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1. INTRODUCTION

We consider the inverse problem for the transport equation which consists in finding the relaxation o(x),

x=R? and the dispersion index K(x, {6)- L #)) in the transport equation (see formulas(2.1) and (2.2)
below). Their determination is based on some information on a one-parameter family of solutions of the
direct problems for the transport equation. A specific feature of the direct problems in question is
presetting some incident radiation acute-directed with respect to the angle variable and having the form
described by the Dirac delta-function &(6—a@) , where @ is a parameter of the problem. Presetting
incident radiation in such a way is convenient for studying the inverse problem and, apparently, is
acceptable from the applied viewpoint. It enables us to split the original problem into two, inverse
problems to be solved successively. The first problem is to find the relaxation o(x) given the singular
part of the information on solutions to the direct problems, and the second is to find the dispersion index
given the coefficient . This approach makes it possible to obtain a conditional stability estimate for a
solution and to prove a uniqueness theorem for the inverse problem.

Observe that the idea of using singularities of incident radiation for studying inverse problems
connected with determining the relaxation and the dispersion index in the transport equation was proposed
for the first time in the article [1] by D. S. Anikonov and was further developed in the articles {2, 3]. In
the article [4], some approach was proposed which is a logical extension of this idea and is based on use
of the singular part of the fundamental solution to the Cauchy problem for the transport equation.
Moreover, in the above-mentioned articles, the problem of finding the coefficient o(x) (and in the
lastarticle also the problem of finding the dispersion index) was reduced to the classical tomography yields
some uniqueness and stability theorems for a solution to the original problem. The statement of the
problem in the present article is new. It uses minimal information on solutions to the direct problems and

in this aspect is more attractive than of [4]. The main result of the article is a stability estimate for the
dispersion index.
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2. Statement of the Problem and the Main Results

Let DZR* be an open unit disk, D= {x€R® | |x|<1) and let S be its boundary.

S= (xeR* | |x| =1) Consider the transport equation in a function u=u(x, 6) =u(x, 6+ 2r) 27
-periodic in :

Lo, KNv=vy- (6 +ouSu=0, (x, 0 eG=Dx[0,2x], 2.1

where o=0(x), v =(-637172;) 6)=(cosf,sinb), vu-y is the inner product of the vectors v and

A 6), and S, is the operator

Su= ["K(x,u6) : A 8)uix, )de 22

describing scattering.

Denote by n(x) the outward unit normal to S at a point x€S.
Also, let D=DUS, C=Dx[0,21],9.G= ((x, 6) eSx[0,271|A 6) - n(x)<0}, and
0 .G={(x.0)€S5x[0,22]1|A6) - n(x)>0}

Consider the following boundary value problem for equation (2.1) with data on 4_G
u(x,0)=68,(6—0a), (x,60)=4.G. 2.3

Here 0,(6—a) is a 27-periodic function whose restriction to an arbitrary interval [a—e, a+ €], e<(0, 27),
coincides with the Dirac delta~function supported at point §=a . Henceforth, a is a parameter of the
problem. In this connection, a (distributional) solution to problem (2.1), (2.3) is denoted by u(x,8,a) to
emphasize the dependence on the parameter « . It is obvious that wu(x, §,a+21) = u(x, 6,a). Therefore, we
consider the domain  Q={(x, 6,a)|(x, ) €G,a<[0,21]} as the main domain of variation of the variables
x, § and «a

The following lemma is valid for problem (2.1), (2.3) (see §3 for proof):

Lemma 2.1 Suppose that the coefficient o(x) belongs to C(D),a(%)=0 the dispersion index  K(x, cos¢)
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belongs to C(G) , and

K= (fobr sep K'(x, cos ¢)d¢) * 7187 (2.4)

Then there is a weak solution to problem (2.1), (2.3) which is representable as
u(x,6,a,)=08,(6— a) exp(— wlx, a)) + ux, 6, a). (25

