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This paper presents the results of an investigation into the com-
bined axial and lateral vibrations of the tethers of tensioned buoy-
ant platforms, (TBPs). Wave-induced motions of the TBP excite
tether vibrations through lateral forces at the tether top end (called
external or forcing excitation in this paper) combined with a time-
varying axial force (called parametric excitation here). Although,
the forcing and parametric excitations have been considered separ-
ately in the research literature, this paper examines their combined
effects — particularly with a view to determining tether behaviour
for different water depths. The governing partial differential equ-
ation of tether lateral motion is reduced to a nonlinear differential
equation and solved by a combination of the Romberg method and
the fourth-order Runge-Kutta method. Comparisons for tether
vibrations when taking both axial and lateral forcing into account
and when considering axial and lateral forcing separately are pre-
sented. It is shown that the combined excitation gives greater
amplitude of vibration with this feature being particularly dominant
in even numbers of the instability region of the Mathieu stability
chart. The frequency of oscillation of the combined response is also
dependent on the relative magnitudes of axial and lateral exci-
tations. The results demonstrate that the above is true for a wide
range of water depths.
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The tethers of TBPs are subjected 10 two sources of
dynarmnic excitation: the first 1s motion induced by horizon-

Tensioned buoyant platforms (TBPs), such as those shown
in Figure I, are a class of floating structures that use vertical
tethers kept in tension by excess surface platform buoyancy
to maintain station in a horizontal plane and to keep heave,
roll and pitch responses at very low levels compared to freely
floating platforms. The mean tensions are set at relatively
high levels to maintain tether tension in combinations of
extreme waves, tide levels and platform offset. These high
valugs of mean tension also impose payload, and structural
weight penalties. Very many research investigations and
much design engineering has been carmied out to understand
and optimize platform and tether behaviour. A few typical
examples of such work are given m References 1-5.

* Present address: Department of Occan Engincering, Korca Maritime
Universily Youngdo-ku, Pusan 606-791, Korea

tal platform oscillations which are essentially a forcing
excitation whereas the second source of dynamic excitation
is due to changes in tether axial force due to variations in
vertical force on the platform, called parametric excitation.
Much research work has been carried out on each of these
excitation sources applied separately to TBP tethers. The
horizontal top end forcing excitation problem has been
extensively researched, Reference 6 gives a review and
Reference 7 presents a typical investigation. The parametric
excitation problem — that of determining lateral vibration
of the tether induced by time-varying axial force - has been
investigated by Hsu®, and Strickland and Mason® among
others. Many examples of parametric excitation problems
are given in Reference 10 whereas References 11 and 12
examine the problem for, drill pipes and for general slender
structures, respectively.
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l=e-— tather

Figure 1 Typical TBP configuration

This paper presents an analysis for the combined forcing
and parametric excitation of TBP tethers. Research work
on such combined excitation has only been carried out over
the last two decades'*-'®. However, none of these have
looked specifically at TBP tethers which are subjected to
relatively high tensions compared to other slender strue-
tures used in the oceans, such as marine risers. Further-
more, other research in this area has not included nonlinear
fluid damping which is a key feature of the problem, These
two factors are the principal motivations for the work pre-
sented in this paper.

The results of the analysis are illustrated by computing
three example cases where tether responses due to com-
bined excitation are compared with computations utilizing
forcing or parametric excitation only.

2. Development of theory

A generalized TBP tether is idealized as a straight, simply
supported column of uniform cross-section. Figure 2 shows
the idealized configuration under combined excitation and
gives the notation being used. The governing equation of
lateral motion for the tether is written as

iy Aty %y
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M et El T (To— S cos wt) e
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Y ar{or (1

where M is the total physical plus hydrodynamic added
mass per unit length of the tether, E/ is the structure flexural
rigidity, T, is the constant axial tension, § is the time-vary-
ing axial force amplitude,  is the angular frequency of the
time-varying axial force (parametric excitation) and
B.=0.5C, p,. d,, where Cy, 1s a drag coefficient, d, is the
outer diameter of the structure and p,. is the sea water den-
sity. The tension 7, is taken to be constant here so as to
develop analytic results dernonstrating the effects of com-
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Figure 2 Model structure configuration and notation

