Integrodifferential Equations of Sobolev Type

Hyo - Keun Han

Department of Mathematics, Pusan National University, Pusan, Korea

1. Introduction

In this paper, our aim is to investigate the local existence, uniqueness and asympototic behavior of solution of functional integrodifferential equations of the more general type which involve a nonlinear delay term in a Banach space. More precisely we consider functional integrodifferential equation of the form:

$$(Bx(t))' + Ax(t) = g(t, x_t, \int_0^t k(t, s, x_s) ds), t \in [0, T]$$

$$x(t) = \phi(t), t \in [-r, 0]$$
 (1.1)

where g, k are nonlinear continuous functions and A and B are closed linear operators with domains contained in a Banach space X and ranges in a Banach space Y. Again, consider the following equation concerned with above equation

$$y'(t) + AB^{-1}y(t) = g(t, B^{-1}y_t, \int_0^t k(t, s, B^{-1}y_s)ds), t \in [0, T]$$

$$y(t) = B\phi(t), t \in [-r, 0]$$
 (1.2)

where $\phi \in D(B)$. Equations of Sobolev type have been studied by several mathematicians. But we shall study more general equation as (1.1). Our proof technique is different from paper[4] tried by approximate solutions. And A. G. Karsatos and M. E. Parrott[5] have dealt pseduoparabolic problems with operator A(t, ut).

2. Preliminaries

Let X be a real Banach space with norm $\|\cdot\|$ x, denote by Y be a real Banach space with norm $\|\cdot\|$, and intervals be used at this paper are [-r, T] and [0, T] where r > 0 and T > 0 are constants. To obtain a result, we give as the following conditions.

(C1) The operators $A: D(A) \subset X \rightarrow Y$ and $B: D(B) \subset X \rightarrow Y$ satisfy the following facts:

- (i) A and B are closed linear operators,
- (ii) $D(B) \subset D(A)$ and B is bijective,
- (iii) $B^{-1}: Y \rightarrow D(B)$ is a continuous operator.

The hypotheses(i), (ii), and the closed graph theorem imply the boundedness of the linear operator $AB^{-1}: Y \rightarrow Y$. For a continuous function $x: [-r, T] \rightarrow X(\text{resp. Y})$, x_t is that element of $C = C([-r, 0]; X)(\text{resp. } \bar{C} = C([-r, 0]; Y))$ defined by $x_t(\theta) = x(t+\theta)$, $-r \le \theta \le 0$. The domain D(B) of B becomes a Banach space with norm $\|x\|_{D(B)} = \|Bx\|_{+} x \in D(B)$ and C(B) = C([-r, 0]; D(B)). The supnorms of C, \bar{C} and C(B) will be denoted, respectively, by $\|\cdot\|_{-} c$, $\|\cdot\|_{-} c$, and $\|\cdot\|_{-} c(B)$.

$$(C_{21}) \parallel T(t) \parallel \leq Me^{\omega t}$$

 $(C_{22}) \parallel T(t) \parallel \leq Me^{-wt}$ where constant $M \geq 1$ and w > 0.

 (C_3) $g: J_0 \times C(B) \times X \rightarrow Y$ is nonlinear continuous operator.

$$||g(t, \psi, x) - g(t, \bar{\psi}, \bar{x})|| \le L_1(t)$$

 $[||\psi - \bar{\psi}||_{C(B)} + ||x - \bar{x}|||_X]$

 (C_{41}) $k: J_0 \times J_0 \times C(B) \rightarrow Y$ is nonlinear continuous operator.

$$\|k(t,s,\psi)-k(t,s,\bar{\psi})\| \leq L_2(s)e^{\omega(t^{-s})}\|\psi-\bar{\psi}\|_{C(B)}$$

$$(C_{42})$$

$$||k(t,s,\psi)-k(t,s,\bar{\psi})|| \le L_2(s)e^{-w(t-s)}||\psi-\bar{\psi}||_{C(B)}$$

 $g(t,0,0)=0, k(t,s,0)=0,$
where $L_1, L_2 \in C(R^+,R^+)$ and denote $J_0=[0,T]$.

By the variation of parameters formula, we obtain integral equation

$$y(t) = T(t)B\phi(0) + \int_0^t T(t-s)g$$

$$(s, B^{-1}y_s, \int_0^s k(s, \tau B^{-1}y_\tau)d\tau)ds, t \in [0, T]$$

$$y(t) = B\phi(t), t \in [-r, 0]$$
(2.1)

(2.1) is called mild solution of (1.2). where T(t) is the semigroup of bounded linear operators generated by $-AB^{-1}$

Definition 2.1.

