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1. Introduction

In this paper, our aim is to investigate the
local existence, uniqueness and asympototic
behavior of solution of functional integrodiffe-
rential equations of the more general type which
involve a nonlinear delay term in a Banach
space. More precisely we consider functional
integrodifferential equation of the form :

(Bx(2))' +Ax(t)=g(¢t, x:, [y k(t,s, xs)ds), tE[0, T
x(t)=0¢@), tE[-r, 0] (1.1)

where g, k are nonlinear continuous functions
and A and B are closed linear operators with
domains contained in a Banach space X and
ranges in a Banach space Y. Again, consider the
following equation concerned with above equa-

tion

() +AB \y(t)
=g(t, By, [ok(t, s, B lys)ds), tE[0, T]
y@)=B§t), t&[—-r, 0] (1.2)

where ¢&D(B). Equations of Sobolev type have
been studied by several mathematicians. But we
shall study more general equation as (1.1). Our
proof technique is different from paper{4] tried
by approximate solutions. And A. G. Karsatos
and M. E. Parrott[5] have dealt pseduoparabolic
problems with operator A(t, u).

2. Preliminaries

Let X be a real Banach space with norm || - ||
x, denote by Y be a real Banach space with norm
| - I, and intervals be used at this paper are [ -
r, T] and [0, T] where r>0 and 7>0 are con-
stants. To obtain a result, we give as the follow-
ing conditions.

(C1) The operators A : D(A)CX—Y and B :
D(B)CX—Y satisfy the following facts :

(i)A and B are closed linear operators,

(ii) D(B)CD(A) and B is bijective,

(iii) B™* : Y—D(B) is a continuous operator.

The hypotheses(i), (ii), and the closed graph
theorem imply the boundedness of the linear
operator AB™' : Y=Y. For a continuous function
x [ -r, TI>X(resp. Y), xt is that element of C=
C([~r, 0] ; X)Xresp. C=C([ -r, 0] ; Y)) defined by
x(0)=x(t+80), —r<8<0. The domain D(B) of B
becomes a Banach space with norm || x || o=
| Bx ||, x€D(B) and C(B)=C([ -r, 0] ; D(B)).
The supnorms of C, C and C(B) will be denoted,
respectively,by || - llc, || - lc,and || - || c®.

(C21) || T || <Me

(C22) || T(?) || <Me " where constant M >1 and

w>0.
(C3) g : Jox C(B)x X—Y is nonlinear continu-

ous operator.

Mw-vllear+ | x—x [l x]

-115-



Hyo - Keun Han

(C41) k : JoxJox C(B)y—Y is nonlinear contin-

uous operator.
| k2, s,w) — k(t, s, D) || <Las)e* || v -¥llcd
(C42)

| k(t,5,w) - k(t,s,9) || <LaAs)e™ ™ | y-¥llco
£, 0,0)=0, k(t,s, 0)=0,
where L1, L2&C(R*, R") and denote Jo=[0, T1].

By the variation of parameters formula, we

obtain integral equation

y)= T(t)B¢(0)+f6 Tt-s)g
(s, B 'ys, [ k(s, T B 'ydr)ds, tE(0, T]
y&)=B§?), t[ - r, 0] (2.1

(2.1) is called mild solution of (1.2). where T(¢) is
the semigroup of bounded linear operators gen-
erated by —AB™!

Definition 2.1.

A solution x(¢) of equation (1.1) is a continuous
function defined on { - r, T]1—X for some T>0
such that x(¢)eD(A) and x'(¢)eD(B) for all t&(0,
T1, AxeC(0, T1;Y), Bx'eC((0, T1; Y) and
equation (1.1) holds for all t&[ —~r, T'.

Definition 2.2.

The solution x(¢) of (1.1) is said to be exponen-
tially asymptotically, if there exist positive con-
stants N and w such that the inequality

| : | c®<NI| ¢ llcy ™, £=0
holds for || ¢ ||c®) sufficiently small.
Lemma 2.3{6].

Let a(t), b(t) and c(¢) be real — valued nonnega-
tive continuous functions defined on R", for
which the inequality

c(t)<co+ [ alskis)ds+ [oals) fo ble(t)dtlds,

holds for all tER™, where co is nonnegative con-

stant. Then
c(t)<co[1+ [ als)expl [ (a(t)+b(t)dtlds,

for all tER".

In order to prove Theorem 3.1 in section 3,
first of all, say the following fact : since AB™'is a
bounded linear operatdr, a function y(t) is a solu-
tion of Eq.(1.2) if and only if it is a solution of
Eq.(2.1) if and only if x(t)=B'y(¢) is a solution
of Eq.(1.1).

