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By the similar method of theorem 2.1, g=¢’.

As immediate corollaries, we have the followings.

Corollary 2.5. Let (S,.%, 4) be a complete Menger space and be a continuous
function satisfying 4(x,x)>x for each x=[0,1].

Let ¢ be as in definition 2.1. Let U be a continuous mapping of S into itself and T be
a mapping of S into itself commuting with U such that T(S)CU(S). If T and Uare map-
pings such that Fryrri(@(x)) >Fype(x) for all p,q in S and for all >0, then U and T

have a unique common fixed point in S.

Proof. Since T(S)CU(S), for any peS, we can choose a sequence {Ug,} {such that Ug,

=Tq,., for n=1,2, ---. Therefore, by theorem 2.3, we have the above result.

Corollary 2.6. Let (S,d) be a complete metric space and ¢ be as definition 2.1.
Let U be a continuous mapping of S into itself and T be a mapping of S into itself com-
muting with U such that d(Tp, Tp) <dd(Up,Uq)) for all p,q in S. If there exists a point
g, in S such that we can choose a sequence {Ug.} recursively given by Ug,=Tg.-1 for n=1,

2, -, then T and U have a unique common fixed point in S.

Corollary 2.7. Let (S,%,4) be a complete Menger space and 4 be a continuous
function satisfying 4(x,x)>x for each x=[0,1]. Let U be a continuous mapping of S into
itself and T be a mapping of S into itself commuting with U such that there exists a con-
stant 2, 0<k<1 such that Fr,rq(%) >Fyp,(x) for all p,q in S and for all x>>0. If there
exists a point ¢, in S such that we can choose a sequence {Ug.} recursively given by Ug.=
Tgn-y for #==1,2, ---, then T and U have a unique common fixed point in S.

If the condition 4(x,x)>x and its completeness of the Menger space are omitted, we have

other types of a common fixed point theorem as follows.

Theorem 2.4. Let (S, %,4) be a Menger space and 4 be a continuous function.
Let Ty and T. be mappings of S into itself satisfying the CT-mapping conditinn and condi-
tinuous at a point p, in S If there exists a point g, in S such that the sequence p1=Tiq.,,
pa=Taops, ps=Tip2, -y D2n=TsP2a1, D2nt1=T1D24, ---, has a subsequence converging to p.,

then p, is a unique common fixed point of T3 and T%.

Proof. Let {$,,] be a convergent subsequence of {$.} which converges to p,. Then the
set of indices {#;} contains infinitely many even or odd. Suppose that {#;} contains infinitely
many even.

These indices are written in the form of {2m;}. Therefore the sequence {pz.;} converges
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to p.. Suppose that p,+ Tip,. Then Suppose that p,#Tip,. Then there exists an >0 and
an a, 0<a<l such that p,#Tip,. Then there ‘exists an ¥>>0 and an a, 0<ae<1 such that
Fy,r1p,(3)=a. Since {pan;} converges to p, and T; is continuous at p,, {Tipem,} converges to
Tipo. For all x>0, we have Frym2am+1($(2)) =Fr10m 7202m;~1((%)) 2 FFr3p 02 _1(%).
Smilarly, Frembam+1($2(%)) Fram122m($(%)).
Hence, we have Framamis1($2™(2)) 2Fq,p (%)
Find an x>0, so that Fy,(¥)>a and choose #,>>0 such that ¢$*™(x)<y. Then we have

a=F,r,,,(3)=lim inf Fopmitamiss (D)
2lim inf Frampam 1920 (x))
2 Frami pamjr1 (93e(2))
2F, (%)
>a.

This is a contradiction. Hence we have Tip,=p.,.

Since Fy,ry0,(%)=Fryp,700,(%) 2 Fp 5,799, (P(2)) 2 F,,p (2)=1 for all x>0, we have Tip,=/ps.

Now suppose that there exists a point ¢, in S such that b,’ =T1p., D' =Tsp,’. For all x
>0, F,)/(¢"(x)) =2F,,’(x). By the similar method of theorem 2.1, we have p=p’.

As immediate corollaries, we have the followings.

Corollary 2.8. Let (S,d) be a metric space and let Ty and 72 be two mappings of
S into itself satisfying the condition:

d(Tip, T2q) <¢(d(D, q) for all p,q in S and Ty and T3 are continuous at p, in S. If there
exists a point g, in S such that the sequence, p1=Tigo, p2=Tap1, Ds=T1Ps,**; DP2n=T2P2n-1,

Dans1=Tips., ---, has a subsequence converging to p,, then p, is a unique common fixed

point of Ty and Te.

