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Abstract

For the unbalanced linear model, exact test procedures for variance
components are available only in restricted cases. In this note we derive
a simultaneous test procedure for the variance components of a general
random effect linear model. The test statistic has central F-distribution
on the boundary of the hypotheses and the test is exact. Power of the test
is given. We also obtain an explicit form of the test statistic for the
one-way random model . Under some restrictions on the design matrix, we
give an exact test procedure for each random effects.
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1. Introductions

For the balanced fixed and random effect linear models, appropriate F-tests for
testing the significance of fixed and random effects are exact and known to be
UMPU and UMPIU (Graybill,1976). Mathew and Sinba(1988) recently established the
UMPU and UMPIU character of standard F-tests for the balanced mixed effect
models. However, with unbalanced data the situation is different. Exact test
procedures for variance components are known only for restricted case. For
example, an exact test procedure for the one-way random model, is suggested by
Spjtvoll(1967), and for the two-way random model, some results can be found in
Spjotvoll(1968), Thomsen(1975), and Kuri and Littel(1987). Verdooren(1988) gave
some results for the two and three stage nested designs.

in this work, we suggest a simultaneous test procedure for all of the random
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effects of the model. the resulting test statistic is shown to be distributed as
the usual F-distribution on the boundary of hypotheses. We start with a general
random effect linear model and give explicit form of the test statistic for
one-way random model. We also give some results on the procedures for each
random effects when the model has some restrictions on the design matrices.

2. General model case
Consider the following general linear model.
y=1lu +X1&1 +--- + X%+ & A (1)

where y is a vector of n observations, u# is a fixed unknown constant, 1 is
n-vector of 1’s, Xi is n x bi design matrix, &i is bi-vector of uncorrelated
random effects, and &is n-vector of random errors. We assume that £i’s and &
are independent and multinormally distributed with zero mean vectors and
variance-covariance matrices oi?I for i=1,---,k and ok+12I, respectively.

Let C be a full row rank matrix of order (n - 1) x n such that C1 = 0, CC’ =
In-1 and C’C = In - 1/n11’. Then multiplying both sides of equation (1) by C
yields

z=CX1&1+--- +CXk&x +Ce (2)

where z = Cy.
It can be shown(see Rao,section 9,1971,for example) that the MINQUE of o = (
612,---,0k2, 0k+12) for the model (1) is the same as that for the model (2),
and is given by

Se™=u (3)

where S = {tr(RViRVj)}, u = {z’RViRz}, Vi = CXiXi'C" for i,j = 1,---,k+l, and R
= Bi=1k*1riVi)-1 = (I + Xi=1kriVi)-! with ri denoting the a-priori values of
pi = 0i2/ok+12, for i =1,---,k, and rx+1 = 1.

Since Xi-1kriVi is symmetric, we can decompose it by

K
¥ riVi = PDP’ (4)
=1

i

where D is a diagonal matrix of eigen values of Xi=1kriVi and P is the matrix
of corresponding eigen vectors. We assume that the first h diagonal elements of
D is nonzero where h is the rank of Xi=1kriVi.
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Since P is orthogonal, We have

{ k 1-1
R= l I+ X riVi J =(I + PDP’)-1 =P(I + D)-1P’ (5)
i=1 _
and we can decompose
(I+D)1=D1 +D2 (6)

Where Dl = diag(l/(l + Al),"'gl/(l + Ah)sO,"',O)y Dz = diag(o,"‘,o,l,"',l)
and Ai’s are nonzero eigen values of Xi=1¥ riVi.

Consider the linear combination Xi=1k*! riui where ui is the i-th element of u
of equation (3). Applying the results of (5) and (6), we can decompose Xi=1k=!
riui into two parts as follow :

k+1 k
Y riui = 2’R(I + = riVi)Rz = z'Rz = z’PDiP’z + z'PD2P’z. (7)

i=1 i=1

Suppose that ri and ei > O for all i. Then Yiz1k piVi and Xi=1* riVi are
comnuting and there exists an orthogonal matrix P such that each D = P'(Xi=1k
riVi)P and D* = P'(Ei=1k piVi)P are diagonal matrices with diagonal elements
being eigen values of Ti=1k riVi and Xi=1k piVi, respectively.