3. Result

Theorem 3.1.

Suppose (C1), (Ca1), (Cs), (C41) hold. For each ¢
&C(B), there is a unique continuous function
x : [-r, T1>X satisfying

x(t)=TE)BHO)+ [ o Tt — s)g(s xs, [  k(s,T, x:)dT)ds,
te[0, T1, x()= ), tE[ -1, 0]

provided that

MK Te* 1+ KT+l ¢ llealy,
MK T{1+ KeTle < 1.

Proof. Choose y>0 such that

H={yeC(-r,T1;Y) : w(0)
=B®0), | w-Bo|lc<, 0<t<Tl.

For y, z&H, we define the norm
ly-z|lH= sup_[ly@®)-2)].
-r<t<T

Then H is a complete normed space. since T(¢) is
strongly continuous and ¢ is continuous, let

| oz+6) - ¢(8) |loe)<y/3 and
| T(£)B¢(0) — BH(0) || <y/3.

We define
T(OB§O0)+ [ Tt —s)g(s, B 'ys, [ o
(Gy)(t)={ k(s,7,B 'yodt)ds,
Bt) -r<t<0
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We claim that G maps H into H. In other word,
for yeH, we only show that (Gyx€H. If —r<t+
0<0, then (Gy)t-+6)=B¢(t+6) an so

1 (Gy) - B¢ |lc<y3. 3.1
If0<t4+06<T, then

H{GyX¢t+8)— BHO) ||
<|l T¢+6)B¢(0) ~ BHO) ||
+I| BHO)-B§®) || + [ " | Tt +6-5) |
ll g(s, B™'ys, [ k(s, T, B yt)dt || ds
<y/3+v/3
+Me“(t+0) [ o e |lgls, B™lys, [
k(s,T,B" y)dt) - g(s,9, [ o k(s,7,0)d7) l|ds
+Meo e |lg(s,0, [ (s, T, ) ||ds
<y/3+v/3+Me“ [y Lis)e [|| ys— B¢ llc
+ [o La(t)e** * {| y: — B¢ |ledtlds
+Me* {5 Lys)e [l By |lc
+ [o L2(v)e™ || B¢ llcd<lds
<Y3+v3+MEK T 1+ KT+ ¢ lle)]
<Y

b

where K1, K2 are integral values of L1, L2eC(R",
R™), respectively. So || (Gy)t - B¢ |lc<y. By(3.1)
and (3.2), we obtain that || (Gyx — B¢ l|c<y. Th-
us(Gyr<H. Now, we prove that G is a Contrac-
tion from H to H. Fory,2€H, t >0,

[ (Gy)®) - (Gz)@) ||
< folIT@ -9l gls, B ys, [ok(s, T, B lydn)
-8(s,B'zs, [ok(s, T, B zo)dx ||ds
<Me" [oLus)e [ || ys—2s llc
+ [o La(ve ™ || y1— 2« || cdrlds
<Me* [oLu(s)ke “[1+ [oLa(r)e* ||dt]

dslly-zlu

<MK\T(1+KeTle*" |y —z ||
<ly-zlla

So
IGy - Gz ||H=_rs<1t1£TH(Gy)(t) (G2 ly —z|| 1.

Therefore, by Contraction mapping theorem,
there is a unique y&H such that Gy=y. Since

x(t)=B"'y(t), x(¢) is the unique solution of (1.1).
Theorem 3.2.

It the assumptions of Theorem 3.1 hold, then,
for t<[0, T1, ¢, 0<=C(B),

|l ®) — 2 D) || cmy<M|j¢ — § [led[1+KrTe® 5T

Proof. Let y(t)=Bx(0)¢t), yt)=Bx($)t), where
¢, $=C(B) and x(¢), x($) be solutions correspond-
ing to ¢ and ¢, respectively. for t+6>0

| ¥ +8) - 3z+0) |
< || T+6) || I B&0) =~ BHO0) |+ I
T +6 - s)ILi(s)-lys ~yslic + foLatle
| 7x — 3= |ledtlds < Me* ||o — dllcs +Me
JoLs)e || ys —ys || eds+Me [3Lu(s)
JoL2(v)e™ |lyc =y || cdrds

So.
e |l ye=ytllc
<M |l¢-bllcw+M [oLi(s)e || ys - |leds
+M [y Li(s) [oLa(ve || y: -y« llcdrds

By Lemma 2.3,

e | ye=tllc
<Mllo - dllcw+[1+ fo Lis)expl [ (Li(r)
+La(t))dtlds
<M |lo-dllewl1+K1Tex &)

