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Abstract

A sliding mode controller with a neural network and a fuzzy boundary layer is proposed. A
multilayer neural network is used for constructing the inverse identifier which is an observer
of the uncertainties of a system. Also, fuzzy boundary layer is introduced to make the
continuous control input of sliding mode controller combined with the neural inverse
identifier. The proposed control scheme not only reduces an effort for finding an unknown
dynamics of a system but also alleviates the chattering problems of the control input.
Computer simulation reveals that the proposed approach is effective to alleviate the

chattering problem of the control input.

1. Introduction

The sliding mode controller is a powerful nonlinear controller[1, 2].However, this controller
has several important drawbacks such as high control authority and control chattering. Since
the chattering involves extremely high control activity and may excite high frequency
dynamics neglected in the modeling, many approaches have been reported to alleviate the
chattering phenomenon(3, 4]. The so - called boundary layer approach, which generates the
continuous control law, is one example[3]. When the magnitude of the uncertainty bound of a
system is large, the chattering magnitude of control input is also large. Thus, the width of the

boundary layer should be large to make the continuous control input, and resultantly it makes
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a large steady state error. Therefore, it is necessary to have trade — off between the steady -
state error and the chattering magnitude. Another approach is the adaptive chattering
alleviation control algorithm(4]. This approach has difficulty to apply to fast time ~varying
systems.

In this paper, a new sliding mode controller using a neural network and a fuzzy logic is
proposed. To improve the chattering problem, it requires more information of unknown
dynamics. Since the neural network can approximate nonlinear functions in L” and has good
generalization capabilities[5, 6], it can be used for construction of an inverse identifier which
generates the control input to reduce the chattering magnitude. A multilayer neural network
with the error back propagation learning algorithm is used for construction of the neural
inverse identifier, and operates as an observer of an uncertain information. It gives not only
the small chattering magnitude of control input but also convenience for design of the control
input, because the control input for chattering depends on the maximum magnitude of inverse
identification error instead of a priori knowledge of the bounds in external disturbances and
parameter variations. A fuzzy boundary layer of which the width is determined by the learning
accuracy of the neural inverse identifier, is introduced to generate the continuous control input

of the proposed sliding mode controller with a neural network.

2. A sliding mode controller with neural network

The system with sliding mode control is described as follows :

=% i=1,2,,n-1 (1)
x,= —ig ax;+bu—f (2)
= S a+bbu-G 3)
where
G= ~:;1 Ao+ Abu+f and  i=r-zx, @)
with
z(0)=[x1(0)+i—"; x(0)+ -+ +%1 x,(0)V/k, (5)

where x; is the state or the output of a system, a; and b represent the i - th plant parameter,
a,” and b° are the known nominal values of a; and b, respectively. Aa; and Ab are the deviations

from the known nominal values and r represents the reference input signal. G represents the
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unknown information of the system, and z is the integral augmented state with suitable initial
condition for solving the reaching phase problem in the sliding mode controller[1]. The ¢; is a
constant coefficient of the sliding line which will be determined by a method. The u is a

piecewise linear control function of the following form

{1}1*(9@ t) if o>0

6
(x,t) if o<0 ©)
where o is the switching function given by
o=cy(x, - k2)+ ;2 ca; and c,=1 7
Let the control input u be
u=u,+Au (8)

where u,,, called the equivalent control input, is defined as the solution of the equation 6=0

eq?

under the conditions that f=0, a,=a,°, and b=54°, that is,
Ugg=[C1ky(r —x,) - 2; ¢ 1%+ _ia,ﬂx,/bo 9)

The control function Au is used to eliminate the presences of Aa;, Aa b, and f so as to

guarantee the existence of the sliding mode. This function is considered as
Au= ‘:’Zw,xntcp (10)

where

and

y if 0>0
cp:Jb
if o<0

From the existence and reachability of the sliding motion as shown in equation (11)[11]
05 <0, (11)

the following equation is obtained.