Corollary 2.9. Let (S, %,4) be a menger space and 4 be a continuous function. If
Ty and T are mappings of S into itself such that there exists a constant &, 0<k<1 such
that for all p,q in S, FTUTzq(kx) >F,(x) for all x>0 and T3, T are continuous at p, in
S. If there exists a point ¢, in S such that the sequence p1=T1q,, pe=T2p1, Ps=Tip2, -+,
DPoan=Tspon1, Doansi=T1D2., -+, has a subsequence converging to p,, then p,is a unique com-

mon fixed point of T and Tb.

Theorem 2.5. Let (S, %, 4) be a Menger space and 4 be a continuous function.
Let Ty and T2 be two mappings S into itself and ¢ be as in definition 2.1. If there exists
a point ¢, in S such that the sequence p1=T1q,, pPs=Tap1, Ds=T1Ds, s Dra=T2D2n-1, D2nt1
=Tipz, -+, converges to p, in S and (1) Frp,r,, ((¥)) 2F,,(x) for all x>0 and for all »

— 138 —



Menger Z2fifell 3t FHIE: 28 9

S, then p, is a unique common fixed point of T3 and T

Proof. By (1D, Fry,00,()=Frs,7905, (%)
ZFTIP,,Tgpz,,_lch(x))
2F;,pp,_4(%), for all x>0.
By theorem 2.3, FTl,apa(x)=’1ir£1 inf Frip sy, (%)
217112} inf F, py, (%)
=F,, (%), for all x>>0.
Hence, Fr;,,,,(x)=1. Thus T,, =p,.
Frzmo(x)=FTlpoTz,,o(x) 2Fr 5,190, (P(2))=F,,,,(x)=1 for all £>0. Hence Tepo=Pp,.
By the similar method of theorem 2.1, we can prove the uniqueness of this common

fixed point.

From theorem 2.5, we have the followings.

Corollary 2.10. Let (S,d) be a metric space, ¢ be as in definition 2.1 and Ty, T
be two mappings of S into itself. If there exists a point ¢, in S such that the sequence
01=T1q0, po=Tspy, ps=Tips, -, Paa=T2Pan-1, Dens1=T1P2., ---, converges to p, in S and if
d(T1po, Tar)<kd(p,,r) for all r in S and for some k, 0<k<1, then p, is a unique common
fixed point of Ty and Te.

Corollary 2.11. Let (S,.%,4), be a Menger space and 4 be a continous function.
Let Ty and T: be two mappings of S into itself and ¢ be as in definition 2.1. If there
exists a point g, in S such that the sequence p1=Ti¢o, p2=Tep1, pPs=Tip2,, Daa=TsP2a1,
Dan1=Tip2a, -+, converges to p, in S and if Frp g, (k%) >F, (%) for all x>0, all 7 In S

and some k&, 0<k<1, then p, is a unique common fixed point of T} and Ts.

(3) Common Fixed Point Theorems for the Family of Mappings.

Theorem 3.1. Let (S,%,4) be a complete Menger space and 4 be a continuous
function satisfying 4 (x, x)=x for each x<[0,1]. If {Ty} (¢=1, 2, ---, #) is a family of
mappings of S into itself such that the composition TiT:---T» is a CT-mapping and T.T;==

T,T: (i,j=1,2, ---, n), then T; has a unique common fixed point p in S.

Proof. Let T=TiTs--T,. T has a unique fixed point p in S. Thus Tp=p. Now for
each i=1,2, -, n, Tip=T;Tp=TT,,. Hence T:p is also a fixed point of 7. Therefore
by the uniqueness, Tip=p for each 1<i<n.
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The uniqueness is clear by the uniqueness of the fixed point of T.

As immediate corollaries, we have the followings.

Corollary 3.1. Let (S,d) be a complete metric space and let (7.} (¢=1,2, -, n)

be a family of mappings of S into itself satisfying the condition for each 7, j(7,j=1,2,-)
with 7#j7, d(Ty, T;0)<Kd(p,q) for all p,q in s and for some K, 0<K<1. Then {T;} has

a unique common fixed point p in s.

N =

o <

10,
11.
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