A note on cs-semistratifiable spaces

Sung Ryong Yoo

cs-semistratifiable한 空間에 關하여

劉成龍

本 論文에서는 cs-semistratifiable 空間을 導入해서,

cs-semistratifiable 空間은 모든 点이 $G_{\mathfrak{o}}$ 인 空間에 包含됨을 論하고, cs-semistratifiable 空間은 收斂하는 數列이 一樣하게 $G_{\mathfrak{o}}$ 인 空間이기 위한 必要充分條件임을 보이고, 司空[7]에서는 compact cs-semistratifiable 空間이 metrizable임을 보였는데 여기서는 ordinal space[0, Ω]가 compact이지만 cs-semistratifiable 空間이 아니므로 metrizable이 안됨을 證明하였다.

Abstract

In this paper, a new clase of spaces called cs-semistratifiable spaces is discussed. It is shown that this clase of spaces is contained in spaces in which every point is G_{δ} , and that T_2 -space X is cs-semistratifiable if and only if X is a space in which every convergent sequences is uniformly G_{δ} . Sakong [7] had shown that compact cs-semistratifiable space is metrizable; however I would like to show that the ordinal space $[0,\Omega]$ is a compact space, but not a cs-semistratifiable space, and therefore it is non-metrizable.

Definition 1. A cs-semistratification for a topological space X is defined as a mapping g from $N\times X$ to the topology of X which satisfies the following conditions;

cs-1. $x \in g(n, x)$.

cs-2. $g(n+1, x) \subset g(n, x)$, and

cs-3. If a sequence $\{x_n\}$ converge to a unique point x, then $\bigcap_{i=1}^{\infty} g(i,\langle x;x_n\rangle)$

 $=\langle x; x_n \rangle$. Here, we used the notation $\langle x; x_n \rangle = \{x\} \cup \langle x_n \rangle$, where $\langle x_n \rangle$ denotes the range of the sequence $\{x_n\}$. Also we introduce $g(n, S) = \bigcup \{g(n, x); x \in S\}$ for any subset S of X.

From now on, spaces will mean only T_2 -spaces. By definitions and Martin's result, it is clear that semistratifiable \rightarrow c-semistratifiable \rightarrow cs-semistratifiable.

We show that we have another theorem of cs-semistratifiable spaces.

Theorem 1. If X is cs-semistratifiable, then every point is G_{δ} .

Proof. Assume that X is cs-semistratifiable space, then there exists g(n, x) such that x belongs to g(n, x). Let x_n be equal to x, for infinitely many n and x_n be equal to unique point x.

If x_1, x_2, x_3converge to y then x=y, thus T_2 is unnecessary. Meanwhile X is T_1 -space, so $\{y\}$ is closed. Hence $\{x\} = \bigcap g(n, \langle x, x_n \rangle)$.

Thus this complates the proof.

Theorem 2. X is cs-semistratifiable space if and only if X is a space in which every convergent sequences is uniformly G_{δ} .

Proof; Let X be cs-semistratifiable space, then $\{x_n\}$ converges to x. Define $\bigcup_k (x, x_n) = g(k; \langle x; x_n \rangle)$. Then $\langle x, x_n \rangle$ is equal to $\bigcap_k \bigcup_k (x_1, x_n)$.

If $x_n \to x$, $y_n \to y$ s.t. $\langle y, y_n \rangle \subset \langle x, x_n \rangle$ then $\bigcup_k (y, y_n) \subset \bigcup_k (x, x_n)$ for each k. Conversely for each n convergent sequence x_n converges to x, there corresponds a sequence of open sets $\{\bigcup_k (x, x_n) \mid k=1, 2\cdots\}$ such that $\langle x, x_n \rangle = \bigcup_k \bigcup_k (x, x_n)$ and that if $x_n \to x$, $y_n \to y$ with $\langle y; y_n \rangle \subset \langle x; x_n \rangle$, then. $\bigcup_k (y, y_n)$ is included in $\bigcup_k (x, x_n)$ for each k.