Here w(x.a)eC(E),v(x.B,a)eg(f)).b=5><[0.27r], and
s(x,a) '
wx,a)= [, o@ds= [ oz~ sla))as, (26

where L(x,a)’is the segment of the ray emanating from the point x&D in the direction —i(a) between

the point x and the intersection point of the ray with S;x(x, a) is the length of the segment; and ds is
the line element.
Representation (2.5), (2.6) gives grounds for stating the following inverse problem:

PROBLEM. Given the trace of a solution to problem (2.1), (2.3) on
2.Q={(x,6.0)|(x,6) €3,G,ac[0,24] }:

u(x, 6, a)=Ax, )8, (6~ a)+ F(x, 6, a), (x,0e0.0,

find o(x)20 and K(x,cos¢),(x, HeC

Specifying the trace on 9,Q for a solution to problem (2.1), (2.3) is equivalent to specifying the functions
Ax,a) and F(x, 6, a). Moreover , the following equality holds by Lemma 2.1:

fL(x_a)a(é)ds=_ lnf(x' G)Eg'(x, a)r (x, a)ea+G. 2.7

The problem of constructing the function ¢ inside D given the function g(x,q) is referred to as the
tomography problem (the inversion problem for the Random transform) and was studied by many authors.
There are various well-known inversion formulas for equality (2.7) as well as stability estimates for a
solution. We will return to this question below.

The function u(x, 8,a) involved in representation (2.5) is a solution to the problem

L(o, K)v+ K(x, ”(6) - w(a))exp(— u(x, a)) =0, (x,0,0)eQ, (2.8

_3-
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u(x, 8,a)=0, (x,6,a)ed_Q=3d_Gx[0,2x], 2.9
and is connected with the function F(x, 6,@) by the relation
Ux,0,0)=F(x,0,a), (x,6,a)ed ,Q=3.Gx[0,2x]. (2.10)

Hence, we arrive at the nonlinear tomography problem that consists in finding the function
K(x,cos¢),¢=0—a, from relations (2.8)-(2.10). Moreover, the function w(x,a) is calculated by formula
(2.6), once the coefficient ¢ is determined from integral equation (2.7). The question of solvability of the
problem remains open. We discuss the question of stability and uniqueness for a solution to the problem.

Let (0;, K;) be a solution to the inverse problem with data f(x,a) and Fi(x, 6,4), j=1,2. Denote by
wix,a) and v(x, 6,a) the functions w and v that correspond to 0=g; and K=K;.

Moreover, let
o—0,—0, K=K -K,;, w=w—w, v=v,—v;, g=Infy—Inf, F=F —F,.

Then the functions #{x,a) and (x,6,a) are connected with the functions o(x) and K(x, cos¢) by the

relations
w(x, a) = L(wo(é)ds (211
e a)af)ds=§(x, a), (x,a)€d,G, (2.12)

Loy, K)o+ o(x)vy (%, 6,a) + fozxk(x, cos §')vyx, § + 6, a)d ¢
+ R(x, cos(8— a))exp(— w,(x, a)) + K,(x, cos(8— a)) R(x, a) w(x, @) =0, (2.13)
910.Q=0, 913.Q= F(x,6,a), (2.14)
where

R(x,a)=— j: exp{—[w(x, @)t+ wy(x, a)(1— #)]}dt. (2.15)

We will make use of the stability estimate for a solutions to equation (2.12) which ensues from the
results of the article [5).

Lemma 2.2 if ¢;=CY(D), j=1,2, then
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~2 1 = 20g(x, a X, a
J, & s = [ fs_(a)-gLJal —gﬁ—-—ld/da i3, 2.16)

where S,(a)={xeS| x- Aa)>0}, dglx,2)/d! is the derivative in the direction / tangent to S.(a) and 4/

is the line element on S, (a)

The estimate for the function K(x, cos¢) relies upon a priori estimates for the functions w , v and ¢
that hold on condition that the functions ¢ and X belong to some fixed function class. We now describe

this class. Suppose that o(x)eC'(D), K(x, cos)eC(G) and the following inequalities hold:

2r 172
0< o(x)<0q, Ivals%l,(fo xsng K%(x, cos¢)a’¢) SK°<718-7r’

2x 172
sup 2
(fo |V K(x, cos 9] d¢) <Ky, 2.17)
where gy, oy, Ky and Ky are fixed constants. Denote the set of functions (¢, K) satisfying these
conditions by M

The following theorem is valid;

Theorem 2.1 suppose that g;, K;eM, j=1,2. Then there exists 6>0 such that if o2+ o+ K3+ K=&

then the function K= K\~ K, satisfies the estimate

J, B, cos atvdo< CLICR) + 1 D), @18)

where

== L. .0 (28 b.0) , oz b.0) Jatasa, (2.19)

and the constant C depends only on ay, 6y, K, and K,

The proof of the theorem is given in §5 . It is based on a priori estimates for the functions w, v and
v in the class (o, K)€M which are established in§4
The following uniqueness theorem for the original problem is a simple consequence of Theorem 2.1.

Theorem 2.2 The inverse problem has at most one solution in the set of functions (o, K)eM provided

that o, g5, Ky and K, are sufficiently small.

The results of the present article can be generalized to the case of spaces of higher dimension.

;5_
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3. Proof of Lemma 2.1

Represent a solution to problem (2.1)-(2.3) in the form (2.5), with the function w(x,a) defined by
equality (2.6), and substitute the function u(x, 8, @) into equalities (2.1) and (2.3). As a result of this, we
infer that the function u(x,6,2) is a solution to problem (2.8),(2.9). Taking the inverse of differential
operator Vv - v+ o(x)v by using boundary condition (2.9), we obtain an integral equation in the function

u(x, 0,a) as follows:
oz 8.a)= [ | [7K(E.u0) - A6)Vu(&, 0, a)as

3.1)
+ K(& v(6) - oa))exp(— w(E, a))} explw(w (&, 6) — w(x, 8))ds,

where §=(x—sv(6))=L(x,60) and L(x,6) is the segment of the ray which was defined in§2
Every continuous solution to integral equation (3.1) is a weak solution to problem (2.8), (29). The

expression V v- {6) is understood to be the derivative of the function » in the direction ¥ 9).

Lemma 3.1 If «x,0,a) € C(Q) and condition (2.4) is satisfied then

2 sup 2 2K')*
52 iz, 6,0) db < ool (32)

write the number K is defined by formula (2.4).

Proof. Since the function ¢ is nonnegative, we have the inequalities w(&,e) = 0 and w(¢, 8) — w(x, §) <0.

Therefore, the exponential factors in formula (3.1) do not exceed unity. Taking this fact in account, we
square both sides of equality (3.1) and use the inequality (a+8)2<(1+A)a?+(1+A7)?, A>0, and the
Cauchy-Bunyakovskii inequality to obtain

o(x, 62)<(1+2) [

L(x,6)

2 . , 2 Ne.a)
by BX&h0) - ondgasf | [T 2ag s

+(1+270s(x,6) || K& 40) - A))ds

s4(1+/1)(1()2f02" sup vX(x, 0, )d6+4(1+17Y) sup Kz, cos(6—a)).
x€D

reD
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Integrating the inequality with respect to th variable 8 from 0 to 2x, we find

2x 0 2 " 2
J; sup v¥(x, 8, a)d&SSK(K')'(1+A)£ sup v-(x, 6, a')a’6+4(1+/l_1)fD i sup K*(x, cos $)dy.
x€D

xeD xeD

Hence, if the condition —27x(2K)*(1+A)>0 is satisfied then

2 %z 6.0) (1+A7YCK )
' <
b s iesoans LSS

Putting A=—1+1/KV8x, we obtain an optimal estimate which coincides with (3.2).

