Journal of the Research Institute of Basic Sciences, Korea Maritime University, Vol. 2, 1992.

COMMUTING INVOLVTIONS IN A LEFT ARTINIAN RING

Jun-cheol Han*
Jong-Hu Lee**

* Dept. of Mathematics, Koshin University, Pusan 606-080, Korea

** Dept. of Applied Mathematics, Korea Maritime Univ., Pusan, Korea

The involutions in a left Artinian ring A with identity are investigated. Those left Artinian rings A for which 2 is a unit in A and the set of involutions in A forms a finite abelian group are characterized by the number of involutions in A.

1. Introduction and basic definitions

Let A be a left Artinian ring with identity 1, let G denote the group of all units in A and let J denote the Jacobson radical of A. An involution in A is an element g in G such that $g^2 = 1$. An idempotent in A is an element e in A such that $e^2 = e$. Note that if 2 is a unit in A, then the mapping $e \rightarrow 1 - 2e$ is a bijection from the set of idempotents of A to the set of involutions of A.

Consequently, if 2 is a unit in A, then ef = fe for all idempotents e and f in A if and only if $g_1g_2 = g_2g_1$ for all involutions g_1 and g_2 in A. Clealy, $g_1g_2 = g_2g_1$ for involutions g_1 and g_2 in A if and only if the set \triangle of all involutions in A forms an abelian group under multiplication.

In [3], Cohen and Koh proved that if any ring with 1 has finite number of involutions in A, then the number is 1 or even, Wedderburn-Artinian proved that if A is a semisimple Artinian ring, then A is isomorphic to a direct product of a finite number of simple rings. Hence we obtain the following:

THEOREM 1.1. If \mathbf{A} is a left Artinian ring with identity, then $\mathbf{A}/J \cong \prod_{i=1}^{n} \mathbf{M}_{i}(D_{i})$ where $\mathbf{M}_{i}(D_{i})$ is the set of all the $n_{i} \times n_{i}$ matrices over a division ring D_{i} for each $i = 1, 2, \dots, n$ and n is a positive integer.

2. Commuting involutions in a left Artinian ring

Recall that a ring A is said to be primitive if it has a faitful,

irreducuble A-module and an ideal P in a ring A is said to be primitive if A/P is a primitive ring. By the well-known fact that if a ring A has identity, then the A-module M is irreducible if and only if there exits a maximal left ideal I such that A/I and M are isomorphic, in [2], the following theorem was proved:

THEORM 2.1. If a ring A has identity, then $(I ; A) = \{a \in A : aA \subseteq I\}$ is a primitive ideal if and only if I is a maximal. And if I is a left ideal of A, then (I : A) is the largest ideal of A contained in A.

Proof. In[2], (pp52, Theorem 4)

In[2], the following theorem was also proved:

THEOREM 2.2. A primitive ideal of a ring A is prime.

Proof. In[2], (pp67, Theorem 6).

LEMM 2.3. Let Δ be a left Artinian ring with identity such that $\Delta/J \cong_{\stackrel{n}{\downarrow}} D_i$ where each D_i is a division ring of odd characteristic.

If the set \triangle of involutions in A forms an abelian group, then A has precisely 2^n involutions and n maximal left (or right)ideals.

Proof. Since 2+J is a unit in 1/J, 2 is a unit in 1/J. Therefore, the number of involutions in 1/J is equal to the number of idempotents in 1/J.

By hypothesis, A/J has precisely 2^n idempotents, namely, $\{\frac{n}{2}, x_i | x_i = 0_i, 1_i\}$ where $0_i(resp. 1_i)$ is the additive identity (resp. multiplicative identity) of D_i .

Since each idempotent of A/J may be lifted to an idempotent of A, A has at least 2^n idempotents. Suppose that $|\triangle|$ 2^n . Then there exist distinct idempotents e and f in A such that e + J = f + J. Thus $e - f \in J$. Since J is a nilpotent ideal of A, there exits a positive integer m such that $(e - f)^m = 0$ $(m \ge 2)$. Note that if m is odd, then $(e - f)^m = e - f$ and if m is even, then e - 2ef + f = 0, and so e + f = 2ef - (*). By multiplying e to both sides of (*), we get e = ef.

Thus e + f = 2ef = 2e and so e = f, a contradiction. Hence A has precisely 2^n idempotents and hence 2^n involutions.

Next, for the simplicity of notion, assume that $A/J = \bigoplus_{i=1}^{n} D_i$ and let \prod denote the canonical epimorphism of A onto A/J. For each $j = 1,2, \dots, n$, let $A_j = \prod_{i=1}^{n-1} B_i$ where $B_j = \{0_j\}$ and $B_i = D_i$ for $i \neq j$. Note that A_1, A_2, \dots, A_n are maximal left (or right) ideals of A. Moreover, if

I is any maximal left (or right) ideal of A, then $A_1A_2 \cdots A_n \subseteq \bigcap_{i=1}^n A_i \subseteq J \subseteq I$. By theorem 2.1, (I : A) is primitive and the largest ideal contained in A and so $A_1A_2 \cdots A_n \subseteq (I : A)$. By theorem 2.2, (I : A) is a prime ideal. Thus there exits an $i, 1 \le i \le n$, such that $A_i \subseteq I$. Consequently, $A_i = I$. So A has precisely n maximal left (or right) ideals.