Define g(k, x) to be $\bigcup_k(x)$. Where $\{\bigcup_k(x) | k=1, 2, \cdots\}$ is the sequence of open sets assigned to the convergent sequence $\{x, x, x, \cdots\}$ then g is a cs-semistratification, so the proof is complete.

A space X is said to be developable if it has a sequence of open covers (r_1, r_2, r_3, \cdots) of X such that if $x_n \in \operatorname{st}(x, r_n)$ for each n, the sequence $\{x_n\}$ converges to x. A regular developable space is called a Moore space [2]. A space X is ωA -space if it has a sequence (r_1, r_2, \cdots) of open covers of X such that if $x_n \in \operatorname{st}(x, r_n)$ for each n, the sequence $\{x_n\}$ has a chuster point. Similarly, a space is a ωM -space [4] if it has a sequence $\{x_n\}$ of open covers of X such that if $x \in \operatorname{st}^2(x, r_n)$ for each n, the sequence $\{x_n\}$ has a cluster point. Clearly every developable space and every ωM -space is a ωA -space.

A topological space X is a β -space provided that there is a mapping a from $N \times X$ to the topology of X such that $x \in g(n, x)$ for all n and all x and if $x \in g(n, x)$ for some $x \in X$ and a sequence $\{x_n\}$ in X, then $\{x_n\}$ has a cluster point. Martin [6] proves that a regular space is semistrafiable if and only if it is a c-semistratifiable β -space. It remains true when c-semistratifiability is replaced by cs-semistratifiability.

Lemma 1. A compact cs- semistraifiable space is metrizable[7]

Definition 2. X is Frechet if and only if every x belongs to \overline{A} then there exists sequence $\{x_n\}$ in A s.t. $x_n \rightarrow x$.

Theorem 3. If X is 1^{st} countable space, then X is Frechét.

Proof; Let $x \in \overline{A}$ and $\{g(n,x) | n \in Z^+\}$ be a decreasing countable local base at x. $\forall_n, g(n,x) \cap A \neq 0, x_n \in g(n,x), x_n \rightarrow x \& x_n \in A$.

Lemma 2. A regular space is semistratifiable if and only if it is a cs-semistratifi-

(3)

able β -spaces[7].

Theorem 4. $[0,\Omega]$ is not Frechét(and hence not 1°-countable.)

Proof. Ω belongs to $[0,\Omega]$, even if we take $\sup\{\alpha_n | \alpha_n < \Omega\} < \Omega$, α_n are a countable set but Ω is a uncountable set. Hence α_n dose not converge to Ω .

Theorem 5. If X is compact space, then X is developable (modk).

Proof. X is developable(modk), then there exists $(X, K; r), \forall x \in K \subset \cup$. $\exists x \in K \subset \cup \rightarrow \exists n, st(x, r_n) \subset \cup$

Let $K = \{X\}, r_1, r_2, r_2, \dots = \{X\}. \forall x \in X \subset X \rightarrow \exists n, st(x, \{x_n\}) \subset X.$

With the aid of theorem 4 and 5, I derive a basic property for ordinal space $[0, \Omega]$. Corollary. Compact space $[0, \Omega]$ is developable (modk).

(References)

- 1) H. R. Bennertt and H. W. Martin, A note on certain spaces with baces (mod K), Can. J. Math. 27, 469~474(1975).
- 2) O. J. R. Borges, On metrizability of topologicaa spaces, Can. J. Math. 20, 795~804(1968).
- 3) J. Dugundji, topology, Allyn and Bacon, 1966.
- 4) T. Ishii, On ωM-spaces I, Proc. Japan Acad. 46,6-10(1970)
- 5) J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1965.
- 6) H. W. Martin, Metrizability of M-spaces, Can. J. March 49, 759~763(1972).
- 7) J.S. Sakong, spaces in which convergent sequences are uniformly G_{i} . Korea Univ. Math. (1977)

the same of the same