n-1 n
06 =0 ey~ ky(r ~x )+ ey +1- 5 aix,-+b(-51— lesky(r —xp)
i= i=1 0
- Seaxlty Satxt $Wa +®)-A<0 (12)
Thus, the conditions for satisfying the inequality (11) are
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{a,< Ab(c; — a)(bb) +Aafb i ox,>0
‘Il. =
B> Ab(c; — a)(bbO)+ Aa/b  if ox,;>0

where
c’[__—{clkl,cly"')cn} i=1,2,--~,n (13)

and

\If—{ y<flb - Abc,k,r/(bb?) if o> 0
O <flb - Abc,k,r/(bb%) if o> 0

As shown in the above equations, the chattering magnitude of the control input is affected by
the unknown dynamics such as the parameter uncertainties and the external disturbances.
Therefore, if the uncertainty terms are inverse identified, it is expected that the chattering
magnitude can be alleviated by using an additional control input generated by the inverse
identified model[7]. We use the higher order multilayer neural network with the error back
propagation learning algorithm for construction of the inverse identifier[7]. The error function
is defined by the square of difference between the external input and the sum of the outputs
which are obtained from the nominal dynamics and the neural network([8,9].

Assume that the bound of variation of the training input su has a sufficiently large value to
make u* contained in the region Q of the training input u,+ éu, where u* is the exact control
input for a desired trajectory and u, is the input obtained from the nominal dynamics for the
desired trajectory. Then, if the neural network for inverse identification is trained with the
following accuracy !lu - (u,,,,+u,) !l . <g where the u,,, and the u, represent the outputs of
nominal dynamics and neural network, respectively. The following equations present that the
unknown dynamics of the system can be compensated by the additional control input which is

made by neural inverse identifier[8]. From the equations (1),(2) and (3),
u={x,+ }f‘_l ax;+plb (14)

and

Uporm =%, + g a’x}/b® and u,=Nw) (15)
Then,
Hu = WUpopm ) o

= 1{x,+ g ax b — i, + _Zl a2x /60— Nw) 1 (16)
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£+ ", ad%; b° G- Abu

=11 = tgrn, Vg M@l (17)
o 20 ek bo G-Adbu
=1I( 5o + b°+Ab_ D+ XEWY N@w)ll, (18)
Ab G
||(b0+A )(u—{—u,w,m) m —N(w)ll,,<£ (19)

If Ab is zero, then the uncertainty of system, G, is represented by the neural network, N(w),
as | |G/b°— N(w)| | ,<e&. Since the control input chattering is alleviated from the magnitude of
a priori knowledge of uncertainty to the maximum training error of the neural inverse
identifier, it is important to use higher order multilayer neural network for accurate inverse
modeling.

Let the control input u=u,, +u,+Au, where Au is the chattering input for compensation of
training error € and the uncertainty Ab which directly affects the control input. From the
existence and reaching condition of sliding mode and the integral augmented sliding line as
shown in equation (7) and (11), respectively,

n-1

06 =0 lcy(x, — ky(r—x,)+ 22: cixip Hi- 21 aixi+b(%[clkl(r - x,) 2;. c; %]
e = ® i=

n

bL > a%x+u, + AN - ] (20)

From the equation (19), u, can be represented as shown in equation (21).

s

Up=U = Uporm — €

X, + zrzl'+laixi+f x,+ Z'ﬁﬂa‘ixi
= 5 - = - (21)

where 1€ |1 _,<e Then, the derivative of the sliding line is

n-1 n
o =lcy(xy — ky(r —x,))+ 22 cixi+l+_22:aixi+b(bi[Clkl(r”xl) EC; 1x]+b— Zao
i= i= o o i=1

X+ S ax; +f i+ S adx+f

: 5 ~& +AN -1 (22)
= — (AB/BO) S ci_ x5+ i, + ik (ABY(BO)e ko r — BE + bAu (23)
i=2
n+1
=~ (Ab/B®) 2 ¢/ x}+(Ab)(BO)c kyr ~ bE +b\A, (24)
where
C:- ={clkl) C1,C2 "7 Croy 1] "=1) 2’ '"7n+1 (25)

