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Linear and Integer Linear Programming Models

for

Container Liner Fleet Routing Strategy
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Abstract

alternatives related to chartering or ship building. For the formulation process,
the concept of ‘flow-route incidence matrix’ has been devised and used. This links
demands of cargo to route utilization in a simple and systematic way, and is ex-
pected to serve as a generally useful modelling tool for ship routing or scheduling

problems.
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1. Introduction

It is well known that the gross revenue of liner shipping amounts to more than
50% of the total shipping industry. We can therefore expect that the ship-
ping companies with average size of liner fleet can benefit a lot from improving
routing or scheduling by systematic methods. The objective of this paper 1s
to suggest easy and practical optimization models of routing strategies for con-

tainer liner fleets.

Many useful routing and scheduling problems have been studied for vehi-
cles. A comprehensive survey of vehicle routing and scheduling problems can
be found in [1, 7]. As for the ship scheduling or routing problems, relatively
less effort has been devoted, in spite of the fact that sea transportation involves
very large capital and operating costs. The reason of this less research and a
survey of many relevant studies are found in the paper of Ronen [14].

Of course, there have been studies on optimization models for routing or
scheduling problems in sea transportation. But the majority of them have been
on industrial carriers, bulk carriers, or tankers. On liner fleet management,
some heuristic approaches rather than analytic optimization models have been
dominant. For example, Boffey et al. [2] developed a heuristic optimization
model and an interactive decision support system for scheduling containerships
on the North Atlantic route. Olson, Sorenson and Sullivan (8] used a simu-
lation model to obtain regular schedules for a fleet of cargo ships involved in
a liner trade. But it should be mentioned that, unlike the exact optimization
methods, the heuristic methods or simulation models can pick up a best solu-

tion only among a finite set of alternatives. Only quite recently, a few analytic
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optimization models have been attempted to routing and scheduling problems
for liner fleet. Perakis and Jaramillo [6, 11] developed a simple linear program-
ming model for a routing strategy to minimize total operation cost and lay—-up
cost during a planning horizon. They assumed several predetermined routes
(sequences of ports of call) and made a model to assign each ship to some mix
of the predetermined routes. Rana and Vickson [12, 13] presented nonlinear
programming models. They tried to maximize total profit by finding out an
optimal sequence of ports of call for each ship. For solution methods, they used
Lagrangean relaxation [5] and decomposition methods.

Since the route of a containership, once determined, is hard to be altered
for a certain period of time, the initial routing decision should be made cay-
tiously. It is also highly desirable to rearrange the whole system of routes by
some analytic methods, periodically, to adjust to changing shipping environ-
ments such as changes in main stream cargo demands. in freight rates, or in
international regulations. A slight improvement of routes coul(.I vield enormous
additional profits or cost savings, for the involved costs or revenues in liner
operation are, in general, very large and occurs continuously.

The optimization models developed so far seem to be limited in real ap-
plications for some reasons. One [13] is made for only one containership, or
time charter decision making. The other model of Rana and Vickson [12] puts
on complicating shape because of its nonlinearity in both objective function
and constraints. The model of Perakis and Jaramillo [6, 11] is simpler one for
practical purpose, but it does not properly take into consideration the cargo

demand forecasts that arise between pairs of ports within the model.
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The models, developed in this paper, are aimed to be simple for practical
purposes, and to systematically reflect the future cargo demand forecasts. For
ease of the models, the nonlinearity has been avoided, and the models have
been developed only within the area of linear programming and mixed integer
programming with 0-1 variables. This would make it possible to get the solution
of the models of practical sizes with the aid of well known computer packages.
To systematically connect the cargo demand forecasts with the routes under
consideration, we have devised the concept of flow-route incidence matriz and
used it in the models. This is expected to be a general formulation tool for
many optimization models for ship routing or scheduling problems.

In section 2, the routing problem treated and the assumptions are dis-
cussed. Section 3 introduces the concept of flow—route incidence matrix and
gives some illustrations and potential uses. In sections 4 — 5, two optimization
models for strategic routing problems of container liner fleet are provided. One
is a linear programming model for profit maximization, the other is a mixed
integer programming model for cost minimization. Brief discussions of some

specific considerations for the solution methods are also added.
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2. Problem description and assumptions

Managers of shipping companies can manage to adapt to environmental changes
by using their insight acquired through many years of experiences in their busj-
ness. In particular, if they have only a few ships available for their operation,
they might do well without any help of analytic models for ship routing or
scheduling problems. But as their fleet size and involved shipping routes in-
crease, the decision making problems should consider more and more complex
factors that human brain cannot process simultaneously, and the number of
feasible alternatives also increase beyond their best insights. The important
thing is that a slightly better alternative than their best insights that would be
suggested by analytic models could get them the larger amount of additional
benefits, the larger and the more complicated the problem at hand is. The
optimization models in this paper are developed to help the managers of ship-
ping companies under this situation to make their decisions beﬁter in liner fleet
routing problems.

