A PUBLIC KEY CRYPTOSYSTEM BASED ON
A POLYNOMIAL KNAPSACK

Jae-Gug Bae, Dong-Gyun Kim

Abstract

We introduce a new public key cryptosystem from a polynomial
knapsack problem, which is a generalized knapsack problem in a poly-
nomial ring over Z modulo a fixed polynomial. It’s encription and
decryption process is very fast. Both take O(n) operations where
n is the bit length of a message. Also the security of the system is
based on the difficulty of a subset sum problem of high density and
the complexity of the operations in a factored polynomial ring.

1 Introduction

Since Diffie and Hellman (3] have introduced the idea of public key cryptog-
raphy, there has been a lot of efforts and successes in the implementations
of public key cryptosystems. At the very beginning, the Merkle-Hellman [9]
scheme which used the knapsack problem was suggested. But in 1982, Adam
Shamir [11] made the first successful attack on the basic form of the Merkle-
Hellman scheme. After that many cryptographer tried to obtain a secure
system based on the NP-completeness of the knapsack problem. Most of
the knapsack-type PKC have used a hidden super-increasing sequence in the
secret key. Brickell [1], Lagarias and Odlyzko (7], Schnorr and others [12]
have broken most PKC based on the knapsack problem successively. One of
the major attacks was a "low density” attack which used the lattice basis
reduction algorithm. By now, only few knapsack-type PKC which include
Chor-Rivest scheme [2] are survived against the lattice attack. (See [13] also.)
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In this paper, we give another try of using the knapsack problem for
our new cryptosystem. Our system is mainly different from others in using
several batches of super-increasing sequences instead of just one sequence so
that one can increase the density of the public key high enough. To use the
polynomial ring over Z modulo a fixed private polynomial @ in order to
conceal the set of super-increasing sequences is also a central characteristic
of our system.

2 The Proposed Cryptosystem

In this section, we describe our new public key cryptosystem, which is con-
structed on the polynomial ring Z[z] modulo an integer M and a fixed
polynomial @ . Our secret key will be a set of polynomials with leading co-
efficients selected from a set of super-increasing sequences and our public key
will be constructed by multiplying an invertible polynomial modulo @ to
the secret polynomials.

2.1 Setting notations

We choose four positive integers wu,v,l, N so that vl < N. Let n = ul
and Zy = Z/MZ where M is a positive integer, which will be deter-
mined later. Fix a polynomial @ € Zp[z] of degree N and let R =
Zy(z]/Q. An element of R will be written as a polynomial or a vector,

N—
F=) Fa'=(F,F, - ,Fy.1).

1=0

[

Also, we will choose [ super-increasing sequences of length u and n
polynomials in R.

2.2 Generating keys

Choose n pOIynomialS f11f2"“ ,fn in R with fi = (in;fih'" 7fi(N—1))
1<i<n,sothat f; =0if ¢ =su+twith 0<s<1-1,1<t<
u and j > N — (s+ 1)v. To avoid notational confusion, we use f(i,7) for
fij in parallel. The sets of leading coefficients {f(1,N — v), f(2, N —
v), -, flu, N =)}, {fu+1,N —20), f(u+2,N — 2v),---, f(2u, N —
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2v)}, -, {f(U-1Du+1,N — W), f((I-1u+2,N - W), -, flul,N —
lv)} are supposed to form ! super-increasing sequences and M is chosen
so that

M > max{f(i,5)|0<j < N -1},
i=1
Now we take an invertible element G € R and define F; = f;- G for 1 <
1 < n. See the small example below with u=3,v=2,1=3,N=09.

fu=(38, 40, 28, 29, 26, 48, 38, 15, 0)
fo=(16, 51, 5, 47, 43, 14, 48, 18, 0)

fa=(22, 33, 9, 30, 34, 44, 16, 34, 0)
fo=(15, 34, 47, 17, 37, 8, 0, 0, 0
fs=(15 27, 14, 12, 36, 9, 0, 0, 0)
fe=(0, 19, 2, 49, 32, 19, 0, 0, 0
fr=(11, 16, 23, 13, 0, 0, 0, 0, 0
fs=(40, 2, 23, 15, 0, 0, 0, 0, 0
fo=(7, 23, 42, 31, 0, 0, 0 0, 0