Now, we demonstrate that, under condition (2.4), equation (3.1) has a unique solution in the class C(Q).
Rewrite (3.1) as the operator equation

v=Av, (3.3)

where the operator A is defined by the right-hand side of (3.1). Consider equation (3.3) in the space
C(G, L,[0,27]) comprising the functions continuous in the varables x and @ and square summable in

©r Endow this space with the norm

loli= sup ([, 0.00a0) "

(r.a)€D

The operator carries the space C(G, L,[0,27]) onto C(Q) which is embedded in C(G, L,[0,27]) and is a
contraction. Indeed, as follows from the estimates obtained in the proof of Lemma 3.1, the inequality

AV — Av (12 <22(2K )Alv' — v"°||?
holds for every (v',v")eC(G, L,[0,27]). Since K'V8z ¢ 1 therefor, A is a contraction on

C(G, Ly[0,2x]). Then. by the Banach principle, there exists a unique element ve C(G, L,[0,2xD

satisfying (3.3). Recalling that A: C(G, L,[0,2x])»C('Q), we have ve C(Q). Lemma 2.1 is proven.
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4. A Priori Estimates

This section is preparatory to proving Theorem 2.1. It contains estimates for the functions w, v and v
which are necessary for obtaining a stability estimate in the problem of determining the dispersion index.
Moreover, we suppose that (¢,K) and (o0;,K),j=1,2, belong to the set M. The method for obtaining a
priori estimates uses the approaches of the articles [5-7].

Lemma 4.1 The functions w(x, @) satisfies the inequalities

0< w(x, @) <20y, | w(x, &)< (g + ap,),

VI 12+ (x - K@) ] 9 w(x, @)1 S ap+ 200, e G, “Dn
JowtPdvda< dnfup, [ wx, a)dvde< dnfi(g). - (42)
Here
2x
jo(g) = — fs (G)M M 4.3)

where g(x, @) = — Inf(x, a), 0g(x, @)/d! is the derivative of the functiong(x,@) at a poin
xS, (a)={xeS | n(x) - {x)} in the direction / tangent to S, and d/ is the line element on S.(a).

Proof. The first inequality in (4.1) is an obvious consequence of the inequalities 0 < o(x) < g; anc

s(x,a) < 2. Differentiating (2.6) with respect to a, we find

wo(x, @) = o(x— s(x, a)v(a))ﬁ%;ﬂ)- - J:(x’a)sVa(x— sa)) - v'(a)ds,

s(x, a) (44
vu(x, @)= o{x— s(x, a) a)) vs(x, ar)+f0 v o(x— s\ a))ds,

where v (2)=d{a)/da=(— sina, cosa). Since the length of the segment L(x,6) is calculated by the
formula s(x, @) =(x, @) +V 1 =]x*+ (x - La))?, we have

I ax(x @ |__{x-v{eNlsx a)
V1—|xl?+(x- v(a))2

lx— v s(x, o)l

2+ (x - Aa)? \/1—|x|2+(x A )’

{vs(x,a)|= N
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The above inequalities and formulas (4.4) imply the second and third inequalities of (4.1).
To obtain inequalities (4.2), we make use of the differential relation

vw: a)= olx) (4.3)

between the functions w(x, @) and o(x) together with the following identity of the article [5]:
2w V(@) (vw Ua)=-L(vw- AN Vw- v ()] + =2 (w,w,) ~ = (wew,) +| T wl?
da da oxy - T dxy - @R )

The left-hand side of the identity vanishes on solutions to equations (4.5). Integrating the resultant

equality over the domain G and using periodicity of w(x,q) in a and the Green formula, we find that
2% -
2 < dw(x, a) _
fGI v wl|*(x, a) dxde < j(; Lwa(x, Q) 51 dlda=2n]y(g). (4.6)

Whence we infer that Jy(£) is nonnegative, which fact is a necessary condition for'solvability of integral
equation (2.7).
On the other hand,

w(x, @) = fl_(xla)vw- a)ds.

Hence.

