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Purpose : Provide a new heuristic algorithm
Special math needed for explanations : Optimization
Special math needed for results : Same

Results useful to : Reliability engineers and theoreticians

Summary & Conclusions— This paper presents a new heuristic method
for solving constrained redundancy optimization problems in complex sys-
tems. The proposed method allows ”excursions” over a bounded infeasible
region, which may alleviate the risks of being trapped at a local optimum.
Computational results show that the proposed method performs consistently
better than other heuristic methods (Shi, Kohda and Inoue, simulated an-
nealing) in terms of solution quality. In terms of computing time, the Shi
method is best while simulated annealing is the slowest. Comparing the pro-

posed and the Kohda and Inoue methods, we observe moderate increase in
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computing time for the former as compared to the latter. In summary, if
computing time is of primary concern, then the Shi method is the one to
be recommended among the heuristic methods we considered. If, however,
solution quality is of more concern and if one is willing to accept moderate
increase in computing time for better solutions, then the proposed method

is believed to be an attractive alternative to other heuristic methods.
1. Introduction

The reliabili‘ty of a system can be increased by properly allocating redun-
dancies to subsystems under various resource and technological constraints.
The problem of optimal redundancy allocation also appears as a subproblem
in the simultaneous optimization of component reliability and redundancy
[1]. The purpose of this paper is to present a heuristic algirithm for solv-
ing such constrained redundancy optimization problems as above in complex
systems.

The redundancy optimization problem is usually formulated as a non-
linear integer program which is in general difficult to solve due to the con-
siderable amount of computational effort required to find an exact optimal
solution. Therefore, various heuristic methods have been developed (see [2]-
[8] among others, and also [1], [9]-[11] for a review). Of particular interest
is the one proposed by Kohda and Inoue [7] in which a new criterion of
local optimality is presented. They showed that their method generate so-
lutions which are optimal in ”2-neighborhood”, while the solutions obtained
by the previous methods are optimal only in ”1-neighborhood”. For a prob-
lem with monotonically nondecreasing constraints (which may usually be
the case for the redundancy optimization problem) the Kohda and Inoue
algorithm performs a series of selection and excgange operations within the
feasible region(i.e., a solution selected by a certain criterion is examined by

subtracting a redundancy from one subsystem and adding a redundancy to
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another to see if this exchange yields an improved feasible solution). The
heuristic algorithm presented in this paper was motivated by the so called
DETMAX algorithm [12] which has been successfully used for solving a non-
linear integer optimization problem that arises in optimal experimental de-
sign. The DETMAX algorithm was originally designed to handle one simple
constraint (i.e.,select exactly n points in a p-dimensional space such that a
certain nonlinear objective function wtich depends on the selected n points
is maximized). In this paper we modified the DETMAX algorithm to handle
multiple nonlinear constraints. In the proposed method, the Kohda and In-
oue requirement that exchanges (i.e., adding and subtracting a redundancy
concurrently) be conducted within the feasible region is relaxed, and instead,
"excursions” (i.e., examination of a series of infeasible solutions generated by
some rules) are allowed over a bounded infeasible region. In an excurseon,
adding a redundancy needs not be immediately followed by subtracting a
redundancy, or vice versa. In an iteration of the algorithm, the excursion
eventually returns to the feasible region with a possibly improved solution
than the starting one, or ends with a solution which is beyond the bounded
infeasible region,.for which case the whole algorethm stops (see Fig. 1) Thus
excursions can alleviate the risks of being trapped in a local optimum. Com-
putational experiments were conducted to compare the performance of the
proposed algorithm to those of Shi’s [8] and Kohda and Inoue’s [7]. Also
included in the experiment was simulated annealing [13, 14, 15] which has
emerged as a promising heuristic search method for complex combinatorial

problems.

Notation & Nomenclature

n number of subsystems

m number of constraints
z; number of components in subsystem : ; a positive integer,
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1=1,2,---,n
z (21,22, "+, Tp)
x0 initial feasible solution
zf feasible solution generated by an iteration
z* best solution found by the algorithm

x¢ current best solution
gji(z) amount of resource j consumed at subsystem

b; amount of resource j available

b b — ) _gji(z:)
i=1

r; reliability of a single component of subsystem :
R;(z;) reliability of subsystem ¢ with z; components
Qi(z;) unreliability of subsystem ¢ with z; components
R,(z) system reliability
x(%i) (21,72, -, 2; £1,-++,2,) ; add/subtract 1 at subsystem ¢
Agji(£1) increment/decrement in resource j at subsystem ¢
for increasing/decreasing ; by 1
AR,(£7) increment/decrement in system reliability
for increasing/decreasing z; by 1
A; positive constant to be added to b; to define the boundary of BIFR

F failure set
E set of solutions generated in the course of an excursion

F R feasible region
BIF R bounded infeasible region

2. Problem formulation

Assumptions

. The system and all of its subsystems are coherent.
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2. The system consists of n subsystems, each of which us (1-out-of-z; : G).
3. All component states are s-indepedent.