Fy = (626, 670, 326, 207, 663, 235, 580, 625, 89)
(341, 532, 657, 2, 134, 185, 417, 357, 201)
(387, 234, 40, 558, 78, 43, 329, 370, 44)
(313, 602, 95, 352, 99, 659, 485, 181, 334)

Fs = (568, 601, 613, 197, 167, 412, 128, 317, 4)
(153, 108, 149, 243, 344, 115, 618, 436, 473)
(38, 155, 216, 146, 205, 171, 190, 424, 136)

Fy = (152, 585, 262, 616, 70, 670, 553, 127, 168)
(135, 5, 216, 638, 153, 292, 447, 346, 532)

Here we took G = (230,372, 56,202, 235,117, 565, 5,614) and Q = (611, 344,
458,514,146, 24, 143,430,256, 1) . Note that the sets of leading coefficients
{15,18, 34}, {8,9,19}, {13,15,31} form three super-increasing sequences.

[Public Key] The integer M and polynomials F, Fy,--- , F,
[secret Key] Polynomials G,G™1,Q and fi, fo, -+, fa
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2.3 Encryption and Decryption

Let m = (my, mg,--,my,) be a message where each m; € {0,1,z,2%,---,
z*~1}. Then the encrypted message e would be the polynomial

e= Zm,-Fi (mod M).
i=1

We describe the decryption.
[I) First of all, calculate

s =¢€ G_l = Zmifi = (S(la 0)1 5(1) 1)1 S(]., 2)3 T )S(LN - 1))
i=1
in the ring R and then solve a super-increasing knapsack problem

> zif(@, N —v) =s(l,N - 1).

=1

Let (611,012, ,014) be the solution. Next, we calculate

sp= s — 2" 1Y 0rifi = (5(2,0),5(2,1), -, 5(2, N = 2),0)
=1

and solve Zzif(z', N —v) = 5(2, N — 2) to obtain the solution (021,022, -,
=1

d2.) and we put
u
s3= 83— 2" 2y 6aifi = (5(3,0),5(3,1), -+, (3, N = 3),0,0).
=1
Repeating this process v times, we have

Sp+1 = sv—z&,ifi = (s(v+1,0),s(v+1,1),- -, s(v+1, N-v-1),0,---,0)
=1

and coclude (mi,ma,- - ,My) = Zx”‘i(dil,dig,--- y0iu)-
=1

[IT] For the next batch (muyt1, Mu+2, - ,May), observethat s, = > 11
m;f; and perform exactly the same procedure of [I]. Invoking step I
times, we obtain original message m = (mq, ma,- - , M)
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3 Parameter Selection and Efficiency

3.1 Parameter selection

For the secure and efficient cryptosystem, we need to choose parameters
carefully. Comparing the coeflicients of an encrypted message

e= ZmiFi (mod M),
i=1

we have N (almost linear) equations that one can analyse. Thus we must
take N small compared to n. Because N > vl, v and | must be small also.
In practical use, we will take v < 10,/ < 30 so that N = vl + k < 40 with
k < 10. To avoid a brute force attak on a message, we must have quite large
n. We will have 100 < n < 1000. Since n = ul, after determining [ first, one
can choose u so that n is appropriate.

For the selection of ! super-increasing sequences of length u, we choose a
moderately small number randomly and denote it by a;. If a1,a,,...,a; are
chosen inductively, then we take a random integer r € {1,2,3,...,10} and
let aiy1 =3 a;+7.