W) <s(x,0) [ (Vw- Ka))ds. 47
L(x.a) i
Integrating inequality (4.7) over G, we find

fcwz(x, a)dxda < Ls(x, a) L(x_a)( vw - A a))’dsdrda

= f(vw- ¢ ))Zf s dsdxdaSZI(Vw- (@))dxda < 47],(2) “8)
G a L*(x,a) G v g

In these intermediate calculations, L*(x,a) denotes the segment of the ray emanating from the point
xeD in the direction {a) between the point @ and the point of intersection of the ray with S.
Since formula (4.5) implies that

Vwg  Ua)=—vw- v (a),

we have
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wa(x, @)= fux,a)vw" " Ua)ds=~- f

Vw:V
L V(a)ds.

Therefore, arguments analogous to those in the previous case lead to the inequality

fcwf(x, a)dxdaSZfG(Vw- v' (@) deda < 4n)y(g).

The lemma is proven.

Lemma 4.2. Under the condition K,V 27° <1, a solution v(x,0,a) to problem (2.8), (29) satisfies the
inequalities

2 2 8nK; -
2 0 =
fc fo irg;v (x, 6, @) dbda < A=K 807 =G,

foz’f;’ sup [(1— 2] 2+ (x - X)) | Yoz, 6, ) | *ldbda < Cy, (49)
x€D

2z p2x El 2 .
fo fo sup | a—av(x,a+ ¢, a) | “dgda < Cp
xeD

where the constants Cy and Cy depend only on 6, gy, Ky and Ky ; moreover, (Cp,Cp) — 0 as
(Ka . K()[) -0

Proof. The first inequality in (4.9) follows from inequality (3.2) and the hypothesis K’ < K, < Vé—”

We now prove the second inequality in (4.9). First of all, observe that the presence of the factor

1= | x| *+(x - Aa))® under the integral sign is due to the fact that the function | Vu(x, 6,a) |
increases unboundedly as the variable

S.()= {x€S|x* U6 > 0} whereas the

continuous functions (see Lemma 3.3 of {6]).

approaches the endpoints of the half-circle
product (1= | x| 2+ (x - Ua))®) | v(x, 6,a) | remains a

Differentiating equality (3.1) with respect to the variable x;, j=1,2, and introducing the notation

vix, 6, a)=—3%;v(x, 6,0), wix, a)=alxi w(x, )

K{x, cos(6—a))= aax‘ Kx, [0 - Ud), j=1,2,

_10_
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we obtain the following integrai equation in the functions v;, j=1,2
vx, 6, @) =[K(&", cos(6— a))exp(— w(£&', a))
2x
+ fo K(&, cos@)u(€', 0+ G, a))dd Nexplw(E', 6) — u(x, 49)])%%&‘-1)-
+ [ LEKE, cos (0= a)) + K(&, cos(0— @) wf&, )= w;(x, 0) ~ w, (£, @))]
x exp(— w(&, @) + fozz[K,-(E, cos ), 0+ 6 ,a)+ K(& cos @ )viE 6+ 6 ,a)

+ (w;(&, 6) — w;(x, O))K(&, cos §)u(&, 0+8f. )]} d8 explu(&, 8)— w(x, 6)]ds

where £ =[x— U 6)s(x, O)1€S. This equation implies the inequality

sup [V1— | x| 24 (x - L)) | vi(x,0,2)|] £ sup| K(x,cos(6—a)) |

x€D xeD

+(Ko+ 2Ko+ 27K, sup [V 1= 1 x| 24 (x - U2 lwfx,a) 1)

(x,0)eG -

2x
><(f0 sup | vx,8,a) | 2 d8)2+2 sup | Kfx, cos(6— a)) |

xeD xeD

+37 sup | K(x,cos(6—a)) | sup V1— | x| 2+(x-Ua)? | wix,a) ]

x€D (x,0)€C

+aiol [ suptV 1= 11 7+ Cx - KON | v, 6,0) | 12 )™

x€D

Here we have used the relations

sup (1— | &1 2+(&- LO+0)D) V=1 | £1D)~I

§<(0,2x)

f . ds =f$(x.ﬂ) d_? <z
L(x.o)?1—|5|2 0 Vi— lx—s46) | ?