Since the route of a liner, once determined, cannot be changed for a certain
period of time in practice, the routing problem of a container liner fleet is
something like the strategic production planning problem of a manufacturing
company. Therefore, we need, as important preliminary data for the routing
problems, the demand forecasts of cargo between any two ports the shipping
company plans to serve. In this light, we assume that the shipping company
has all the required demand forecasts, d;; (the demand forecast of cargo from
port ¢ to port j), for the planning horizon. With this data the decision maker
(manager) wants to assign each ship (or each type of ship) k, (k =1, .., L) to '
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proper routes 7 (r =1, -+, R) among a finite set of candidate routes considered
by the shipping company to optimize his decision criteria. At the same time,
he wants to determine approximate frequencies of the liner service on each
route. Additionally he also might want to decide which ship to add to available
fleet, i.e., which ship to charter in for the planning horizon, which ship to
build or purchase among finite set of the capital investment options. This
kind of problem corresponds to the capital investment planning problem of a

manufacturing company, and the mixed integer programming model in Section

5 will be of help.

In this paper the following assumptions are imposed for the models and

the following notations are used:

Assumptions

(a) The demand of cargo (expected number of containers) from port ¢ to port j,
d;j, over the planning horizon is deterministic, known, and occurs uniformly
during the planning horizon.

(b) A ship can be used on more than one route if needed.

(¢) The managers of the shipping company can suggest a finite set of candidate
routes for their liner fleet, old or new, derived from common sense, their
past experience, or their future view of main cargo flows. We could also
think of a model which determines the sequences of ports of call, from the
very start, without any a prior: set of routes just like the model in [12].

But it seems more practical to assume that the managers have their own
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sense of the routes, and the routes determined through the analytic models

should not be far different from this.

Notations

(a) dij: Cargo demands (number of containers) from port 7 to port J; we simply
call it the flow from port i to port j.

(b) m;;: Minimum required number of trips from port ¢ to port j to satisfy
the flow d; -

(¢) crr: Expected operation cost of ship k on the route r per a round trip.

(d) mr: Expected profit from a round trip on route r by ship k.

(e) tyx: Total travel time for ship % on route r per a round trip, roughly the
sum of sailing time and the time spent at ports on route r.

(f) tx: Maximum time ship k is available during the time horizon.

(g) hx: Lay-up (idle) cost of ship % per unit time.

(h) fi: Fixed cost of ship k during the planning horizon: total charter rate for
a newly chartered ship, or total capital cost incurred for a new ship built
or purchased.

(1) aijrr: A component of the augmented flow-route incidence matrix.

(j) @7k Number of round trips of ship k& on route r.

(k) yx: Lay-up time of ship & during the planning horizon.

(1) (¢,7) € r: Route r contains a path from port i to port j either in outhound

direction or in inbound direction.
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3. Flow—route incidence matrix

For the models suggested in the next two sections, this section introduces a
matrix which is expected to serve as a generally useful formulation tool for
routing or scheduling problems of ships. We call this matrix the flow-route
incidence matriz since this links the cargo demands to candidate routes.
Suppose there are N pairs of ports (1,7) where flow, d;; (>)0, occurs from
port i to port j over the planning horizon, and there are R candidate routes
considered. By (i,j) € r, we indicate that route r contains a path from port ¢
to port j either on its outbound direction or on inbound direction, i.e., a flow

from port i to port j can be fulfilled by a finite number of round trips on route

T.

Definition 3.1. A matrix A = (a,'j,r) MR is called the flow—route inci-
X

dence matrix with N—flows and R-routes, if,

aij»r:{l’ lf (i’j)er i

0, otherwise.

The following example gives a simple illustration of the flow—route incidence

matrix.