4. Each constraint is an increasing function of z; and is additive among

subsystems.

9. System reliability R, is known in tems of R;’s.

The redundancy optimization problem is formulated as:

(P1) Maximize R (z)

n
subject to ng(zt) < b]3 ]: 1’2"")m

i=1

z; 2> 1, integers, : = 1,2,--- n.

3. Algorithm

The proposed algorithm consists of a series of iterations (see Fig.1),
each of which always starts with the current best solution(z¢), makes an
"excursion” in a bounded infeasible region(BIFR),and then eventually

(Case 1) returns to the feasible region(FR) with a solution zf , OT

(Case 2) ends with a solution z! which is beyond the BIFR.

In Case (2), the whole algorithm stops and z* = z°. In Case (1), an attempt
is made to improve z/ according to the method to be described later, and then
¢ 1s compared with (possibly improved) zf. If R (zf) > Ry(z¢), then z°€ is
replaced by z/ and a new iteration starts. Otherwise, the solutions generated
in the course of excursion (i.e., z',2%,--- 2% in Fig. 1) are placed in the so
called "failure set” F and a new iteration starts with z¢. In Case (1), if «f
(after a possible improvement) is better than ¢, then the F set constructed

in previous iterations is cleared. In the beginning of the algorithm F is empty.
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The excursion in an iteration begins with z¢(+¢) where ¢ is selected
based upon some criterion (e.g., (1)) and is guidded by F'. Let z"(€ BIFR)
be a (infeasible) solution constructed at any point of the excursion. Then,
the rules for continuing the excursion are as follows.

(Rule 1) If 2" ¢ F, then "+ = z"(~1) where ¢ is selected according to
some criterion (e.g. ,(2)).

(Rule 2) If 2" € F, then ¢"*! = z"(+1) where 7 is selected according to

some criterion (e.g., (1)).
In Rule 1, the excursion is guided to move towards the direction that improves
the feasibility, while in Rule 2 it is guided to search BIF R further, which may
eventually ends with a better feasible solution. Note that as the algorithm
proceeds it gets more and more difficult to obtain a better feasible solution
than the current best solution, which implies that the F sets are enlarged and
the excursions stray widely over BIFR (i.e., the excursions examine more
points in BIFR before returning to FR, or finally generate a point beyond
BIFR to stop the algorithm).

Some important steps of the algorithm are described further as follows.

Initial Feasible Solution

An initial feasible solution can be generated in several ways. A simple,

twophase procedure may be described as follows. The first phase of the
procedure starts with «° = (1,1,...,1), randomly determines i, and checks
if °(+1) is feasible. If so, the first phase continues. Otherwise, the second
phase of the procedure tries to improve z° found in the first phase by filling
the slacks of resouces as much as possible. The resulting z0 is taken to be
the current best solution z¢ for the first iteration of the algorithm.

Another possibility is to take the final solution generated by a sim-

ple heuristic method as an initial solution. for instance, the Nakagawa and
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Nakashima approach [5] extended for complex systems by Kuo et,al. [9] can

be used for this purpose.

Selection Criteria

Let 2" be a (infeasible) solution at any point of excursion. If z" € F,

then ¢ for £"(+1) is selected according to the following ”forward selection

criterion”.

1<ikn

(1) max [AR,(+i)/ Z{Agji(+i)/bj}]

If 27 ¢ F, then ¢ for 27(—1) is selected according to the following "backward

selection criterion”.

1<i<n

(2) min [AR,(=i)/ Y {Ag;i(—i)/b;}]
z:#1 1=1

We do not claim that the above criteria are best for the proposed algorithm.
Other existing criteria ([4], [5], [6] among others) may be also used instead

of (1) or (2) with necessary modifications.
Bounded Infeasible Region(BIFR)

The boundary of the infeasible region to be searched is determined such
that

65| = 16, = Y gzl <A,  j=12,...,m,
=1

where Aj’s are predetermined positive constants. If Aj’s are large, then

the possibility of finding a good solution is increased since more iterations
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(and therefore more excursions) can be made over a wide BIFR,but the
computational time may be increased.On the other hand, using small A;’s
may result in the reduction of the computational time, but may also reduce
the possibility of finding a good solution. Therefore, tradeoffs have to be
made on choosing appropriate Aj’s.