Squaring both sides of the preceding inequality and integrating the result with respect to and
we find that

I= f:’foz’ sup V1= 121 2+ (x- K@)’ | vix, 6,a) | 1 dbda < 22°KE(1 + )1,
x€D

_11_
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+127(1+A7Y) (KE+4K3 +97°K: sup (V1— | x| 2+ (x- Ua))? | wix, a) | )?
[EX I =]e

-

% 5 2z 27
+IK HAKG+ AP KE sup (V1= 121 24 (x- K@)? | wi(x,a) | )-]fo fo sup v*(x, 0, a)dbda }
(x,0)=G x=D

for every A > 0. Putting A=—1+1/K,V27° and using inequality (4.1) and the first inequality in (4.9), we

obtain the following estimate for I; :
r<icy, i=12

Here the constant Cy, is defined by the formula

Co = (1~K0”2 ”3)2(1+ COl K3+ 4K + 97° K30y + 2001) %]

Hence , the second inequality of (4.9) ensues.

To prove the third inequality in (4.9), put §=a+ ¢ in equation (2.8), denote (x,a+ ¢, @)= x, ¢, a), and
differentiate the so-obtained equality with respect to . Write down the result of differentiation as
follows:

V oux, ¢, 0) - v(a+ 9) + o(x)v,(x, ¢, a)
=—[v ox,¢,0a) - viat+ ¢+ fozxK(x, cos §)v,(x, 0 + ¢, a)dd

— K(x, cos Pw.(x, a) exp(— w(x, a))] = k(x, ¢, a)

Here v(x, §,a)= 3 Kx, ¢, a)] 3 @, v'(a)=(— sina, cosa). Formula (2.9) implies that the function  v.(x, ¢,a)

satisfies the condition
2%, ¢,0)=0, (x,¢,0€9 _Q
Consequently, the following representation holds:

vx, ¢, @) = fu K& b, Dexplu(é, a+ ) —wlx, a+ Plds

x,a+

where &= x—su{a+ ¢). Since

_12_
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VI 1E] +(&- U gmsmnin = V1= x| 2+ (x- UB)*
(x, 0 <2V1— | x| 24+ (x- L) <2

he representation for the function 5;(1, ¢, @) implies the estimate

~ s(x, g+ ¢) re—— - 3
!va(x.qb.g)l < T T2l it (x Aot Ot sup V1= lxi*+(x- a+t ) | (x, ¢,0) 1]

x=D

<2sup V1— 1zl %+(x- Kat @) | bz, ¢,0) | ]

x=D

Therefore,

sup | oz da) | <2sup V1= 1zl 2+ (x- at+)® | vilx, d,0) 1]

=D €D

2z —~
+2K0(f0 sup | Do(x, b, a) 1 2dp) 2 +2 sup | K(x,cos9) | sup | wo(x,a)l
x€D

x=D (x,0€G

Hence, we find that '

2x 27 2
J= fo fo sup | 0x, ¢, a) | *dgde < 87K3(1+ A)J+8(1+47h

€D

X (8ekioo+ o)+ [ sup (I T= Tx1 2+ (e KOV | Vs, b, 0) | F'dbda)

x€D

Putting /1=-1+1/K0‘/§r and using the second inequality of (49) , we validate the last inequality of (4.9),
with the constant cp determined by the equality

Co= AT Co+ 8t 00)']

It is obvious that (Cy Cg) — 0 as (Kp Ky) — 0. The lemma is proven.