Example 3.1. Suppose there are flows dy2, di3, dosa, d41 and two candidate
routes 1 -2 -4 -1, and 1 — 3 — 4 — 1 where port 1 and 4 are the common
end ports of both routes. Then, the corresponding flow-route incidence matrix

becomes as follows,
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-_—

1 2

(1,2) (1 0
4 L3)fo 1
2,491 o
(4.1 \ 1 1)

The above flow-route incidence matrix seems to have various potential
usefulness for modelling strategic routing problems or operational scheduling
problems of ships. For an instance, the following simple 0-1 integer program-
ming model, in fact an instance of a set covering problem [9], is used to find a

way of minimum number of routes to satisfy the future cargo demands (flows):

min { 14+ 2p | dz > 1, z;€{0,1} } -

where © = (21, 2 )T and 1 is the column vector every component of which
is 1. For another example, we can think of a problem to find a feasible set
of ship schedules to satisfy a set of given temporary cargo demands. Let cy
indicate the cost involved to run the schedule r, then the best set of schedules

can be found by solving the following similar problem:

min { cx| Az > 1, 2; € {0,1} }

where c is the row vector of the costs ¢, and each column of 4 should represent
each candidate schedule rather than a route. This application is actually found
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in a bulk cargo ship scheduling model [4], and in a tanker scheduling model [3,
10].
The next two sections, in fact, use an extended modification of the above

matrix defined as below. Other formulation also could lead to different vari-

ations. For each route 7, let K, denote the set of available ships during the
planning horizon and which can be assigned to route r. In practice, we may
also start by setting K, = K for any route r, if we have no a priori idea about

what K, is like.
Definition 3.2. By an augmented flow—route incidence matrix we mean

a matrix A = (ai j,rk) (aij,rk 18 the component in the row corresponding to the

flow of (,j) and in the column corresponding to route r and ship k with k € K,)

where

Giirg = {1 if (2,5) €3
T 0 otherwise

Example 3.2. Continuing with Example 3.1, suppose there are two ships 1, 2
available during the planning horizon, and ship 1 can be assigned to both routes
while ship 2 cannot be assigned to route 2 because of a certain government

regulation. Then the resulting augmented flow-route incidence matrix becomes

= O
—_ O
-0 = O
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4. A linear programming model

In this section we present a linear programming model for routing strategy of
a liner fleet by using the augmented flow-route incidence matrix 4. Unlike the
model in the next section it is assumed that all the ships available during the
planning horizon is known and fixed; the shipping company has already decided
about what additional ships to add to the existing fleet and what ship to delete
for the planning horizon, i.e., the shipping company has already got a fixed
plan about what ships to charter in, what to charter out, and what to build or
purchase.

Given the capital investment plan for the time horizon, given demand fore-
casts, the decision making problem of this section is to find a routing mix of
the liner fleet to candidate routes to maximize the expected profit from liner

operation during the time horizon.

4.1. Objective function

Let e, be the expected revenue per voyage on route r by ship %, which could be
estimated from past experience data of operation, or from the managers’ hunch
in case r is a newly suggested route. Let ¢, is the estimated operation cost of
the ship & per voyage on route r. This could be calculated by such methods as
suggested in [11]. Then an estimated profit per voyage on route r by ship k.

Trk, 18 determined by

Trk = €rk — Cyk-
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A natural objective function appears as follows.

R
max ZZ TrkTrk (1)

r=1keK,

4.2. Constraints

The augmented flow-route incidence matrix is used to make a set of constraints
that the selected routes and service frequencies should be enough to satisfy
all the required flows d;;. Let w;; be the average amount of cargo (average
number of containers) that has been transported per voyage from port ¢ to port
j from past experience data. (In case d;; is a newly required flow, we could
compute w;; from other sources such as data from other companies or just from
decision maker’s hunch.) Let z,x be the decision variable denoting the number
of voyages of ship k on route r during the planning horizon, and a;; rx as defined
in Definition 3.2. To serve all the cargo demands over the planning horizon the

following set of constraints should be satisfied.

R
w,](z z aij,rerk) > dz] V(Zvj)
r=1keK,

Again, if we set m;; = dij/w;;, the above constraints can be expressed equiv-

alenltly as follows.

R
Z Z QijrkTrk = Mij (i, 7) (2)
r=1keK,
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From the derivation, the above constraints (2) can be regarded as cargo demand
constraints, and the right hand side m;j can be interpreted as an estimation
of the minimum number of voyages on the whole network of routes required to
satisfy the estimated demand flow dij.

The second group of constraints depicts the time constraints or ship capac-
1ty constraints. Let t; be the total time that ship % is available for operation for
the planning, and ¢,, the total travel time for ship & on route r. We also can
refer to {11] for practical computation of them. If we are to keep the same speed
for any ship assigned to a route for the regulaﬂty of service we can simply set
a common number t, to ¢, i.e., trk = t, for any k. For each ship &, let R, be
the set of routes » that ship & can be assigned to for the planning horizon, i.e.,

Ry ={r|ke K, }. Then the following set of constraints should be satisfied.