THEOREM 2.4. Let A be a left Artinian ring with idenity such that $2 \cdot 1$ is a unit in A, the set \triangle of involutions in A is an abelian group under multiplication and $|\triangle|$ is finite. Let $m = |\triangle|$. Then $m = 2^n$ for some positive integer n and the following are equivalent:

- (i) $m = 2^n$.
- (ii) $A/J \cong \bigoplus_{i=1}^{n} D_i$ where each D_i is a division ring of odd characteristic.
- (iii) A has precisely n maximal left (or right) ideals.

Proof. Since the order of each g in A dives 2, $|\triangle| = 2^n$ for some $n \ge 0$. Since $2 \cdot 1$ is a unit in A, char(A) $\ne 2$ and so n > 0. By the preceding Lemma, (ii) implies (i) and (ii) implies (iii).

Assume (i) holds. Note that $A/J \cong \bigcap_{i=1}^{n} M_i(D_i)$ where each $M_i(D_i)$ is the set of all the $n_i \times n_i$ matrices over a division ring D_i . Since the idempotents in A commute and for each idempotent in A/J, there exits an idempotents \bar{e} in A such that $e+J=\bar{e}$ and if \bar{e}_{ni} and f_{ni} are idempotents in $M_i(D_i)$, then $\bar{e}_{ni}f_{ni}=f_{ni}\bar{e}_{ni}$. So $n_i=1$ for all $i=1,2,\cdots,k$, that is, $A/J\cong \bigoplus_{i=1}^{n} D_i$. Since $2\cdot 1$ is a unit in A/J. Therefore, each D_i is a division ring of odd characteristic

By Lemma 2.3, k = n. Hence (i) implies (ii).

Finally, assume (iii) holds. As above, $A/J \cong \bigoplus_{i=1}^{n} D_i$ where each D_i is a division ring of odd characteristic. Once again, Lemma 2.3 yields that k = n.

COROLLARY 2.5. Let A be a commutative Artinian ring with identity such that $2 \cdot 1$ is a unit in A, the set \triangle of involutions in A is an abelian group under multiplication and $|\triangle|$ is finite. Let $m = |\triangle|$. Then $m=2^n$ for some positive integer n and the following are equivalent:

- (i) $m = 2^n$
- (ii) $A/J \cong \bigcap_{i=1}^{n} F_i$ where each F_i is a field of odd characteristic.
 - (iii) A has precisely n maximal ideals.

the Jacobson radical of Ai.

(iv) $\mathbf{A} \cong \bigoplus_{i=1}^{n} \mathbf{A}_{i}$ where each \mathbf{A}_{i} is Artinian local ring with identity such that (\mathbf{A}_{i}/J_{i}) is odd where for each i, J_{i} is

Proof. By [4,Theorem IV.2.9], if A_i is an Artinian local ring with identity and char (A_i/J_i) is odd, then A_i has exactly 2 involutions. Therefore (iv) implies (i). Since A is a commutative Artinian ring

with idenitity and any Artinian ring is semiperfect, by [1,

Proposition 7.6, and Theorem 27.6], $\mathbf{A} \cong \bigoplus_{i=1}^{n} \mathbf{A}_{i}$ where each \mathbf{A}_{i} is an Artinian local ring with identity. Since $2 \cdot 1$ is a unit in \mathbf{A}_{i} , char(\mathbf{A}_{i}/J_{i}) is odd for all $i = 1, 2, \dots, m$. Thus \mathbf{A}_{i} has exactly 2 involutions for all i [Theorem IV.2.9]. Since the number of involutions in $\oplus \mathbf{A}_{i}$ is 2^{n} , m = n if (i) holds.

So (i) implies (iv). Therefore (i) - (iv) are equivalent by Theorem 2.4.

As noted previously, the assumption that the set of all involutions in a ring \mathbf{A} is equivalent to the property that $\mathbf{ef} = \mathbf{fe}$ for all idempotents \mathbf{e} and \mathbf{f} in \mathbf{A} where $\mathbf{2}$ is a unit in \mathbf{A} . We next classify left Artinian rings \mathbf{A} with identity for which the idempotents of \mathbf{A} commute.

For the simplicity of notation, assume $A/J = \bigoplus_{i=1}^n M_i(D_i)$ where each $M_i(D_i)$ is the set of all $n_i \times n_i$ matrices over a division ring D_i . Let Φ denote the canonical homomorphism of A onto A/J. For each i, let $M_j = \bigcap_{i=1}^n B_i$ where $B_j = M_j$ and $B_j = \{0_i\}$ for $i \neq j$ and let $A_j = \Phi^{-1}(M_j)$.

COROLLARY 2.6. Let A be a left Artinian ring with identity such that 2 is a unit in A and A has precisely four involutions. Then A has precisely two maximal left ideals and $A/J \cong F_1 \times F_2$ where F_i is field of odd characteristic.