Note that when the diagonal element in D is nonzero, corresponding element in
D* is nonzero as well, since the column space of Xi=1k piVi is equal to that
of Ti-1k riVi. Hence I + Xi=1k piVi can be written as ‘

k
I1+3X piVi = P(I + D*)P’

i=1
= PD1*P’+ PD2P’
where Di1* = diag(l + Ai1*,---, 1 + A»*,0,---,0) with Ai*’s being nonzero
eigenvalues of Xi=1k piVi.

Let Di = Dil/2Di1/2, for i=1,2. Since z/pk+1 N(o,I +Zi=1kpiVi), It follows
that

Var(P'z/ ox+1) = l1* + D2, (8)
DiVar(P’z)Dz = 0O, (9)
D11/2P°z/ 6x+1  N(0,D1D1*) (10)

and
D11/2P'z/ 6x+1  N(0,D2). (11)

Hence z'PDiP’z/pox+12 and z'PD2P'z/px+12 are independent for pi > 0, 1 =
1,---,k,and distributed as Ti=1k(1+Ai*/1+Ai)Xi2 and X2, respectively, where
Xi2’s and X2 are independent chi-square random variables with 1 and n-h-1
degrees of freedom. _

These suggest us to consider F = ((n-h-1)/h)z’PD1P’z/2’PD:P'z as a test
statistic to test Ho : oi < ri for all i =1,2,...,k against H1 ¢ @1 > ri for
at least one i. On the boundary of hypotheres, the distribution of F is



Choon-11 Park, Seung-Chun Li

E(h,n-h-1). Preumably we reject the null hypothesis if F is too lafge.
Consider the eigen values of Xi-1k(pi + &£i1)Vi where €5 > 0 for all i. Since
Yi=1kpiVi and Zi=1k(pi + €1)Vi are commuting, we have

P'[_ gpi+t~:1)Vi ]P=13 | (12)

1

H

where D = diag(A 1,...,A 1,0,...,0) with A i’s being nonzero eigen values of
Zi=1k(pi + €1)Vi. Thus

P[ S e ]P =D - D* = diag(R 1-A*1...., A b-A%8.0,....0). (13)
i=1

Note that A i-A*i is an eigen value of Xi=1k £iVi. since Ti=1k &iVi is a
non-negative definite, it follows that

A i-A* 20 for all i =1,2,....h. (14)

Consequently, the unmerator of F increases with pi’s. while the denomination is
independent of pi’s.Hence the rejection region of our test should be upper
tail of F-distribution. The power of test is given by

h 1+A%; h 1
pX Xi2 > cX2 J (14)
i=1 1-Ai n-h-1

Pr

where ¢ is an appropriate constant such as Fa(h,n-h-1) for size a test

Remark 2.1: The power of the test can be calculated by the algorithm given by
Farebrother(1984).

3. Special case 1.

We will derive an explicit form of the test statistic for the following one-way
random model,

Yii = u + &i + €i (16)
where j = 1,...,ni, i = 1,...,b. Here u is a constant, £i and eij are
independent normally distributed random variables with means 0 and variance o12
and o2, respectively. In matrix notation, the model can be written as

y=1lu +X& + € (17)
where 1 is n-vector of 1’s, X is n x b design matrix with n = ¥i=1P ni and S

and & are multivariate normal random variables vith mean vector 0 and
variance-covariance matrices ¢12I and o2I, respectively.
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Let XX’ = QEQ’, where E = diag(rnl,...,rnb,0...,0), diagonal matrix of eigen
values of rXX’ and Q is the matrix of corresponding eigen vectors. Then

(I + rCXX’C’)-t = (I + CQEQ’C’)-1

= 1 - CQE1/2 (I + E1/2Q’C’CQE1/2)-1 E1/2Q"C’

=1 - CQE1/2 (I + E1/2Q’(I - 1/n 11") QE1/2)-1 E1/2Q'C’