Let be the chattering control input Au= 3 "} Wx,+® which is used for both canceling the
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error of inverse identification and the effect of the uncertainty Ab, where ¥, and ® are given in

the form of equation (10). Then, the equation (24) becomes
1
o= 16%, -3¢ 12+ B¢ e~ be’ + b (26)

If we assume that the bound of Ab is known, %and the system state %, is measurable, the
following equations are obtained from the existence and reachability condition of sliding mode

in equation (11),

:[ai<ﬁc: if x>0
B,->bo(b’§—fwmc; if ox<0
and
y< —I—{Ciklr—be’ if o>0
&= b°(b°—1FAb)
mlciklr-bé if 0<0

If Ab is zero, since |1G/b° - N(w) Il <& from the equation (19), one obtains

Au=y<¢ if  ob°>0 (27)
Au=85>¢ if  ob°<0 (28)

Then, we design the optimal sliding line by minimizing the quadratic performance index
function for satisfying the minimum error and minimum energy[10]. It is clear that the
problem of designing a system with desirable properties in the sliding mode can be regarded as
a linear state feedback design problem[10]. Thus, an optimal gain matrix of the sliding line is
obtained by the optimal linear regulator technique using Riccati equation.

In order to get the continuous control input, a fuzzy boundary layer technique{Palm} is
incorporated around at the optimal sliding line with the width of ¢ which is maximum inverse
identification error of the higher order multilayer neural network. If Ab is zero, £ is equal to
the £ . Using the higher order neural inverse identifier and fuzzy boundary layer technique,
one can obtain the effective sliding mode controller which does not needs a complete knowledge

of the bounds in system uncertainty and also has smaller steady state error.

—102—



A Sliding Mode Controller with Neural Network and Fuzzy Logic

3. Simulation

Let us consider the following simple system

X, =AX+BU-f (29)
where
0 1 0 1 0
S P o D
a;, a, a;, a, 1
Aai==*0.5, Ab=0, and [f=sin(x)). (30)

The performance index function for the optimal sliding line is
J= /0 (BX2+X3+4u)dt (31)

From the Riccati equation, the optimal gain for the sliding line C is [ - 0.29125, —0.13575]
and sampling time is 5 msec. Fig. 1 shows the control results of the regulation problem. Solid
line represents the reference step input, and long dashed line and dashed line show the
controlled output with and without the neural inverse identifier, respectively. The dotted line
shows the controlled output when fuzzy boundary layer is used for making the continuous
control inputs. Fig. 2 and 3 show the control input without and with the neural inverse
identifier, respectively. As shown in Fig. 2 and 3, the chattering magnitude of the control input
successfully alleviated without much degradation of control performance. Fig. 4 shows the
continuous control input with neural inverse identifier and fuzzy boundary layer. As shown in

Fig. 4, the fuzzy boundary layer which has narrower width by the action of neural inverse

2 Comparison of control inputs Control input when the neural network is not used
T T T T T T T T T 16 T T T T T T T T T
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Fig. 1. Control results of variable structure Fig.2. Control input of the sliding mode
controller. controller without neural network
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Control input when the neural network is used
15 T T T T T T T

T T Control input when neural network and fuzzy logic are used
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Fig.3. Control input of the sliding mode Fig.4. Control input of the sliding mode
controller with neural network. controller with neural network and
fuzzy boundary layer.

identifier generates the effective continuous control input.

4. Discussion

A new approach for chattering alleviation is proposed and demonstrated by computer
simulation. We successfully alleviated the chattering magnitude of the control input of the
sliding mode controller by neural inverse identifier. Moreover, this approach does not require a
priori knowledge of the bounds of parameter variations and external disturbances. Using the
fuzzy boundary layer technique, an effective continuous control input can be obtained by
incorporating the sliding mode controller with the neural inverse identifier.

However, sufficient data for training of the neural network is necessary and the method for
obtaining the data must be considered. Also, if a system does not have inverse, the training of
neural inverse identifier with error back propagation algorithm is impossible and another

neural network with new training scheme is necessary and under investigation.
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