bined forcing on tethers with tensions that are high com-
pared to their self-weight. Following the same argument,
the time-varying axial force is assumed to be sinusoidal.
Howeaver, the formulation of the equation does include the
nonlinear drag-induced damping force. This governing equ-
ation excludes the effects of axial elasticity of the tethers
on the basis that, for the typical TBP tether lengths con-
sidered here, the frequencies of excitation do not excile
axial vibration modes. Even in conditions where this does
happen, tether axial elasticity can be included reasonably
casily in this analysis. However, it has been excluded here
for the above reason.

The partial differential equation (1) is reduced to an ordi-
nary nonlinear differential equation by using the method of
separation of variables. As can be seen in Figure 2, since
both ends of the structure are pinjointed, its modes of
motion can be readily reduced to a rigid body mode and
sinusoidal elastic response modes. Then using the time-
dependent boundary condition theory'? and taking the first
four modes for the elastic response mode shapes, an
approximate solution to equation (1) is written in the form

4
) = ko) § + 300 sin “ o

=1

where L is the length of the structure, £.(¢) is an unknown
function of time (a generalized co-ordinate) and h(?) is a
prescribed lateral movement of the top end of the structure
imparted by surface platform surge motion. This prescribed
lateral movement will, of course, madify the time-varying
axial force, —S§ cos wt, and its effect has to be incorporated
within this force. Only the first four modes are considered
50 as to simplify the computational effort and at the same
time maintain a reasonable Jevel of accuracy. The tether is
pinjointed at the top and bottom and for the analysis, the
initial position of the top end is set to be at the midpoint
of surge motion and in the lowest position of heave motion.
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In addition, the top end is taken to rotate in the clockwise
direction by the wave-induced- surface platform motion.
Therefore, A(¢) can be written as

(1) = = y, sin wt 3

where y, is the lateral displacement amplitude and w is the
angular frequency of the top end lateral motion (forcing
excitation). Note that since they both stem from a single
source, the angular frequencies of parametric excitation and
forcing excitation are the same but the phase angle differ-
ence between the two excitations is 90°.

Substituting equations (2) and (3) into equation (1) gives
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Following Galerkin's method, equation (4) is multiplied
throughout by sin (m#mx/L) and integrated over the length
of the structure, to give
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w,, in equation (6) represents the natural frequency of the
mth mode of the structure.
It is useful to introduce the nondimensional terms

(6)

Fo=fddy, Yo=yo/dy," X=x/L, T= ! (7)
Then, equation (5) becomes, in nondimensional form
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Equation (8) represents vibrations of a tether subjected to
combined parametric and forcing excitation. The lateral
response of the tether strongly depends upon B/a and Y,
which are referred to here as the strengths of parametric
excitation and forcing excitation, respectively.. The hydro-
dynamic damping related coefficient, ¢, plays a role in lim-
iting the response of the combined excitation. If F,, is
obtained by solving equation (8), the lateral responses of
the structure under combined excitation can be obtained by
substituting F,, into equation (7) and then f,, into equation
(2). Adequate techniques are not available to give an ana-
lytical solution of equation (8), especially for large values
of o and B. Therefore, it is necessary to employ a numeri-
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Table 1 Physical deta for example structures for case study

Responses of tensioned buoyant platform tethers
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Dimension

