‘Depth Two Subfactors and Hopf * — Algebras

Jeong — Hee Hong

Department of Applied Mathematics, Korea Maritime University, Pusan, Korea

Abstract

We present some well-known results concerning the irreducible dei)th two subfactors and
related finite dimensional Hopf * ~ algebras. Recent study of Hopf * — algebras coming from the
irreducible depth 2 subfactors P#CPxK is described.

1. Introduction

Over the past ten years the theory of subfac-
tors has been among the most active topics in
Operator Algebras, and it has been linked with
other fields of Mathematics and Mathematical
Physics.

The theory of Operator Algebras is based on
the natural generalization of the complex matrix
algebra Mn(C). It was initiated by Murray and
von Neumann in the 1930s. An Operator Alge-
bra is a * — algebra of bounded linear operators
on a Hilbert space over the complex numbers.
Here * refers to the adjoint of an operator, which
is a generalization of an adjoint matrix. Conse-
quently, our theory deals with infinite dimen-
sional and non - commutative objects. When an
operator algebra contains an identity operator
and is closed relative to the weak operator topol-
ogy, it is called a von Neumann algebra. On the
other hand, an operator algebra closed under
norm topology is called a C* — algebra.

A von Neumann algebra is called a factor if its
center is scalar multiples of the identity. The full

matrix algebra as well as the set of all bounded
operators on a Hilbert space are obviously fac-
tors. When M denotes a von Neumann algebra
acting on a Hilbert space H, its commutants M’
consists of all elements x of B(H) satisfying xy=
yx for all yEM. Here B(H) denotes the set of all
bounded operators on a Hilbert space H. In
1929, von Neumann obtained that a von Neu-
mann algebra is characterized by the fact that
M=M". Unlike C* - algebras, a von Neumann
algebra contains an abundance of projections.
By analyzing the structure of the projections,
factors can be classified into type In, I, II1, II»
and I7I. Among those factors, a type II1 factor
has continuous dimensions and always admits a
unique normalized trace which provides an
alternative definition of a type II1 factor.
Although several remarkable results of classi-
fying I1 factors have been made, definite results
still remain in the dark. It is known recently
that many classification problems in the classi-
cal Operator Algebras are reduced to classifica-
tion problems of subfactors. V. Jones’ index theo-

ry serves as an important tool for such a prob-
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lem. One line of investigation in index theory is
to understand the structure of a factor von Neu-
mann algebra M, viewed as a finite projective
module over its subfactor N. This problem is far
from solved. However, some important contribu-
tions in this direction have been already made.
In particular, it has been observed by A. Ocnea-
nu that subfactors of depth two can be repre-
sented as crossed products by outer actions of
finite dimensional Hopf * — algebras. Since then,
many applications of Hopf * - algebras to Opera-
tor Algebras have been found.

In this notes, we review some results concern-
ing the depth two subfactors as well as the
structure of the related finite dimensional Hopf
* — algebras. Throughout this paper, we denote
by C the complex numbers.

2. Hopf * - algebras and their actions

A finite dimensional Hopf * - algebra H is a
finite dimensional C* - algebra equipped with
linear maps

(i) comultiplication A : H— HQH

(ii) counit ¢ : H—C

(iii) antipode S : H—> H
satisfying the relations ; (AQid)A=(id®A) A,
(e®id)A=id=(idQe)A, and m(SRid)A=e=m(id
®S)A, where id denotes the identity mapping of
H and m : HOH—H denotes the multiplication.
Here, both A and & are C* — algebra homomor-
phisms and S is a * - preserving antimultiplica-
tive involution.

Dual algebra H® is the vector space of linear
functionals on a finite dimensional Hopf algebra
H, which turns out again a finite dimensional
Hopf * - algebra with the following structure :

(¢ - 9)XR)=(0Q9) A(R), $*(R)=§(S(A*)), (AQ)R
Kg)=0(hg), £ (9)=¢I), and S° ($)(R)=¢(S(R)) ,
for ¢, p€H" .

A Hopf algebra H is commutative in case

mT=m, and cocommutative in case TA=A,
where T : HQH—HQH is the twisted map
given by T(a®b)=bRa.

Examples. (1) The simplest example of a
cocommutative Hopf algebra is the complex
group algebra C[G]of a finite group G ,
equipped with A(g)=gQg, elg)=1, S(g)=g "~

(2) The simpleast example of commutative
Hopf algebra is the function algebra C(G) with
minimal projections {pglgEG). This is dual to
the group algebra C[G], with comultiplication
A(pg)=h)é_Gph®p,,_lg, counit &(pg)=2>e, and anti-
pode S(pg)=pg- 1. Here e denotes the netural ele-
ment of G.

(3) C(G)RXCIG] is obviously a non — commuta-
tive and non - cocommutative Hopf algebra

when G is not abelian.

There are but few general methods of construc-
ting nontrivial non - commutative and non -
cocommutative finite dimensional Hopf alge-
bras. One of the most important is due to recent
works by S. Majid [6]. He constructed Hopf alge-
bras as bicrossproducts, thus producing exam-
ples which are neither commutative nor cocom-

mutative.

An action of finite dimensional Hopf algebra H
on a unital * — algebra A is a bilinear map - : H
XA—A satisfying the following conditions ; 4 -
I=¢e(h), I -x=x,hg -x=h-(g-x),h xy=
;(hi xR y), (B - x)*=8(h*) - x*, for all h, g
€H, and x, y&A. Here we denoted by A(h) by
Zéhi@h'f. This is exactly a group action when
Hopf algebra H is replaced by a finite group G.