The estimates of the forthcoming two lemmas are needed for the proof of Lemma 45 and are based on
the relation

V('éa—a Hx,a+ ¢, ) Lat P+vilx, et ¢,a) - vViat+d)

2z N
+ al(x)Taa—, wx, a+ ¢, @)+ fo K, (x, cos 0’)% Wx, 6 +a+t¢,a)dd + Nx, ¢, )=0 (4.10

_13._.
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where

N(x, ¢, a) =-5(x)aia v*(x, a+ ¢) — R(x, cos Dwx, @) exp(— w(x, a))

(4.11)
+ Ky(x, cos¢) [Ry(x,a) w(x, a) + R(x, a) #(x, a)]

R, (x, a)=f0l [w1o(x, )t + woy (x, 2)(1— )] exp {=(wi(x, ) t+ wy (x, )1 = 1)) dt (4.12)

Relation (4.10) is obtained from equality (2.13) by substituting e+ ¢ for 8 and differentiating the equality
with respect to a.

Lemma 4.3 If the function K(x, cos ¢) satisfies the condition 2K,Vr<1 then the following estimate holds

for every u>0 :

L (76‘;5(x,a+ ¢, @) *drdyda
<C [(A+p fo(v ux,6,0) - V() drdda+ (1+ p™") fo N¥(z, ¢, Q)dxdydal (4.13)
where C,=2/(1-2K,V7)?

Proof. Taking the inverse of the differential operator V - v+o¢, in (4.10), we find that

7657 v(x,a+¢,a)=— fl_(x‘”w (vi(¢atg,a) - viaty)

+ fOZ’Kl(x, c0s8) 2= &0 +at ¢, 0d8 +MNE, b, 0))
-exp [w(& a+¢) —w (x, a+ §)]ds.

Hence,

(—— ox, a+ ¢, a))?

<s(x,a+¢) Lrern {(1+almbda)K§f0"—% HE O +a+¢,a)ds

AU+ (V& a+¢,0) - v(a+ 92+ (1 +p~ YNE-D]) g (4.14)

Integrating inequality (4.14) over Q and changing the order of integration, we infer that

f( Wz, a+ ¢, @) drdpda <f {(1+/1)27rK2(— HE a+¢,a))?
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+A+ANA+ (v é at d,a) - Viat)?

+(1+ 2" HN(E, ¢, 2)] Lrars’ ds} dedyda

'szfo ((1+A)27rK§(‘56; x, a+ ¢, 2))?

+A+ANA+)(Vix,a+¢,a) - Vet P)Y:+ 1+ YN (x, ¢, @)1} dxdyda

Putting A=—1+1/2K,Vx, we arrive at inequality (4.13).

Lemma 4.4 Under the conditions of Theorem 2.1, the following' inequality holds for arbitrary A0
and >0 :

JL 3 KO+ A=Y 3 K ) )dsdbda < 47" (1+u™") [ N(x, ¢, a)dxdgda
T+ 27 1+ )G+ 22K) [ (5 3w, at 6, 0)) dxdyda+ ) (4.15)

where the expression J(F) is defined by formula (2.19).

Proof. We use equality (4.10). We leave the first two summands of the equality on the left-hand side,
transpose the others to the right-hand side, and afterwards multiply both sides of the equality by
2v o(x,a+ ¢, a) - V(a+¢). We write down the result as follows:

T(x,6.0) = AV ix, 0+ ¢,0) - V(e )5 (Y iz a+ d,0) - Ua+ )
= =2V ix,a+6.0) - ¥ (a+ M0y (D~ Ax, a+¢.0)

2x ’
+f0 Ki(x, cosﬁ')% Hx, 6 +a+¢,a)dd +Nx, ¢, @) (4.16)

Transform the left-hand side of (4.16) to the form

T(x, ¢, a)=ala[(v Wx,a+¢,a) - V(a+ ONV oz, e+ ¢,a) - Lat+ )]
+_¢-3Q;‘T[ (Taa Wx, a+ ¢, a));':z(x'a-*_ ¢.a)]

— [ Wx et 4,0) (5 e+ 4,01+ | Yz ata) | P
X2 da
Whence, by periodicity of the function v(x,a+¢,a) in @, we find that

for(x, ¢, @) drdyda= fol v Xx, a+ ¢, a) | *drdide
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s vovs- a7 Hx 0+ b, XL 3, 0+ ¢, @) dldye