Several schemes are conceivable for determining Aj’s. A simple method
is to set A; = ajb; where o is a positive constant. Another possebility may
be to determine Aj to allow a few decision variables to be increased by 1
additionally. For instance, when the constraints are linear (i.e., g;i(z;) =

¢jiT;), 0; may be set to
cj(1y +cji2y or 2Xcjay, Jj=12,...,m

where cj(;) and cj(;) are respectively the largest and the next largest values
of {cji,1=1,2,...,n}.

If Aj’s are set to somewhat large values to increase the possibility of
finding a good solution, then it should be kept in mind that the number of
elements in the failure set F could be inflated. One way of avoiding this
difficulty is to limit the maximum allowable number of elements in F' to a
certain manageable value and terminate the algorithm if this maximum is

reached.

Improvement of Feasible Solution zf

As mentioned earlier, a feasible solution z/ generated by the excursion
of an iteration is improved within FR by selecting i for zf(+:) according to

some criterion such as (1) and filling the slacks of resources as possible.

We now summarize the proposed algorithm as follows.

0. Determine A;, j =1,2,...,m.
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 Find an initial feasible solution z°. Let z¢ = z9 and z = z°.

9. Let E = F = 0. Choose i according to criterion (1). = = z(+1).

If 05| > & for any j = 1,2,...,m, then go to step 7.

 Let E=EUz. Ifz ¢ F, x = z(—1) where 7 is selected according to
criterion (2). Go to step 5. Otherwise, let F = FUE and E = 0.. Select
i according to criterion (1). = = z(+1).

. If |b§| > A for any j=1,2,...,m, then go to step 7. Otherwise, go to
step 3.

. If z is in BIFR, then go to step 3. Otherwise, let zf = r and improve
zf as much as possible.

. If Rs(zf) > Rg(z°), then 2° = zf. Let £ = z° and go to step 2.
Otherwise, let F = FUE and E = §. « = z°. Select ¢ according to
criterion (1). = = z(+i). If b§| > Aj for any j = 1,2,...,m, then go to
step 7. Otherwise, go to step 3.

. Stop. z* =z°.
4. Example

We apply the proposed method to the two examples considered by pre-

vious authors.

Ezample 1

A complex network system considered in [4], [7], [8] is shown in Fig. 2.

5

There is only one linear constraint, chixi < 20. The subsystem data are :

=1

i1 2 3 4 95

ri 070 0.85 0.75 0.80 0.90
i 2 3 2 3 1
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The system reliability expression [8] is:

Ry(z) =Ry(z1)Ry(22)Qs(23)Qs(as5)
+ Q1(x1)Rs(73)Ra(24)Qs5(z5)
+ [Ry(21)Rs(z3) + Ry(z3)Rs(zs)
+ Rs(x5)Ri(z1) — 2Ry (z1)R3(z3) Rs(z5)]
“[Ra(z2) + Ra(z4) — Ra(z2)Ry(z4)).

The boundary of BIFR is determined by taking A; = ¢j1) + ¢j(2) = 6, and
an initial solution is obtained based upon the two-phase method described
in Section 3. In the following, we describe how the algorithm proceeds for
the above example. See also Fig. 3.

0. Ay =6.
2° =(2,2,1,2,2). ¢ = 2% 7 = z°.
E=F=0.2=2(+3)=(2,222,2). [6{|=2< A, =6.
E=EUz=1{(22222)}. 2¢F. z=z(-5)= (2,2,2,2,1).
x € BIFR. Go to step 3.
E=FUz = {(2,2,2,2,2),(2,2,2,2,1)}. =z ¢ F. z = z(-4) =
(2,2,2,1,1).
ef =2 =(2,2,21, 1). zf can be improved to zf = z(+1) =(3,2,2,1,1).
R.(zf) = 0.9932 > R,(z°) = 0.9765. z¢ = zf = (3,2,2,1,1). = = z°.
Go to step 2.
E=F=0. z=2z(+4) =(3,2,2,2,1). [b5|=3< A, =6.
E=FUx={(3,2,2,2,1)}. 2 ¢ F. 2 =2(-4) = (3,2,2,1,1).
e =(3,2,2,1, 1). f cannot be improved.
Ry(zf) = Ry(z¢). F=FUE = {(3,2,2,2,1)}. E=0. ¢ = z° =
(3,2,2,1,1). z =x(+4) = (3,2,2,2,1). 6| =3 < A; = 6. Go to step
3.