Proof. Since $\bf A$ has precisely four involutions and 2 is a unit in $\bf A$, $\bf A$ has exactly four idempotents,0,1, $\bf e$ and 1 - $\bf e$ for some $\bf e$ in $\bf A$. Since these idempotents commute, the involutions commute as well. Thus the corollary follows from Theorem 2.4.

THEOREM 2.7. Let **1** be a left Artinian ring with identity. The following are equivalent:

- (i) For all idempotents e and f in A, ef = fe.
- (ii) $A/J \cong \bigoplus_{i=1}^{n} D_i$ where each D_i is a division ring and n is a positive integer, A_i contains a unique nonzero idempotent ε_j such that if e is any idepotent in A, then $\varepsilon_j e = \varepsilon_j$ or $e\varepsilon_j = \varepsilon_j e = 0$.

Proof. (i) \Rightarrow (ii). Assume that (i) holds. Then if e and f are idempotents in A/J, then ef = fe. Consequently, $A/J \cong \bigoplus_{i=1}^{n} D_i$ where each D_i is a division ring. We may assume that $A/J = \bigoplus_{i=1}^{n} D_i$.

Let $e_j = (x_1, x_2, ..., x_n)$ where $x_j = 1_j$ and $x_i = 0_i$ for all $i \neq j$ and let ε_j be an idempotent in A such that $\varepsilon_j + J = e_j$. Then ε_j is a nonzero idempotent in A_j . For, let $f \in A_j$ be such that $f^2 = f$. Then f + J = J or $f + J = \varepsilon_j + J$ Since the only idempotents in D_j are 1_j and 0_j . If f + J = J, then f = 0 since J contains no nonzero idempotent.

If $f + J = \varepsilon_j + J$, then $f - \varepsilon_j \in J$ since idempotents in A commute, $f - \varepsilon_j$ is idempotent of A and hence $f = \varepsilon_j$. Now let ε be an idempotent in A. Then $\varepsilon_j e$ is an idempotent in A, and so $\varepsilon_j e = 0 = e\varepsilon_j$ or $\varepsilon_j e = \varepsilon_j$.

(ii) \Rightarrow (i). Assume that (ii) holds. Let e and f be idempotents in **A.** We first show that $\varepsilon_i(ef - fe) = 0$ for each $i = 1, 2, \cdots, n$. By assumption, $\varepsilon_i e = 0 = e\varepsilon_i$ or $\varepsilon_i e = \varepsilon_i$. If $\varepsilon_i e = 0$, then $\varepsilon_i(ef - fe) = \varepsilon_i fe = 0$, since $\varepsilon_i f = \varepsilon_i$ or $\varepsilon_i f = 0$. Suppose that $\varepsilon_i e = \varepsilon_i$. If $\varepsilon_i f = 0$, then as above, $\varepsilon_i(ef - fe) = 0$. Therefore, we may assume that $\varepsilon_i e = \varepsilon_i = \varepsilon_i f$. Then $\varepsilon_i(ef - fe) = \varepsilon_i f - \varepsilon_i e = \varepsilon_i - \varepsilon_i = 0$. Next note that for all $i, j, i \neq j, \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i = 0$. For, if not, then $\varepsilon_i \varepsilon_j = \varepsilon_i$ and $\varepsilon_j \varepsilon_i = \varepsilon_i$ so $\varepsilon_i \varepsilon_j \varepsilon_i \varepsilon_j = \varepsilon_i \varepsilon_j$ which means that $\varepsilon_i \varepsilon_j$ is idempotent which is contained in J. Since J contains no nonzero idempotent, $\varepsilon_i \varepsilon_j = 0$, a contradiction. So $\{\varepsilon_i : i = 1, 2, \cdots, n\}$ is a set of orthogonal idempotents in A. Note that for $j = 1, 2, \cdots, n$, $\varepsilon_j + J = (0_1, \cdots, 1_j, \cdots, 0_n)$

and hence $\underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j} + J = 1 + J$. So $1 - \underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j} \in J$. Since $\{\varepsilon_{i} : i = 1, 2, \dots, n\}$ is a set of orthogonal idempo tents in $A, 1 - \underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j}$ is also idempotent. And again, $1 - \underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j} = 0$, so $1 = \underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j}$. Therefore, $(ef - fe) = 1(ef - fe) = \underset{i=1}{\overset{n}{\oplus}} \varepsilon_{j}$. $(ef - fe) = \underset{i=1}{\overset{n}{\oplus}} (\varepsilon_{j}(ef - fe)) = 0$. Thus, (ii) implies (i).

REFERENCE

- 1. Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York Springer-Verlag, 1974.
- 2. Behren, E. A., Ring Theory, New York and London; Academic Press, 1972.
- 3.Cohen, J. and Koh, K., Involutions in a compact ring, Journal of Pure and Applied Alegbra, 59(1989), 151-168.
- 4. Han, J.C., Involution in a left artinian ring, Pro. of Kaist mathematics work-shop, Vol. 5(1990), 175-196.
- Herstin, I.N., Noncommutative Rings, The Mathmatical Assocition of America, 1965.
- 6.Lambek, J. Lectures on Rings and Modules, New York: Chelea publishing Company., 1976.

