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We obtained a generalized continued fraction representation
containing two memory functions by proceeding directly from the
Laplace transform of time correlation function and taking algebraic
expansion of the inverse operator. The result is identical with the
representation of Nagano et al. based on Mori’s memory function
formalism.

Recently there has been growing interest in the foundation of the
methods for calculating correlation functions. So far various ways
have been found to approach the actual physical problems in this
area.l)"4) Among these, the countinued fraction representation
approach5)~11) originally presented by Mori%) seems to play a central
role. Actually it has been applied to a variety of interesting
physical problems including investigation of line-shapes and critical
slowing-downs in the electronic systems and lattice spin
systems.11)~16)

Later, Karasudani, Nagano, Okamoto and Mori®) generalized Mori’s
continued fraction representation which takes into account two effects
expressed by macroscopic and microscopic memory functionms.
Furthermore, they?) obtained reduced equations of motion for
generalized flux variables. It contains two kinds of fluctuating
forces.

On the other hand, some different kinds of approach have been
studied for the representation. Lado, Memory and Parker!l) obtained
the representation by expanding the dynamical variable in terms of an
orthogonal set. Lee3)got the representation by utilizing the
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recurrence relation method.

It is well known that the formal solutions for time evolution can be
obtained by solving the generalized Langevin equation which was first
derived and formally solved by Mori using a projection operator
technique. However, this generalized Langevin equation can also be
derived by proceeding directly from the Laplace transform of time
correlation function,17)

In this paper, by applying the similar way we would like to obtain
the generalized continued fraction representation containing two kinds
of memory function which correspond to higher order and low order
fluxes, respectively.

If, for the column matrix of state variables A(t) in a many body
system with the Hamiltonian H,[H,Al=H-AH=0, then the time evolution in
the Heisenberg picture is formally given by A(t)=exp(iHt)A exp(- iHt),
where 2=4(0) and h=1. The information about A(t) helps us to obtain
the time correlation function. ’

The equation of motion is given by

da(t) (1)
m =iLA(t)

where L is the Liouville operator corresponding to H. The standard
Mori theory is based on the assumption that L is the Hermitian, i.e.,

(LF,G*)=(F,[LG1*) (2)
for arbitrary linear operators P and 6, where G6* is the Hermitian
conjugate of G,and (A,B) is any binary operation of two variables A
and B. The operation can be the usual inner product, the Kubo product,
or the trace operation.

For our purpose we construct a biorthogonal set of vectors and the
corresponding projection operators. The quantity A defines a vector in
a Hilbert space. The projection operator Po onto the A-axis is defined

by

PoX=(X,A*) - (A,A*)-! -A (3)
With the aid of Po, we split A=ilA into two parts:

iLA=PoilA+a1, (4)
where

ai=(1-Po)ilA (5)

The new quantity ai stands for the first order flux. Proceeding
similarly, we define the j-th order flux aj=a;j(0) through the
recurrence equation

aj = Qi-1ilai-1 ( j=1.2,---) (6)

with ao = A, where
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A A .
Qi-1 = Qi-1Qj-2---QiQo = 1-Pj-1, (7)
Qi = 1-Pi,

PiX=(X,ai*) - (ai,ai*)"! - ai, (9)
A j-1 A

Pj-1=) Pw=Pj-1+Pj-2. (10)

m=0 A
Here Pi is the projection operator onto the ai-axis and Pj represernts

the projection operator onto the (j+1) dimensional subspace spanned by
ao,ai1,---,aj which satisfy the orthogonality condition (ai.a;*)=0,(i=j)

Now let us consider the rime evolution of the generalized flux
variables aj(t) as

(dsdt)aj(t)=ilaj(t) (11)
or

aj(t)=exp(itL)a; (12)
and define j-j element of the time-correlation function Z(t) as

Ejilt)=(ai(t),ai*)/(ai.a;*) (13)
By Laplace transforming Eq. (13), we obtain the relaxation function

~ (o o]

Ejj[Z]=I8Xp(_Zt)Eji(t)dt
=((z-iL)-taj,a;j*)/(aj,a;*), (14)

which can be rewritten into the following form:
£5i=({(2-1L(Pj-1+Qj))-1+(2-iL(Pj-1+Q;)) - 1iLP; (z-iL(Pj-1+Q;+P
i)) 1}}aj,a;*)/(aj,ai*), (15)

A A
where Pj-1+Q;+Pj=1 and the operator identity (A+B)-1=A-1-A-1-B.
(A+B)-! have bgen useg.
Since Pj-1aj=Qja;j=0,the first term of Eq.(15) becomes

A A
3 . YY-1a: a:%)=(a: a:¥
Using thé(gré%égfyl+QJ)) aj,aj*)=(aj,a;i*)/z. (16)