A

o o

S oo
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3. E=EUz = {(3,2,2,2,1)}. z€ F. F=FUE = {(3,2,2,2,1)}.
E=10. z=1z(+3)=(3,2,3,2,1).

4. [b5] =5 < A; = 6. Go to step 3.

3. E=EUz ={(3,2321)}. 2 ¢ F. o = 2(~1) = (2,2,3,2,1). Go to
step 5.

9. ¢ € BIFR. Go to step 3.

3.3 E = EUz = {(323,2,1),(2,2,3,21)}. z ¢ F. ¢ = o(—4) =
(2,2,3,1,1). Go to step 5.

5. 2/ =(2,2,3,1,1). =/ cannot be improved.

6. Ry(zf) =0.9923 < R,(2°) = 0.9932. F= FUE = {(3,2,2,2, 1),
(3,2,3,2,1),(2,2,3,2,1)}. E=0. 2 =2° = (3,2,2,1,1). z = 2(+4) =
(3,2,2,2,1). |b§] =3 < A; = 6. Go to step 3.

3. E=EUz={(3,2221)}. € F. F=FUE = {(3,2,2,2,1),
(3,2,3,2,1),(2,2,3,2,1)}. E=0. z = 2(+3) = (3,2,3,2,1).

4. [bf| =5 < Ay = 6. Go to step 3.

3. E=EUz={(3,2,3,2,1)}, € F. F=FUE = {(3,2,2,2,1),
(3,2,3,2,1),(2,2,3,2,1)}. E=0. o = 2(+4) = (3,2,3,3,1).

4. |6¢| =8> A, = 6. Go to step 7.

7. Stop. z* = z° = (3,2,2,1,1,).

The best solution obtained is z* = (3,2,2,1,1,) for which R,(z*) =
0.9932. It is the global optimal solution as shown in [7]. Kohda and In-
oue [7] Shi (8] also obtained the same solution, while Aggarwal [4] obtained
(2,1,3,2,1) for which R, = 0.9921. In fact, the problem was solved 10 times
using the proposed algorithm, each with a different initial feasible solution

generated by the two-phase procedure, and 6 out of 10 cases yielded the
optimal solution.
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Ezample 2

The second example was considered in (8], and the corresponding system

structure is illustrated in Fig. 4. The problem is to

Maximize R,(z) =Ri(z1) + Q1(z1)Ra(z2)Ra(z4)
+ Q1 (z1)Ra(22) Ry(23)Qa(24)

4
subject to ch,‘:l:,' <30

=1

4

ZCZ:'-T:' <40

=1

z; > 1, integers, ¢t = 1,2,3,4.
The subsystem data are as follows.

i QANTNI=_ i 1
r; 0.80 0.75 0.70 0.65
c;; 6 4 3 2
C24 9 4 4 3

With A; = 2xc¢1(1) = 12, Az = 2 X cy(1) = 18, and an initial feasible solution
z° = (2,1,1,4), the proposed algorithm yields a solution z* = (3,1,1,1) for
which R,(z*) = 0.9974. Based upon a complete enumeration, we found that
this is the global optimal solution. For the same problem, Shi [8] obtained
z* = (2,2,1,3) for which R,(z*) = 0.9970. This problem was also solved 10
times by the proposed algorithm with different initial feasible solutions, and

5 out of 10 cases yielded the optimal solution.

5. Computational experiments and results
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The performance of the proposed method was compared with those of
Shi’s, Kohda and Inoue’s, and simulated annealing methods.

The proposed method is most closely related to Kohda and Inoue’s in
the sense that it also employs procedures for alleviating the risks of being
trapped in a local optimum. The Shi method is included in the experiment
due to its unique feature. That is, it is different from the other heuristic
methods in that it is based on minimal paths, and therefore, is believed to
yield solutions with relatively less computing time.

Recently, a class of heuristic search strategies has emerged for solving
complex combinatorial problems, with implications for the field of artificial
intelligence. They include simulated annealing, genetic: algorithm, neural
networks, tabu search, etc. [16]. Although the primary purpose of the com-
putational experiment is to compare the performance of the proposed method
to those of the previous heuristics designed to solve the redundancy optimiza-
tion problems, we also included simulated annealing in the experiment due
to its popularity for solving complex combinatorial problems.

The problems considered in the experiment have the same structure as

(P1) except that the constraints are replaced by

n

ZC]',':I:,'SI)]', Jj=12,...,m.

i=1

Test problems were generated for the following combinations of problem
parameters.
n =7 (Fig. 5a), 10 (Fig. 5b), 15 (Fig. 5¢)
m=1, 9
{b;} =‘large’, ‘small’
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This results in 12 sets of test problems. For each set, 10 test problems were

generated according to the following schemes.