Case | Case ) Case Ill
Length (m) 1520 760 300
Dry mass {(kg/m?) 726.3
Flexural rigidity (N m?) 14.87 x 10%
Inner diameter {m) 0.762
ggsfd‘_j;:;“s:tggémziem 2'312 All are the same as case | Al are the same as case )
Hydrodynamic drag coefficient 0.8
Excitation period (s) 15
Top tension {N) 13.0 x 10°
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Figure 4 Comparison of lateral displacements of example structures under combined, forcing and parametric excitations for pfa = 1.0
and y,= 3.0 m. {a) case | structure (first instability region); (b) case Il structure (second instability region); (¢} case 1l structure (fifth

instability region). —— combined excitation; --- forcing excitation;
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Before carrying out a numerical analysis, it is worth
examining equation (8) further.. First, if the time-varying
axial force, § cos wr, is not considered, that is, if 8=0 in
equation (9), the resulting motion of the structure becomes
a forced vibration. An analytical solution of forced
vibrations can be obtained using an iterative procedure.
When the hydrodynamic damping effect is also excluded,
the steady-state solution is of the form (see also Refer-
ence 18)

b2y,
F.n(f)—(au D or
R e
M_ sin wt 10)

f;"(t) = (_“7

o, — wfYm

This result corresponds 1o the solution of undamped forced
vibrations of the tether. However, when the hydrodynamic
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damping force is considered, the amplitude of the resonance
response is limited.

Furthermore, if the lateral motion of the top end is not
considered, that is, if ¥, is zero, equation (8) yields para-
metrically excited vibrations of the structure which are
described by a nonlinear Mathieu equation. An approximate
analytical solution of the vibration can be obtained for
small values of the parameters, a and B, by using pertur-
bation techniques and can be expressed in the form®

Nt
F.(1)=a, cos (7 + BN)

+ (higher order terms) (1

with the response amplitude, ay, and the phase angle, &,
being function of a, 8, m and ¢. Here N is a positive integer
and indicates the number of the instability region along the
a axis of the Mathieu stability chart.
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Figure 5 Comparison between frequency response curves of combined, forcing and parametric excitations for B/a=1.0 and
Yo =3.0m, (a) first three modes are considered; (b) only first mode is considered. (Key as in Figure 4)
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Figure & Comparison between freque‘ncy response curves of combined, forcing and parametric excitations for B/0=0.8 and

Yo=3.0 m. {Key as in Figure 4)

However, for larger values of these parameters, a
numerical method is necessary. When the hydrodynamic
damping force is excluded, the response to the parametric
excitation becomes stable or unstable depending on the
combination of parameters, o and 3, as can be seen from
Figure 3. However, when the nonlincar hydrodynamic
damping force is included, even unstable solutions are lim-
ited in amplitude.

3. Results and discussion

Equation (8), which describes a combined excitation prob-
lem, is solved using the fourth-order Runge~Kutta method
with an extension to take account of the integral term in
the equation. This extension is made using the Romberg
method to evaluate the integral term at each time step. The
source programs for these numerical methods are taken
from Reference 19. The initial conditions employed in this
study are F,(0)=0.123 and dF,(0)/dr= 0.0, the value for
F,(0) used is typical of that encountered in practice for the
tether cases considered here.

Results from the analysis are illustrated using example
TBP tethers with the physical data as presented in Table 1.
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o 500

i
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.00

2.00 ﬂ

1.00 —

Three different tether lengths of 1520, 760 and 300 m are
chosen but other parameters such as pretension, structure
diameter etc. are taken to be identical to each other for
convenience. In the following analysis, 1520, 760 and
300 m lengths will be called case 1, Il and U structures,
respectively, and ¢ = 0.43 is used.

The worst sea state is an important environmental con-
dition for the design of TBPs and is thus considered here.
In such a condition, 15s is a typical ocean wave period
and is used here as an excitation period. In this worst sea
state, the ratio of time-varying axial force amplitude 1o pre-
tension, S/7, (= f/a), has been calculated to be approxi-
mately 1.0 for TBP tethers. The amplitude of the top end
lateral displacement, v,, is assumed to be in the range 1.0~
5.0m which corresponds to the ratio amplitude operator
(RAQ) being 0.07-0.33 for 15.0 m of ocean wave ampli-
tude. In the following analysis, the lateral responses of the
structures are obtained at their midpoints.