3.2 Efficiency comparison

In this section, we examine the efficiency of our system. Given input message
parameter of bit length n, the encryption and decryption speeds are both
O(n), though the public and private key sizes are both O(n?). The message
expansion rate varies upon variables u, v and I. The precise rates is

v - (u+log,l)
u-logy(v+1)°

Therefore it is recommended to take v = 1 to reduce a message expansion
rate. (See section 3.3.) The following table compares main characteristics
of RSA [10], McEliece [8], GGH [4], NTRU [5], and the Polynomial Knap-
sack Cryptosystem where the number n represents the length of a message
parameter.
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Polynomial
Knapsack | NTRU | RSA | McEliece | GGH
Encryption Speed n n? n? n? n?
Decryption Speed n n? n3 n? n?
Public Key n? n n n? n?
Private Key n? n n n? n?
Message Expansion varies varies |1 -1 2-1 1-1

3.3 Practical Implementation

We present four examples of practical implementations with suitable choices
of parameters. In all examples, the first elements of super-increasing se-
quences are chosen between 10 and 20, randomly. For given public polyno-

mials Fy, Fy, - - - , F,, we define the density
§(Fy, Fy, - Fp) = s
A2 5] ™ max{log, F(5,5)[1 <i<n,0<j < N-1}
[Example 1]
(v,u,l,n, N) = (1,25,6,150,9)
Public Key = 25 bits Secret Key = 23 bits
Density= 5 Message Expansion Ratio = 1.8

[Example 2]
(v,u,1,n, N) = (1,15,18,270,21)

Public Key = 2!7 bits Secret Key = 215 bits

Density= 12 Message Expansion Ratio = 1.6
[Example 3]

(v,u,l,n, N) = (1,23, 20, 460, 24)

Public Key = 28 bits Secret Key = 216 bits

Density= 15 Message Expansion Ratio = 1.5
[Example 4]

(v,u,l,n, N) = (3,70,8,560, 27)

Public Key = 2%° bits Secret Key = 2!7 bits

Density= 7 Message Expansion Ratio = 1.9
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4  Security Analysis

In this section we examine some possible attacks on the cryptosystem. The
lattice attack based on LLL algorithm will be a major one.

4.1 Brute force attack

Trying all ppssible G, Q € Zy[z] of degree N —1, N, respectively, and
testing if F;-G~! (1 <14 < n) have very special forms like our secret key
fi, one may recover the secret key. But in this case an attacker will have
M?N-1 choices. This is much worse than the message attack which has
(v+1)" choices. One can avoid these brute attacks by simply increasing the
number n.

4.2 Lattice attack

After Lagarias and Odlyzko (7] have devised a lattice attack which is effec-
tive against low density knapsacks, many reasearchers improved lattice ba-
sis reduction algorithm from which originated that of Lenstra, Lenstra and
Lovész [6]. In our specific case, one can use LLL algorithm by considering
{0, 1}-knapsack problem of v -n polynomials Fy, Fs,---, F,, =F,zF,- -,
zF,, -+ ,z*" F,z* " F,, - ,z,1F,. For the notational simplicity, let us
assume that v = 1. As it is noted is in (2], a simple application of LLL
attack does not work due to the high density of public key. As a method of
reducing density, one may form the following lattice L;

L0 - 0 305 6F(L)
01 - 0 YN 1eF(25)
00 1 Y5 ¢ F(n, j)
00 0 =35 ¢s;

for a given polynomial knapsack problem
n
Zt?iFi = (s0,81, " ,Sn-1), & € {0,1}.
i=1

Then L contains the vector (e1,€2,: - ,€,) which is comparatively small.
Let a; = Zjvz _01 ¢;F (i, 7). By taking c;’s arbitrarily large, one can reduce the
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density of ai,ap,- -, a, expecting that LLL algorithm works efficiently for
L. Saying on experimental base, this method works brilliantly for small n
such as n < 40. But for n > 100, the algorithm fails to find the solution
vector even if the density of {a;|1 < i < n} is less that 0.01. It seems that
this phenomena results from the non-randomness of {a;|1 < i < n}. We
suspect this is a virgin territory that needs further research.
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