{cji} = random uniform deviates from (0, 100)

{ri} = ramdom uniform deviates from (0.6, 0.8)

n
{b;} = {w; x Zcﬁ}' w; = random uniform deviates from

=1

(1.5,2.5) for ‘small’ {b;} and from (2.5,3.5) for ‘large’ {6}

The four heuristic methods were programmed in FORTRAN, and each of
120 test problems was solved by the four methods on a HP-9000 computer.

For each set of test problems, an expression for the system reliability
was obtained by the method of recursive disjoint products [17].

We tried two schemes for generating initial feasible solutions. One is the
two-phase method,and the other is the extended Nakagawa and Nakashima
method (see Section 3). Various test problems were solved with initial so-
lutions obtained by both methods (when the two-phase method is applied,
each problem was solved 10 times, each with a different initial solution),
and we found that the Nakagawa and Nakashima method generally yielded
better results with less computing time. Therefore, in the computational
experiment, initial feasible solutions for simulated annealing, the proposed,
and Kohda and Inoue methods were generated by the extended Nakagawa
and Nakashima method using 0.5 as a balancing coeflicient(see Section 3').
For the Shi method initial solutions were set to (1,1,...,1) since using an
initial feasible solutions generated by the extended Nakagawa and Nakashima
method results in an immediate termination of the algorithm.

For simulated annealing, the initial temperature was set to 0.001 and is

lowered at each iteration by a factor of 10. The number of simulation runs at
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each temperature was set to 1000 (refer to Cerny [15] for a detailed descrip-
tion of the procedure). These parameter values were seldcted considering the

tradeoff between computing time and solution quality after several different

combinations were tried.
The BIFR for the proposed method was determined by setting A; = 2X

cjy for all 5. In implementing the Kohda and Inoue method, the sensitivity

function with a = 0.5 was used.
Computational results are summarized in Table 1. Whenn =7, m =1

or 5, and w; € (1.5,2.5), exact optimal solutions were obtained by complete
enumeration. Performances of each method are assessed in terms of average
relative error (A), maximum relative error (M), optimality rate (O), and

average execution time of ten problems (T) defined as follows.

10 *
s Ly Rz fy

O; = number of times (out of 10 problems) method @

yields the best system reliability,
where

R;; =system reliability obtained by method : for the
.jth test problem. j =1,2,..., 10.

R} =the best system reliability obtained by any of the
four methods or by complete enumeration for the

jth test problem. j =1,2,..., 10.
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From Table 1, we observe the following.

1. In terms of solution quality (A, M, O), the performance of the proposed
method is consistently better than those of others. The Kohda and
Inoue method performs somewhat worse than the proposed one, while
performances of the Shi method and simulated annealing are not in
general comparable to those of the other two.

2. In terms of solution time (T), the Shi method requires the least amount
of computing time as expected, while simulated annealing requires the
most. Comparing the proposed and Kohda/Inoue methods, we observe

moderate increase in computing time in the former.
6. Concluding remarks

Computational results indicate that the excursion of the proposed method
is an effective strategy for finding ‘good’ solutions to complex redundancy
optimization problems. The proposed method is most closely related to the
Kohda and Inoue method in the sense that both employ strategies for alle-
viating the risk of being trapped at a local optimum. Computational results
show that the former performs consistently better than the latter (this is
believed to be due to the larger search region of the former than the latter),
with moderate increase in computing time.

In summary, if computing time is of primary concern, then the Shi
method is the one to be recommended. If, however, solution quality is of
more concern and if one is willing to accept moderate increase in comput-
ing time for better solutions, then the proposed method is believed to be an

attractive alternative.
Although not included in the present study, comparisions of the present

method with such newly emerged search strategies as genetic algorithm, neu-
ral networks, and tabu search, etc. and finding out the possibility of com-

bining their useful features should be frujtful areas of future research.
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We believe that further elaboration of the proposed method is worth-

while. This may include investigating the possibility of reducing the com-

puting time required by the proposed method while maintaining its ability

to generate ‘good’ solutions by trying various schemes for generating initial

feasible solutions, determining the BIF R, excursions, etc.

Finally, it is worth noting that the Kohda and Inoue method [7] does not

require the monotonically nondecreasing property of a constraint and that
the Shi method [8] deals directly with the minimal path sets rather than R,.

Incorporation of the above useful features into the present algorithm may be

another fruitful area of future research.
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Fig. 2. A bridge network system (Example 1).

Fig. 4. A composite system (Example 2).
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Fig. 5. Three complex systems considered
in the computational experiments.
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