From Table ] and, equations (6) and (9), the values of
a, for the case I, Il and III tethers become 0.25, 1.0 and
6.5, respectively. Therefore, the dominant dynamic con-
dition (or fundamental vibration mode for the case I, I and
IIT tethers corresponds to the first, second and fifth insta-

4 é
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 —— 1
3.00 4.00 5.00

t T T 1 |
6.00 7.00 B.00 2.00 10.00

Figure 7 Comparison between frequency response curves of combined, forcing and parametric excitations for p/a=1.0 and

Yo=5.0m. (Key as in Figure 4)
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bility regions of the Mathieu stability chart (Figure 3),
respectively.

Although tethers are, in rcallty, subjected to combined
parametric, and forcing excitation, the two excitations have
been separately considered ih most research work. There-
fore, comparisons between forcing, parametric and com-
bined excitations are made here to investigate the signifi-
cance of combined excitation. The comparison is carried
out for the lateral displacements of case I, IT and III tethers.
For the validity of the comparison, the strengths of para-
metric excitation and forcing excitation, B/« and y,, are
taken to be equal to 1.0 and 3.0 m, respectively, for the
three tethers.

Figure 4a shows a comparison between forcing, para-
metric and combined excitations for the case T (1520m
length) tether. The response amplitudes of the three exci-
tations are nearly identical at the steady state. It can be seen
that in this first instability region, there is no recognizable
interaction between forcing and parametric excitations to
increase the response amplitude of the combined excitation.
Meanwhile, the response periods of forcing and parametric
excitations are, respectively, identical to and double the

6.00
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4.00
3.00 -

displacement (m)

T I
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15 s excitation period. This is an expected charactenstic
of forcing and parametric excitations as can be seen from
equations (10) and (11). In the case of combined excitation,
the response period is identical to the excitation period.
However, if the relative strengths of the excitations, f/a
and y,, change, the response period of the combined exci-
tation can also change as will be shown later.

Figure 4b presents results for the case 1 (760 m length)
tether with a dominant dynamic condition falling in the
second instability region. Figure 4h shows that the relative
response amplitudes of the three excitations in the second
instability region are quite different from those in the first
instability region (Figure 4a). In the second instability
region, the response amplitudes of the combined excitation
are much larger than those of the forcing or parametric
excitation. This means that the interaction between forcing
and parametric excitations is significant in the second insta-
bility region. The response periods of the three excitations
are all the same as for the 15 s excitation period.

Figure 4c illustrates the result for the case 111 structure
with a dominant dynamic condition which corresponds to
being in the fifth instability region. The response amplitude

T . Time(sec)

4.00 .
20.0

T T
40,0 &0.0 800

displacement (m})

\DD o

Time(sec)

1200 MOD |600 180,0 200.0

-3.00 :1 T T 7
0.0 200 40.0 60.0 Ba.o

100.0

‘ - Time(sec)

T T
120.0 1400 1€0.0 1800 2000

Figure 8 Comparigon of lateral displacements of example structures under combined excitation for three diffarent ratios of f/a.
Here y, = 3.0 m is used. {a) case | structure (first instability region): {b) case Il structure {second instability region); (c) case lll structure

(fifth instability region). — a/8=0.9; —— o/f=1.0;

a/f=11
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Figure 9 Comparison of tateral displacements of example structures under combined excitation for three different y,. Here p/a is

used. Vo=10mM; === y=3.0m; e Yo=5.0m

of the combined excitation is also much larger than that
from the forcing or parametric excitation, as for the case
1 structure. Figure 4c¢ indicates that even though the
responses of forcing or parametric excitation are small,
those of combined excitation are relatively large. The
response period of forcing excitation is still the same as
the excitation period, 15 s. On the other hand, the response
periods of parametric and combined excitations are small
compared to the excitation period. -