A solution x(t) of equation (1.1) is a continuous function defined on $[-r, T] \rightarrow X$ for some T > 0 such that $x(t) \in D(A)$ and $x'(t) \in D(B)$ for all $t \in (0, T]$, $Ax \in C([0, T]; Y)$, $Bx' \in C((0, T]; Y)$ and equation (1.1) holds for all $t \in [-r, T]$.

Definition 2.2.

The solution x(t) of (1.1) is said to be exponentially asymptotically, if there exist positive constants N and w such that the inequality

$$\|x_t\|_{C(B)} \leq N \|\phi\|_{C(B)^{e^{-\omega t}}}, t \geq 0$$

holds for $\|\phi\|_{C(B)}$ sufficiently small.

Lemma 2.3[6].

Let a(t), b(t) and c(t) be real – valued nonnegative continuous functions defined on R^+ , for which the inequality

$$c(t) \le c_0 + \int_0^t a(s)c(s)ds + \int_0^t a(s)[\int_0^s b(\tau)c(\tau)d\tau]ds,$$

holds for all $t \in \mathbb{R}^+$, where c_0 is nonnegative con-

stant. Then

$$c(t) \leq c_0 \left[1 + \int_0^t a(s) \exp\left[\int_0^s (a(\tau) + b(\tau) d\tau\right] ds,\right]$$

for all $t \in \mathbb{R}^+$.

In order to prove Theorem 3.1 in section 3, first of all, say the following fact: since AB^{-1} is a bounded linear operator, a function y(t) is a solution of Eq.(1.2) if and only if it is a solution of Eq.(2.1) if and only if $x(t)=B^{-1}y(t)$ is a solution of Eq.(1.1).

3. Result

Theorem 3.1.

Suppose (C_1) , (C_{21}) , (C_3) , (C_{41}) hold. For each $\phi \in C(B)$, there is a unique continuous function $x : [-r, T] \rightarrow X$ satisfying

$$x(t) = T(t)B\phi(0) + \int_0^t T(t-s)g(s,x_s, \int_0^s k(s,\tau,x_\tau)d\tau)ds,$$

$$t \in [0, T], x(t) = \phi(t), t \in [-r, 0]$$

provided that

$$MK_1Te^{\omega T}[1+K_2T][\gamma+\|\phi\|_{C(B)}]/\gamma,$$

 $MK_1T[1+K_2T]e^{\omega t}<1.$

Proof. Choose $\gamma > 0$ such that

$$H = \{ \psi \in C([-r, T]; Y) : \psi(0) = B\phi(0), \| \psi - B\phi \| c \le 0 \le t \le T \}.$$

For $y, z \in H$, we define the norm

$$||y-z||H=\sup_{-r\leq t\leq T}||y(t)-z(t)||$$
.

Then H is a complete normed space. since T(t) is strongly continuous and ϕ is continuous, let

$$\| \phi(t+\theta) - \phi(\theta) \|_{D(B)} < \gamma/3 \text{ and}$$

 $\| T(t)B\phi(0) - B\phi(0) \| < \gamma/3.$

We define

$$(Gy)(t) = \begin{cases} T(t)B\phi(0) + \int_0^t T(t-s)g(s,B^{-1}y_s,\int_0^s k(s,\tau,B^{-1}y_\tau)d\tau)ds, \\ k(s,\tau,B^{-1}y_\tau)d\tau)ds, \\ B\phi(t) - r \le t \le 0 \end{cases}$$

-116 -

We claim that G maps H into H. In other word, for $y \in H$, we only show that $(Gy)_t \in H$. If $-r \le t + \theta \le 0$, then $(Gy)(t+\theta) = B\phi(t+\theta)$ an so

$$|| (Gy)_t - B\phi || c < \gamma/3.$$
 (3.1)