=1 - CQE1/2 (I + E - 1/n E1/2Q"11"QE1/2)-1 E1/2Q"C’ (18)

Nothing
(I + E - l/nEIIZQ’ll’QEIIZ)-l
=(I + E)-1 + (I + E)-1 E1/2Q"11'QE1/2 (I + E)-!
n - 1’QE1/2 (I + E)-t E1/2Q’1

and b
n-1’QE1/2(I + E)-1E/2Q’1 = ¥ ni/(1 + rni),
i=1

we have the following result some algebra:

(b rmi2(yi.- y..) 12

b ni 2 b nilyi.-y..)? izt 1+ i
z'Rz = X (yij -yi) + X & ' (19)
i=1j=1 i=t 1 + mi b ni
2 —
i=1 ] + rni

_ ni _ b ni
where Vi.= 1/niXj=1 yij and y..= !/n¥i=1Xj=1 yij. It can be shown that the
first term of (19) is equal to z'PDzP’z. Thus our test statistic can be written
as

(b mi2(yi.- y..) 2

p ni(yi.- y..)?2 i=1 1 + rni
Z _-
i=1 1 + rni b ni
z P
n-b i=l 1+ rni

= {20)
b-1 b ni -
Ti-1Xj=1 (yij - yi.)?

Remark 3.1 : Spjotvoll(1967) considered the hypothesis Ho : p < r against Hi :
p = r1 where r1 > r. For this testing problem, he derived test statistic
W(r,r1) which depend on ri and is known to be most powerful similar invariant
test. For testing Ho : o =< r against Hi : p>r, he used W(r,=) which was denoted

by T(r) and is equal to our test statistic.

Remark 3.2 : When the design is balanced, the last term of (19) is zero and our
test procedure is UMPU and UMPIU.
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4. Special case 2.

By a similar argument we can obtain a test procedure for each variance
components under certain conditions on design matrices. Suppose ViVi = 0 for all
i # j, for example, balanced factorial designs. Then there exists an orthogonal
matrix P such that

Vi = PAiP" fori=1,2,...,k : (21)
with A;i being the diagonal matrix of eiegen values of Vi. Since Vi’s are
orthogonal to each other, if s-th diagonal element of Ai is nonzero, then the
corresponding diagonal element of Aj.j = i is equal to zero.

Suppose that we wish to test Ho : p1< r against Hi : p1 > r. We may assume
that A1 = diag(A1,...,A4,0,...,0), where q is the rank of Vi. Then
(I + rPA1P’)-1 = P(I + rA1)-1P’ (22)

and we can decompose (I + rAi1)-1 into D1, and D2 as follows:

(I +rA1)-1 =D1 +D2 (23)

where D1 = diag('/1 + rAi,...,1/1 + rAq0,...,0), and D2
diag(0,...,0,1,...,1).
Writing D1 = D11/2D11/2, we have

k
Var(D1!/2P°z/ ok+1) = D11/2P"(I + = piVi)PD11/2

i=1

K
Di1/2P° (I + ¥ piPAiP")PDi1/2

i=1
K
=p1/72,pP’P(I+xpi Ai)P’PD1/2,
i=1
=p1/2;(I+p1A1)D1/2,
=diagr 1+p1A1, ... , 1+p1dq ., 0. ... ., 0y (24)
VTT+r X7 T+ rxiq !
and
DiVar(P’z)Dz = 0 - (25)

Thus z’PD1P’z/ox+1 is distributed as JY%i=1(1+p1A1)X2i/(14rA1) and
independent of z’PD2P’z/ox+1. On the boundary of hypotheses, the distribution
of F = (n-h-1)z"/qiPDi1P’z/2’PD2P’z is F(q,n-h-1). thus we reject the null
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hypothesis when F>Fa(q,n-h-1).
The test is unbiased level « test and power of test is given by

[a 1
Pl T {(1+p1Ai)/(1+rAi)} X2i > Fe (q,n-h-1)g/(n-h-1) xz] (26)

i=1
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