Z trkZTrr <ty Vk = 1, - K (3)
reR,

The objective function (1), and the constraints (2), (3), with the nonneg-
ativity constraints x,, > 0 together, compose a linear programming model for

the routing strategy.

191



(HBEEEASE BHERE YR AR RAEZ 1S

4.3. Completed model and comments

The completed models can be represented in matrix form as follows,

(P1) max 7T (4)
subject to Az > m (5)
Tz <t (6)

x>0

where (4), (5), (6) are the matrix representations of (1), (2), (3) respectively
with consistent dimensions of matrices. The above (P1) has no more than
R x K variables, and N 4+ K constraints, and can be solved by standard linear
programming packages. The larger part of the constraints can be completely
determined by the augmented flow-route incidence matrix.

With the optimal solution, z* = (:c:k), obtained, we come to know which
candidate routes we should choose and which we should not. The optimal ser-
vice frequencies on each route r can be found as S k- As for the utilization
of each ship, z*, shows how many round trips should be made on each route
r by ship k. The shipping company should operate the ship k for > trrayy
time units during the planning horizon. The resulting lay-up time for ship k is
th = Do, trkTry.

Of course we can incorporate this lay-up (idle) time and lay-up (idle) cost

to the above model by extending (1) to

—
~—

R K
max Z E TrkTrk — Z hiyk (
k=1

r=1keK,
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and by modifying (3) into

D tnStui =t Vh=1,... x (3)
TER,
where h; is the lay-up cost of ship k per unit time and Y 1s the decision variable
indicating the lay-up time of ship k.

Since our routing problem is strategic and so concerns a relatively long
planning horizon, it is inevitable that the coefficients used in (P1) have a certain
degree of uncertainty involved. However, we can easily treat these various
uncertainties with the help of the well established post-optimal procedures
of the linear programming. Many slight fluctuations in operating costs, for
example in fuel costs, or uncertainties of future freight rates can be treated in
the framework of oh Jective function sensitivity analysis. Difficulties caused by
uncertainties in the estimation of cargo demands d, i can be alleviated by the

aid of such method as the right hand side sensitivity analysis.

4.4. Implementation under insufficient information of 4

Suppose the shipping company cannot determine. at first. the right structure
of A, say, for example, the shipping company is not sure if the ship A can be
operated well on a newly suggested route 1. By many practical reasons such
as insufficient ship capacity, or government regulations against ships of some
flags, a ship & might be Incompatible with a route ryle., k¢ K. But without
complete preliminary consideration, i.e., without exact idea of what I\, is like.

(P1) cannot be solved at once. In this case the decision maker, at first, may be
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confronted with the linear program (P1) with the largest A, i.e., the one with

the objective function (a slight extension of (1)),

R K
max ZZ TrkTrk (1)

r=1 k=1

with constraints (3), and with the following extension of (2)

R K

ZZ QijrkTrk = Mij V(z,7) (2')

r=1k=1

where a;; , = 1if (¢,7) € r, and 0 otherwise. However, in order to get practical
solutions, the decision maker, in addition, should consider the following implicit

constraint that cannot be identified at first.

R
>y #m=0 (7)

r=1k¢K,

The fact is that the decision maker should solve the linear programming prob-
lem of (1"), (2'), (3) and the implicit constraint (7). But since the implicit
constraint (7) is not known at first, we can think of some repeated approaches
that gradually expose it.. A natural procedure, outlined below, is similar to a

concept of gradual column deletions:

At first, we solve the linear program with (1"), (2') and (3). If the
optimal solutions obtained are found to satisfy (7), i.e., if the solution
does not have any value ¥, > 0 where k ¢ K, by some intuitive tests

of the decision maker, the obtained solution may well be (supposed to
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be) a real optimal solution for (P1). Otherwise, i.e., the solution has
some values x7; > 0 where k ¢ K,., we can delete the corresponding
variables or equivalently the columns from the initial model and resolve
the resulting reduced linear program. This step would be performed
usually very easily, by a well known post-optimal analysis in linear
programming. We can repeat the similar procedure until we are sure

that the obtained solutions satisfy the implicit condition ( 7).