= fo [(vulx,6,0) UO*+(V (x, 6,0) - v’ (6)*1dxdbda — J(F) 4.17

On the other hand, for arbitrary A>0 and x>0 we have

Tz, ¢, )<AV Ux,a+¢,0) - V(a+¢))?
HAT QA+ BT et 4,0+ K [ (L i, 0+ 0, 0)) 78]

+ (1 + 2" HYN¥(x, ¢, a)}

Hence,

foﬂx, ¢, a)dxdpda < qu(v wx,a+ ¢, a) - V(a+ ¢) drdgda
+A7H 21+ Wl (R 2nKD) [ (5 s, 0+ 4, ) db)dedgln
+(1+x7Y foNz(x, ¢, @) drdyda } (4,18)
Relations (4.17) and (4.18) imply the assertion of the lemma,

Lemma 4.5. Suppose that and satisfy the inequality 8C,(¢?+27K2)<1 and the’ hypothesis of Lemma

3.3. Then the following estimate is valid:

J {7 . 6.0) - v(8) ddbde < C, [ Ni(x, 6. o) dedgala-+ KF) 419

where C,=[4+V8C,(q +22K3)1/2[1— 8C\(& + 2KD)]

Proof. Substituting estimate (4.13) for the integral of the derivative of (x,a+ ¢, a) with respect to in
the right-hand side of (4.15), we find that

J oV %x.6,0) - v(6)?dedi

S/l"(l+,u_l)[l+2C1(d§+27rK§)(1+#)]fQNz(x.¢, a) dxdpda+ J(F) (4.20)

provided  that 1-A-247'Ci(3+27K3)(1+ 1)*20. The last inequality may hold only if
(1+)?<1/8C\(d}+22K7). Under the conditions of the lemma, we have 8C,(c8+27K2)<1 ; therefore, it is

possible to choose  appropriate  positive parameters A  and p. We take A=1/2 and
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p=-1+1/V8C, (ot +2xK3). Then formuia (4.20) implies inequality (4.19).

Lemma 4.6. Under the condition of Lemma 4.2, the following inequality holds for every A>0 :
J N9, @) dedfda = 8oy + 00) 1+ ) J R, cosaxdg+ (1427 )Cu(®) (2D
where Cy =3[ Cy +4nK2(1+4(0+ 65))?] and the expression J(g) is defined by formula (2.16).
Proof. Inequalities (4.1) and formula (4.12) imply that
0 (R(x,a&)<1, | R(x, @) | <2(dp+ ay)) (4.22)

Squaring both_sides of (4.11) and integrating the result over @, we arrive at the inequality
| N (x, g, @)drdida < 8(ay+ o) (1 +2) [ B, cos ¢ydxdy

+3(1+47H {fD?(x)dxfohf:' sup | Ta;vz(x,a+ ¢, a) | dyda
xR

+Ki[ sup Rix,0) fc‘t;z(x, @)dxda+ sup R*(x!fa) fcaﬁ,(x,a)dxda]}

(x,€G (x, €6

Using inequalities (4.9) and (4.22) and estimates for w and w, similar to (4.2), we obtain inequality (4.21).

The last two lemmas yields the next lemma which closes the section:

Lemma 4.7. Under the conditions of Lemmas 4.2 and 45, the following estimate holds for every A>0:

J {7 x0,0) - A6)dxdtda

<)+ (1 + A" )Coulo(D + (1+ D Cs [ R, cos §)dxdy (423)

where Cy = C,Cy and Cgs=87Cy(0p+ ag).

Observe that while proving Lemmad.3-45 we estimated the integrals without substantiating their
existence. Under the conditions of Theorem 2.1, the derivatives of the function o(x,8,a) with respect to

x,=1,2, behave like the corresponding derivatives of the function o(x, 8, @), i.e., have singularities of the

type (1= | %12+ (x- La)®) ™™ in a neighborhood of each endpoint x of the half-circle S_(6). These
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singularities are however weak, not destroying the existence of the integrals in question.
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