In order to more clearly compare the response amplitudes
of forcing, parametric and combined excitations for differ-
ent instability regions, extensive numerical calculations
were carried out. The absolute maximum response ampli-
tude at steady state was obtained for several different tether

lengths instead of taking only three lengths as in Figure 4.
However, the strengths of the excitations, B/a=1.0 and
¥o=3.0m, are kept the same as for Figure 4. Figure 5a
shows the response curves of forcing, parametric and com-
bined excitations as functions of « values, The responses
are all limited by the hydrodynamic damping force that is
included in the governing equation,

In the case of parametric exgitation, large response
amplitudes occur in each instability region and their
maximum value occurs in the centre of each instability
region with the magnitude of the response amplitude
decreasing for higher instability regions. The response diag-
ram for combined excitation shows a quite different pattern
from those for forcing and parametric excitations with this
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response being large in the even numbers of instability
regions but relatively small in the odd numbers of insta-
bility regions. '

In order to test the effect of higher modes of structural
vibrations, only the first mode 1s considered in creating the
response curves of the three excitations and the results are
shown in Figure 5b. By comparing Figures 5a and 5b, it
can be seen that the response amplitude with high modes
included is only very slightly increased for parametric exci-
tation and vice versa for forcing and combined excitations.

In order to examine the relative dominance of forcing,
parametric and combined excitations for different strengths
of parametric and forcing excitations, a/f3 and y,, the result
of Figure 5a is investigated further. Figure 6 shows the
effect of decreasing the strength of parametric excitation,
Bla (= §/T,), from 1.0 to 0.8. The response amplitudes
of combined and parametric excitations are both reduced,
especially in the high instability regions. There are still con-
siderable differences in the response amplitudes for all
three excitations. figure 7 presents similar curves with the
strength of forcing excitation, y,, increased from 3.0 to
5.0 m. The response amplitudes of forcing and combined
excitations are both increased everywhere compared to Fig-
ure 5a. The difference of response amplitudes between
forcing and combined excitations is substantially increased.

Another aspect of tether response is revealed by pre-
senting time histories of lateral displacements for the three
example structures under combined excitation which are
obtained for different strengths of parametric and forcing
excitations, B/a and y,. Figure 8 shows the results for three
different strengths of parametric excitation, B/a, with v,
being kept at 3.0 m for all cases. As the strength of para-
metric excitation, 8/a, increases, the response amplitude of
the combined excitation increases for all three structures.
However, the increase of response amplitude with strength
is more conspicuous in the higher instability regions. The
response periods of combined excitation are all the same
as the excitation period in the first and second instability
regions (Figures 8a and 8b). However, in the case of the
fifth instability region (Figure 8c), there is a period-doub-
ling phenomenon.

Figure 9 illustrates lateral displacements of the structure
under combined excitation for three different strengths of
forcing excitation, y,, with B/« being kept at 1.0 for all
cases. As the strengths of forcing excitation increase, the
response amplitudes of combined excitation increase in all
cases. A particular phenomenon is observed for the case 1
structure (Figure 9a) at y,= 1.0 m, such that its response
period is twice the 15 s excitation period. This aspect is
different from the cases of y,=3.0 and 5.0 m where the
response period is the same as the excitation period. It
would appear, therefore, that the response period of com-
bined excitation is dependent on the relative strengths of
the parametric and forcing excitations.

4. Conclusions

The analysis presented in this paper demonstrates the sig-
nificant effects of considering the combined forcing and

695

parametric excitation of TBP tethers compared with either
of the excitations on their own, as is frequently done in
conventional design studies. The analysis has been ideal-
ized for computational convenience in that the mean tether
tension is taken as constant along its length and only 2
limited number of tether modes are considered. In parti-
cular, the effect of limited tether modes on the computed
results is shown to be small.

A gencral observation from the work is that the response
amplitudes from the combined excitations are much larger
than those from either parametric or forcing excitations
applied separately especially in conditions corresponding to
the even numbered instability regions of the Mathieu stab-
ility chart. In particular, the largest response amplitudes
arise in the second instability region for the assumed mode
and the response frequency depends upon the relative
strengths of the forcing and parametric oscillation,
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