The above procedure ends in finite repetition for we have finite number of

variables, and the usual number of repetitions are not likely to be so large.
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5. A mixed integer programming model

Unlike the linear programming model developed in the last section, this section
assumes that the shipping company also has to make capital investment deci-
sions for the planning horizon. To meet the expected increasing future cargo
demands, the shipping company may consider some options for fleet capacity
expansion such as building or purchasing new ships and chartering some other
ships. Since this kind of decision making problem usually requires a longer
time planning horizon than the one in the last section, a desirable suggestion
for decision criterion would be one not likely to be affected by growing uncer-
tainties due to the longer planning horizon. Hence the objective of the model
adopted in this section 1s to minimize total cost incurred from operations over
the planning horizon.

Using the model in this section, the shipping company can get help in
decision making problems, in addition to what has been mentioned in the last
section, about what types of ships to build, to purchase, or to charter in to
add to the existing fleet. To reflect these decision making concerns 0-1 integer

variables have been used in the model.

5.1. Objective function

The total cost of the objective function is taken as the sum of the operating

cost, the lay-up (or idle) cost, and the (fixed) capital cost incurred during the
196



Linear and Integer Linear Programming Models for Container Liner Fleet Routing Strategy

planning horizon. Let K be the subset of ships that the shipping company con-
siders for adding to the existing fleet. The resulting ob jective function appears

as follows,

R K
min. 0> enrnt Y i+ S fuzy (8)
k=1

r=1keK, keKo

where f}. denotes the fixed capital cost incurred by adding ship k to the existing
fleet, and the variable z; is a binary variable to decide whether to add ship k
(2k = 1) or not (z = 0). The capital costs due to the existing fleet should
be omitted in the model because they are not relevant to the decision making

problem at hand.

5.2. Constraints

The cargo demand constraints are the same as in (2) or (5). The time con-
straints or ship capacity constraints are a little different from (3). and can be

split into the following two groups.

Do otektektyp =ty Vg KO )
TER,
Z Lk rr + Y —trzr =0 = IX—O (10)

rER,,

Constraints (9) are the usual time constraints that the operating time of a
ship cannot exceed the total available time for that ship. Constraints (10) also
maintain this, and additionally, require that any ship that is to be operated

must be added to the existing fleet.
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5.3. Completed model and solution methods

Now the completed cost minimization model appears as follow.

R K
(P2) min Z Z CrkTrk +thyk+ Z frzk (8)
k=1

r=1keK, keK?®
R

subject to Z E aijrkTrk 2 Mij v(i,7) (2)
r=1keK,
Z trkTrk + Yk = tk Vk ¢ K° (9)
rER
Z trkTok + Yk — T2k = 0 Vk € K° (10)
rERL

Trk Z 07 Yk 2 07 z € {071}

The above model (P2) is a mixed integer programming model with no
more than K binary variables. The continuous variables are no more than
K x (R + 1), and the number of constraints is N + K. The integer part of an
optimal solution, (z,’;), gives capital investment suggestions for fleet capacity
expansion about what ship to build, to purchase, or to charter.

To solve the above problems in practice, we will have no trouble to resort
to standard computer paékages, since the number of integer variables are ex-
pected to be relatively small in general. But as the problem size goes larger
and the the number of integer variables increases, we can also consider using
some heuristic solution methods. In particular, it seems that the Lagrangean
relaxation approach [5] will go well with (P2); if we relax the constraints (10)

with Lagrangean multipliers, the resulting Lagrangean subproblem is split mnto
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a linear program with constraints (2) and (9), and a trivial 0-1 integer program

that can be solved by simple inspection.
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6. Conclusions

This paper has suggested two optimization models that can be applied to ship-
ping companies in general with liner fleet. One model is a linear programming
model of profit maximization which provides optimal way of routing mix for
each ship available and optimal service frequencies for each candidate route.
The other model is a mixed integer programming model with binary variables
which not only provides optimal routing mixes and service frequencies but also
best capital investment alternatives to expand fleet capacity. The latter model

is a cost minimization model.

While formulating the two models we have suggested and used the concept
of flow_route incidence matrix and discussed its general usefulness for similar
routing and scheduling problems that might arise in shipping industry. The
most important merit of using this flow-route incidence matrix was that it
linked various cargo demands to route utilization in a systematic way, and in a
simple way.

The selected routes found as optimal solutions of the suggested models are
seldom likely to come out embarrassing, for the models choose the best combi-
nations of routes among candidate routes from the existing ones and suggestions
from experienced managérs. By doing this, the suggested models can help to
improve the existingrnetwork of routes or service frequencies in a generally
acceptable way.

As for ease of solution methods, the two models are usually supposed to be
implemented well with the standard linear or integer programming packages.

More efficient solution methods that would fit better the specific structure of
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these models, and implementations with real data of shipping companies would

be major future research subjects.
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