If $0 < t + \theta \le T$, then

where K_1 , K_2 are integral values of L_1 , $L_2 \in C(R^+, R^+)$, respectively. So $|| (Gy)t - B\phi || c < \gamma$. By(3.1) and (3.2), we obtain that $|| (Gy)_t - B\phi || c < \gamma$. Thus(Gy) $_t \in H$. Now, we prove that G is a Contraction from H to H. For $Y, z \in H$, $t \ge 0$,

$$\| (Gy)(t) - (Gz)(t) \|$$

$$\leq \int_{0}^{t} \| T(t-s) \| \| g(s,B^{-1}y_{s},\int_{0}^{s}k(s,\tau,B^{-1}y_{\tau})d\tau)$$

$$- g(s,B^{-1}z_{s},\int_{0}^{s}k(s,\tau,B^{-1}z_{\tau})d\tau \| ds$$

$$\leq Me^{\omega t} \int_{0}^{t} L_{1}(s)e^{-\omega s} \| \| y_{s}-z_{s} \| c$$

$$+ \int_{0}^{s} L_{2}(\tau)e^{\omega (s^{-1})} \| y_{\tau}-z_{\tau} \| cd\tau \| ds$$

$$\leq Me^{\omega t} \int_{0}^{t} L_{1}(s)e^{-\omega s} [1+\int_{0}^{s} L_{2}(r)e^{\omega (s^{-1})} \| d\tau]$$

$$ds \| y-z \|_{H}$$

$$\leq MK_{1}T[1+K_{2}T]e^{\omega T} \| y-z \|_{H}$$

$$< \| y-z \|_{H}$$

So

$$||Gy - Gz||_{H} = \sup_{-r < t < T} ||(Gy)(t) - (Gz)(t)|| < ||y - z||_{H}.$$

Therefore, by Contraction mapping theorem, there is a unique $y \in H$ such that Gy = y. Since

 $x(t)=B^{-1}y(t)$, x(t) is the unique solution of (1.1).

Theorem 3.2.

It the assumptions of Theorem 3.1 hold, then, for $t \in [0, T]$, ϕ , $\bar{\phi} \in C(B)$,

$$||xt(\phi) - xt(\bar{\phi})|| C(B) \le M ||\phi - \bar{\phi}|| C(B) [1 + K_1 T e^{(K_1 + K_2)T}] e^{\omega t}$$

Proof. Let $y(t) = Bx(\phi)(t)$, $\bar{y}(t) = Bx(\bar{\phi})(t)$, where ϕ , $\bar{\phi} \in C(B)$ and $x(\phi)$, $x(\bar{\phi})$ be solutions corresponding to ϕ and $\bar{\phi}$, respectively. for $t + \theta \ge 0$

$$\| y(t+\theta) - \bar{y}(t+\theta) \|$$

$$\leq \| T(t+\theta) \| \| B\phi(0) - B\bar{\phi}(0) \| + \int_0^{t+\theta} \|$$

$$T(t+\theta-s) \| L_1(s) \cdot [\|y_s - \bar{y}_s\|\bar{c} + \int_0^s L_2(\tau) e^{u(s-\tau)} \| y_\tau - \bar{y}_\tau \| cd\tau] ds \leq Me^{ut} \| \phi - \bar{\phi} \| c(B) + Me^{ut}$$

$$\int_0^t L_1(s) e^{-us} \| y_s - \bar{y}_s \| cds + Me^{ut} \int_0^t L_1(s)$$

$$\int_0^s L_2(\tau) e^{-u\tau} \| y_\tau - \bar{y}_\tau \| cd\tau ds$$

So.

$$|e^{-ut}| \|y_t - \bar{y}_t\|_{C}$$

$$\leq M \|\phi - \bar{\phi}\|_{C(B)} + M \int_{0}^{t} L_1(s)e^{-us} \|y_s - \bar{y}_s\|_{Cds}$$

$$+ M \int_{0}^{t} L_1(s) \int_{0}^{s} L_2(\tau)e^{-u\tau} \|y_\tau - \bar{y}_\tau\|_{Cd\tau ds}$$

By Lemma 2.3,

$$e^{-\omega t} \| y_{t} - \bar{y}_{t} \|_{C}$$

$$\leq M \| \phi - \bar{\phi} \|_{C(B)} + [1 + \int_{0}^{t} L_{1}(s) \exp[\int_{0}^{s} (L_{1}(\tau) + L_{2}(\tau)) d\tau] ds$$

$$\leq M \| \phi - \bar{\phi} \|_{C(B)} [1 + K_{1} T e^{(K_{1} + K_{2})T}]$$

So.