Example. Cocommutatative Hopf algebra
H=C[G] acts on A via a bilinear map o : G—
Aut(A) given by(g)é Je8) - ngfél Je0e(x).

The crossed product AxH is a unital * - alge-
bra AQH(coincides with a vector space), with

_66_



Depth Two Subfactors and Hopf * - Algebras

multiplication and * — operation defined by

(=®hXy®g)= Zx(h; - y)Dhig,

(h - x)*=S (h*) - x*,

The fixed point algebra is defined as A¥={x&
Alh - x=¢elh)x, VheH]. If all elements of A are
fixed, then the action is trivial. As the group
action case, the action is called outer when(A¥)'
NA=CI. It is known that any finite dimensional
Hopf * - algebra acts outerly on the hyperfinite
type II1 factor.

3. Depth two subfactors

Let M be a type II1 factor with a unique nor-
malized trace . When M is acting on a Hilbert
space H, one can regard H as an M - module.
Therefore we can define the Murray von Neu-
mann coupling constant dim ,H for M on H, by
using the trace 1. Given a subfactor N of M with
the same identity, V. Jones defined the index
[M : N] based on a coupling constant dimyLAM),
where the Hilbert space LXM) is the GNS com-
pletion of M with respect to the inner product
<a,b>=1ab*X[2]).

When ey denotes the orthogonal projection
from L*M) onto the closed subspace of LN), V.
Jones have constructed the(basic construetion)
von Neumann algebra M1={M, ey}", generated
by M and ey , acting on L*M). If N and M are
factors then [M : N]< o if and only if M1 is a
type I factor and [M: : M]=[M : N]. Also we
have [M : N]=1(ey) %([2]).

Assume that [M : N]< 0. By letting M1 act on
its own standard Hilbert space LAM1) we can
construct the next basic construction M2=
{Miepl}" of MC M, with the orthogonal projec-
tion ey onto the close subspace of L¥M). We see
that [M2 : M1]=[M: : N] and Mz is a type II1 fac-
tor. Iterating this procedure, we obtain a tower

of type II1 factors

NcMcMiCM2CM3C------ ,

and consequently a derived tower of relative
commutants

CI=N'NNCN'NMCN' NMiCN' N M2C -+,

When the index [M : N] is finite, the relative
commutants N'(\Mx» turn out to be finite dimen-
sional. Moreover, each algebra N'NMx» contains
the basic contruction of N'NMn-2CN'NMn-1
(n>=2) as a subalgebra , where N=M-1, M=Mo.
Due to finite dimensioal property, the derived
tower can be described easily with help of Brat-
teli diagram. Moreover, the mirror image of the
previous inclusionis always part of the next
inclusion in the derived tower. Thus we may
throw away all the reflected stuff and look at the
remaining part. The remaining part of the dia-
gram is called a principal graph for NCM,
which plays an important invariant for the
studying the structure of the original pair. The
depth of NCM is defined by the length of the
principal graph from the distinguished vertex
(associated with the commutant CI=N'NN). If
the principal graph is finite, then the pair NCM
is said to have finite depth. Otherwise, NCM is
said to have infinite depth.

When a finite group G acts outerly on a type
II factor M, Hopf algebra techniques can be use-
ful in the investigation of the derived tower for
N=M°CM. Indeed, if the group G is abelian, it
is well -~ known that Mi=MXG, and M2=M1><C,
with the dual action of the dual group G of the
abelian group G. Moreover, we have N'NM1=
CIG], M'NM2=C[G]=C(G) , and N'N M2=
M ci(G), the matrix algebra([2]). That is, NCM
has depth two. This description remains valid
even if we no longer require that G be abelian,
when we replace & with C(G), Hopf * — algebra
dual to C[G]. As indicated by A. Ocneanu, and
proved by W. Szymanski([7], see [5] for infinite
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factors), this model characterizes the tower of

factors as follows.

Theorem 1([7]) Let NCM be type 11 factors
with [M : N]<o and N'NM=CI. If NNM: is
simple, then M'N M2 has a natural Hopf * -
algebra structure and acts outerly on M1 such
that Mz is isomorphic to the crossed products M:
X (M'NMz2).

Note that the algebra N'NM: is dual to M'N
Ms, and it follows from the duality between
crossed products and the fixed point algebras
that the algebra N'NM: acts outerly on M so
that N=M""",

The structure of the involved Hopf * — alge-
bras are trivial ones if we consider the pairs
related to crossed products or fixed point alge-
bras. When N=M¢CM, the Hopf algebra N'N
M, is the group algebra C[G]. When NCNxG=
M, the Hopf algebra N’ N M: is the function alge-
bra C(GX[2]). The nontrivial examples of non -
commutative and non - cocommutative Hopf * -
algebras for N’ M1 can be obtained by consider-
ing composition of two depth 2 subfactors. The
study of such subfactors has been recently initi-
ated by D. Bisch and U. Haagerup [1].

Let G be a group of outer automorphisms of a
type I factor P. When finite subgroups H and K
of G act outerly on P, N=P*CPxK=M are type
II1 factors with [M : N]=I|H| |K|. The derived
tower of the pair was analyzed in (3, 4]. In par-
ticular, the depth two case has been clarified in

that situation, as follows.

Theorem 2([4]) Let H and K be finite sub-
groups of the group G . Then N=P*CPX K=M
has depth two if and only if H and K satisfy(i) H
NK=/{e} (ii) HK is a group in G, where e denotes
the neutral element of G.

Theorem 3([4]) Let N=P*CPXK=M have
depth two. Then the Hopf algebra N'N M1 has

the structure of a twisted bicrossproduct.
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