So,

lly:e = 3llc<M ||¢ - ¢llcBl1+ K1 Tek ¥ Tl
(3.3)

For-r<t+6<0, this is clear, i.e.,
lye=3lle<ll o-dllew (3.4)
Therefore, by (3.3) and (3.4)
[y =y lle<M (| ¢ - dlledll+KiTe* <l
Hence

| xe(d) — (P lled
<M ||¢ - dlleca1+KiTeX 5Tl
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In next Theorem, we show that the solution
x(t) of (1.1) is exponentially asymptotically sta-
ble. So we take(C22) and (Ca42) to conditions for

semigroup T'(¢) and function k.
Theorem 3.3.

Suppose assmptions (C1), (C22), (C3), (C42)
hold, then every solution x(¢)(¢) satisfies lims—e
| %t |cmry=0.
Proof. For t+6<0,

| yt+0)<|| T +0) || || B§O) ||
+ [0 1 T¢+6-9) 11l &(s, B 'y, [
k(s, T, B ly)dx || ds<Me ™ || ¢ |los
+ 0" Me L) - [| B 'ys c®
+ foLa(tle ™ || By« || cpdtids

Then

e ||yt || c<Me* || ¢ [le
+ [ Me La(s)e || ys llods
+ fo MLi(s)e* [ La(t)e** || y+ |lcdrds

Put p(¢)=e*|| y¢ ||c, by Lemma 2.3

| y: le<Me* || ¢ lcwtl+ foMe*Li(s)
- expl [o(MLy(t)e* +La(t))dtlds} - e

Therefore || y: [|c<N || ¢ ||cie ™, where N is con-
stant. i.e.,

Jim [l ¢ llew = Jim || y2 [le=0.

4. Application

In order to illustrate the applications of our
theorem established in previous sections, we
consider the following partial functional inte-

grodifferential equation ;

% (z(x, 1) — zexx, 1)) — zxx(x, t)=h(t, 2(x, t — 1),

[ofit, s, 2(x, s = r))ds),
0<x<m,t&Jo 4.1)
2(0, t)=z(n, t)=0,tEJo

20x, )=0¢(x, t), 0<x<m,-r<t<0.

where A : JoOXRXR—-R, f: JoxJoXR—R are
Lipschitz continuous functions with Lipschitz
constants o1, o2, respectively. And A(¢, 0, 0)=0,
fit, s, 0)=0. Let X=Y=L%0, n) and A, B : XY
are operators defined by Au= - u" and Bu=u -
u', D(A)=DB)={ueXlu, u' are absolutely con-
tinuous, u""€X, u(0)=u(rn)=0}. We now define
mapping H : JoxJoxC—X and F : JoXCxXX—
X as follows ;

H(t, ¢, y)x)=h(t, ¢ - r)(x), y(x))
F, s, )))=A¢t, s, —rix)

Then Eq.(4.1) can be formulated abstractly as

(Bu(t))'+Au(t)=H(t, ut, [ (F(t, s, us)ds), tE[0, T
ut)=¢(t), -r<t<0, 6€D(B).

And

Au= X ;- 1n*(u, vn)vn, uD(A)
Bu=X;-11(1+n*u, vn)vr, ucD(B)

where {un),=1 is a complete set of othonormal ei-
genvectors of A with vn(x)=(2/m)"* sin nx. If u&
X, we obtains

B 'u= X -1 Y/(1+n2)W, unjun,
—-AB 'u= L;=1 - n¥(1+n*)u, un)un,

Ttu= Zy=1e” ™" u, un)un.

Then —AB™* is a bounded linear operator from
X to X and || T(¢) || <e”* for all ¢>0. Finally, we
show that H satifies conditions(C3), (C41).

| He, ¢, y) - H(t, 6, ) |I*

< folAtt, o - ri(x), y(x)) — h(t, ¢( - r)x), yx)) | * dx

< folot ol —r)x) — & - r)x) | Pdx

<oy ol = r)x) — & —r)x) | *dx

<oy folo— () — & —r)x) | 2dx

=0, Zr=1( — 1) =& — 1), vn)?

<O Znoi(1+nNH — 1) = & — 1), vn)

<ol B -1 - -1 ||

=01l ¢(-1) =& - 1) lIxm)
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=011 0~ & lIpm 3
Similarly,

_ I 4

| F(¢, s, §)-F(t,s, $) IP<a || o= ¢ llces) )

Therefore we can apply Theorem 3.1 to Eq.(4.1).
5)
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