$$||y_t - \bar{y}_t||_C \le M ||\phi - \bar{\phi}||_{C(B)} [1 + K_1 T e^{iK_1 + K_2 T}] e^{\omega t}$$
(3.3)

For $-r \le t + \theta \le 0$, this is clear, i.e.,

$$||y_t - \bar{y}_t|| c \le ||\phi - \bar{\phi}|| c(B)$$
 (3.4)

Therefore, by (3.3) and (3.4)

$$\|y_t - \bar{y}_t\|_C \le M \|\phi - \bar{\phi}\|_{C(B)} [1 + K_1 T e^{(K_1 + K_2)T}] e^{ut}$$

Hence

$$\|x_t(\phi) - x_t(\bar{\phi})\|_{C(B)}$$

$$\leq M \|\phi - \bar{\phi}\|_{C(B)} [1 + K_1 T e^{tK_1 + K_2 t T}] e^{txt}$$

In next Theorem, we show that the solution x(t) of (1.1) is exponentially asymptotically stable. So we take(C_{22}) and (C_{42}) to conditions for semigroup T(t) and function k.

Theorem 3.3.

Suppose assmptions (C_1) , (C_{22}) , (C_3) , (C_{42}) hold, then every solution $x(\phi)(t)$ satisfies $\lim_{t\to\infty} \|x_t\|_{C(B)} = 0$.

Proof. For $t+\theta \leq 0$,

$$\| y(t+\theta) \le \| T(t+\theta) \| \| B\phi(0) \|$$

$$+ \int_0^{t+\theta} \| T(t+\theta-s) \| \| g(s,B^{-1}y_s,\int_0^s$$

$$k(s,\tau,B^{-1}y_\tau)d\tau \| ds \le Me^{-\omega(t+\theta)} \| \phi \|_{C(B)}$$

$$+ \int_0^{t+\theta} Me^{-\omega(t+\theta-s)} L_1(s) \cdot [\| B^{-1}y_s \|_{C(B)}$$

$$+ \int_0^s L_2(\tau)e^{-\omega(s-\tau)} \| B^{-1}y_\tau \|_{C(B)} d\tau] ds$$

Then

$$e^{wt} \| y_t \| c \le Me^{wr} \| \phi \|_{C(B)}$$

$$+ \int_0^t Me^{wr} L_1(s) e^{ws} \| y_s \| cds$$

$$+ \int_0^t ML_1(s) e^{wr} \int_0^s L_2(\tau) e^{w\tau} \| y_\tau \| cd\tau ds$$

Put $p(t)=e^{\omega t} || y_t || c$, by Lemma 2.3

$$\| y_t \|_{C} \leq Me^{wr} \| \phi \|_{C(B)} \{1 + \int_0^t Me^{wr} L_1(s) \\ \cdot \exp[\int_0^s (ML_1(\tau)e^{wr} + L_2(\tau))d\tau] ds \} \cdot e^{-wt}$$

Therefore $||y_t|| c \le N ||\phi|| c(B)e^{-\omega t}$, where N is constant. i.e.,

$$\lim_{t\to\infty} \|x_t\|_{C(B)} - \lim_{t\to\infty} \|y_t\|_{C} = 0.$$

4. Application

In order to illustrate the applications of our theorem established in previous sections, we consider the following partial functional integrodifferential equation;

$$\frac{\partial}{\partial t}(z(x,t)-z_{xx}(x,t))-z_{xx}(x,t)=h(t,z(x,t-r),
\int_0^t f(t,s,z(x,s-r))ds),
0 \le x \le \pi, t \in J_0$$

$$z(0,t)=z(\pi,t)=0, t \in J_0$$
(4.1)

$$z(x, t) = \phi(x, t), 0 \le x \le \pi, -r \le t \le 0.$$

where $h: J_0 \times R \times R \to R$, $f: J_0 \times J_0 \times R \to R$ are Lipschitz continuous functions with Lipschitz constants σ_1 , σ_2 , respectively. And h(t, 0, 0) = 0, f(t, s, 0) = 0. Let $X = Y = L^2(0, \pi)$ and $A, B: X \to Y$ are operators defined by Au = -u'' and Bu = u - u'', $D(A) = D(B) = \{u \in X \mid u, u' \text{ are absolutely continuous, } u'' \in X, u(0) = u(\pi) = 0\}$. We now define mapping $H: J_0 \times J_0 \times C \to X$ and $F: J_0 \times C \times X \to X$ as follows;