A A LA A A AL A A
(Pj-1+Qi ){z-iL(Pj-1+Qj) }1={2-(Pj-1+Q; )iL}-1(P;-1+Q;), (17)
we obtain
~ A A A A
Zijlzl=[z-(ilaj,a;*) - (aj,ai*) " 1-(il{z—(P;j-1+Q;)iL} 1 (P;-1+Q;)
ilaj,aj*) - (aj,a;*)"11-1, (18)
In order to calculate Eq. (18) further, we take into account the
following relations.®)
It 0 if m=2j+2.
(aj+1,a%5+1) if m=j+1.
(iLaj,am*)=| (ilaj,aj*) if m=j.
-(aj,aj*) if m=j-1
0 if m<j-2. (19)
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The last term in the denominator of Eq. (18) can be written as
(iL{z-(Pj-1+Q)iL}-1(Pj-1+Qj)iLaj,a;*)

A

A oo A 1 oo Psj-1iL my 1o A )

- _[{z—PJ-liL}-lngol @it —3, [ Bz ] Pi-rita, Glas)®
A

A oo A 1 oo Qj—liLm nA

_[ {z-QiL}-1 % | Pj-liL[——Z [ Z ] },] jSLaj,(iLaj)'] (20)
l n=0L lz m=0 J 4 J .

In Eq. (20) all the terms become zero except the first term for n=0,

since [Q3iL(P;-1iL)m1Ps_1iLa; and [P;-1iL(Q;iL)=IQ;ilas contained in

the first and second parts, respectively, become zero. The proof for a

few terms,is gemonstrated as follows: We start with the first part.
For m=0, QjiLPj-1ilaj=0 is easily checked by using the properties of

Bg. (19), Bi-1ilas=—(as,a%) - (as-1.a%s-p)t -aje1  and QsiLas-1
:Qij—liLaj-l=Qjaj=0. For m=1, QjiLP;-1iLPj-1ilaj becomes zero since
Pi-1ilaj-1=-(aj-1, (ilaj-1)*) - (ai-1,a%-1) 7} - as-1-(aiz1,(ilai-2)*) -
(EJ—Z,E‘i—z)"l - aj-2 and QjiL(aj-1+aj-2)=QiQi-1ilaj-1+Q5Qs-1Qs-2ilas-2
=Qjai+QiQj-1aj-1=0. The proof for the second part can be performed
similarly. For m=0 and m=1 we can obtain ﬁj-liLﬁJiLaj=ﬁj-1iLaj+1=0 and

Bs-1i08si14;iLas=Ps-1iL(Q5+1,+Pie1)iLase1°Ps-1iL(a5+2+Ps+1ilaj+1)=0,
respectively, using Eqs(6) and (19). The proof for m=2 can be shown by

A
considering ﬁj=ﬁj+1+Pj+1 and Qj=§j+z+Pj+1+Pj+z. We can show in similar
ways that the higher order terms in the two parts in Eq.(20)
disappear.

Thus the relaxation function given by Eq.(18) becomes

Z5ilz1=[z-iwi+¥; [z1+¢5[211-1, (21)
vhere the frequency matrix element and the two memory functions are
defined by

iwj=(ilaj,a;*)/(aj,ai*), (22)

~ A A A

#;[2)=({2-Pj-1iL}-1Pj-1ilaj,(Pj-1ilaj)*)/(aj,ai*), (23)

~ A A A .

¢ilz1=({z-Q;iL}-1Qjila;,(QjiLai)*)/(ai,ai*), (24)
respectively.

A A A A
By considering Q;j=Qj+1+Pj+1 in Eq.(24), Pj-1=Pj-1+Pj-2 in Eq.(23)

and taking the similar procedure successively, #;[z] and #3i[z] can be
put into the following continued fraction representation:
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~ Ajz
¥5i[z]l= z-iwj-1+ AZj_4
Z-iwj-2 +
+ A2 . (j3=21) (25)
Z—iwo
~ Azj"‘l
$ilz]l= z-iwj+1+ A2j.2
Z—iw_i+z +
+ An? ,(n-123>0) (26)
z—iWn+3;[z]
Aj2=(aj,aj*)/(aj-1,a%-1), (27)

which is identical with the result of Nagano et al.?) This shows ol
jilzl can be directly expressed as the continued fraction
representation without using the momory function formalism.

We may conclude as follows. In the standard Mori approach, the
relaxation function is iterated by applying the memory function
formalism for =jjlt] successively. On the other hand, the present work
has dealt with the algebraic expansion of the inverse operator. By
doing so, the relaxation function has been given in the generalized
continued fraction representation containing two memory functions. One
is the usual continued fraction representation previously found by
Mori and the other the inverted continued fraction of finite order.
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