$$H(t, \phi, y)(x) = h(t, \phi(-r)(x), y(x))$$

$$F(t, s, \phi)(x) = f(t, s, \phi(-r)(x))$$

Then Eq.(4.1) can be formulated abstractly as

$$(Bu(t))' + Au(t) = H(t, ut, \int_0^t F(t, s, us) ds), t \in [0, T]$$

 $u(t) = \phi(t), -r \le t \le 0, \phi \in D(B).$

And

$$Au = \sum_{n=1}^{\infty} n^{2}(u, v_{n})v_{n}, u \in D(A)$$

$$Bu = \sum_{n=1}^{\infty} 1(1 + n^{2})(u, v_{n})v_{n}, u \in D(B)$$

where $\{v_n\}_{n=1}^{\infty}$ is a complete set of othonormal eigenvectors of A with $v_n(x)=(2/\pi)^{1/2}\sin nx$. If $u \in X$, we obtains

$$B^{-1}u = \sum_{n=1}^{\infty} \frac{1}{(1+n^2)}(u, u_n)u_n,$$

$$-AB^{-1}u = \sum_{n=1}^{\infty} -n^2/(1+n^2)(u, u_n)u_n,$$

$$T(t)u = \sum_{n=1}^{\infty} e^{-\frac{(n^2)(1+n^2)^2}{2}}(u, u_n)u_n.$$

Then $-AB^{-1}$ is a bounded linear operator from X to X and $||T(t)|| \le e^{-t}$ for all $t \ge 0$. Finally, we show that H satisfies conditions(C_3), (C_{41}).

$$|| H(t, \phi, y) - H(t, \bar{\phi}, y) ||^{2}$$

$$\leq \int_{0}^{\pi} |h(t, \phi(-r)(x), y(x)) - h(t, \bar{\phi}(-r)(x), y(x))|^{2} dx$$

$$\leq \int_{0}^{\pi} [\sigma_{1} | \phi(-r)(x) - \bar{\phi}(-r)(x) |]^{2} dx$$

$$\leq \sigma_{1}^{2} \int_{0}^{\pi} |\phi(-r)(x) - \bar{\phi}(-r)(x) |^{2} dx$$

$$\leq \sigma_{1}^{2} \int_{0}^{\pi} |\phi(-r)(x) - \bar{\phi}(-r)(x) |^{2} dx$$

$$= \sigma_{1}^{2} \sum_{n=1}^{\infty} (\phi(-r) - \bar{\phi}(-r), v_{n})^{2}$$

$$\leq \sigma_{1}^{2} \sum_{n=1}^{\infty} (1 + n^{2})(\bar{\phi}(-r) - \bar{\phi}(-r), v_{n})^{2}$$

$$\leq \sigma_{1}^{2} || B(\phi(-r) - \bar{\phi}(-r) ||^{2}$$

$$= \sigma_{1}^{2} || \phi(-r) - \bar{\phi}(-r) ||^{2}$$

$$=\sigma_1^2 \| \phi - \bar{\phi} \|_{D(B)}^2$$

Similarly,

$$\parallel F(t, s, \phi) - F(t, s, \bar{\phi}) \parallel^2 \leq \sigma_2^2 \parallel \phi - \bar{\phi} \parallel_{C(B)}^2$$

Therefore we can apply Theorem 3.1 to Eq.(4.1).

References

- Heinz Brill, A semilinear Sobolev evolution in a Banach space, J. Diff. Eq. 24(1977), 412 – 425.
- M. B. Dhakne and B. G. Pachpatte, On a general class of abstract functional integrodifferential equations, Indian. J. Pure. Appl. Math. 19(8) (1988), 728 - 746.

- W. E. Fitzgibbon, Semilinear functional differential equations in Banach spaces, J. Diff. Eq. 29(1978), 1-14.
- 4) J. H. Lightbourne, III & S. M. Rankin, III, A partial differential equation of Sobolev type, J. Math. anal. Appl. **93**(1983), 328 337.
- A. G. Kartsatos and M. E. Parrott, On a class of nonlinear functional pseudoparabolic problems, Funkcialaj Ekvacioj 25(1982), 207 – 221.
- B. G. Pachpatte, A note on Gronwall Bellman ineq., J. Math. Anal. appl. 44(1973), 758 – 762.
- C. C. Travis & G. F. Webb, Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl. 56(1976), 397 409.

