A FITTING OF PARABOLAS WITH
MINIMIZING THE ORTHOGONAL DISTANCE

Ik-SunGg KM

ABSTRACT. We are interested in the problem of fitting a curve to a set
of points in the plane, in such a way that the sum of the squares of the
orthogonal distances to given data points is minimized. In [1] the prob-
lem of fitting circles and ellipses was considered and numerically solved
with general purpose methods. Especially, in [2] H. Spath proposed a
special purpose algorithm(Spath’s ODF) for parabolas y—b = ¢(z —a)?
and for rotated ones. In this paper we present another parabola fitting
algorithm which is slightly different from Spath’s ODF. Our algorithm
is mainly based on the steepest descent procedure with the view of en-
suring the convergence of the corresponding quadratic function Q(u)
to a local minimum. Numerical examples are given.

AMS Mathematics Subject Classification : 65D10.
Key words and phrases : orthogonal distance, fitting of parabolas, least
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1. Introduction
Let be given a set {(zx,yx) : k = 1,2,...,n} of data points in the
plane and a model curve in the parametric form
(1.1) z = z(a;t),
y =y(b1),

where a = (a3,4a2,...,am,) and b = (by,b2,...,br) are two vectors of

unknown parameters. We are interested in the problem of fitting the
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model curve to the given data points in such a way that the sum of the
squares of the orthogonal distances from (zk,yx) to unknown points
(z(a;tk),y(b;tx)) is minimized. The orthogonal distance dj of a point
(zk,yx) can be expressed by .

(1.2) dy = \/H}in [(zx — 2(a;¢6))2 + (yx — y(B;t4))?] .
Thus, to fit the model curve to the given data points we need to de-
termine a = (aj,as,...,a,) and b = (b1:b2,...,b) by minimizing

n

Y. di = min. The objective function to be minimized is given by the
k=1
quadratic function @ defined by

n

(13) Q)= Y [(zx — z(a; tx))? + (ve — y(b; tk))?],

k=1
where the parameter vector u = (a1y...,am,by,... ybi,ty, .o th) €
R(m+!+n) is dependent upon a,b and the vector t = (t1,1,,...,¢,) of ad-
ditional unknowns {¢;}"._,. In addition, a,b and ¢ can be simultaneousl:
determined. To do so, we may either apply minimization algorithms to
(1.3) or solve the nonlinear system of (m 4+ 1+ n) equations for the

parameter vector u = (@i,...,am,b;,..., b, t,... ,tn) induced by the
necessary conditions for a minimum, namely
oQ ;
(14) %:—O (z—l,,m),
0Q . |
1. - = =1,...,1
(1.5) 3%, 0 (U=1,...,0,
9Q

In this paper, we particularly deal with parabolas as a model curve
and propose an iteration algorithm for fitting a parabola(or a rotated
parabola) to the given data points in the plane. Let be given any
corresponding quadratic function Q(u) for the parameter vector u =
(u1,u2,...,u,s) which is needed to fit a parabola. Our algorithm for
minimizing the given quadratic function Q(u) consists of two well known
procedures as follows. :

‘( PROCEDURE-1) Given any r values of uy....,u, (r < s), find the
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other (s—r) values ¥r41,%ry2,. .., U, by solving a constrained nonlinear
.system of (s — r) equations which is connected with the system of s

equations — = 0G=1,...,s).

Ou;
( PROCEDURE-2) By using the steepest descent method for the

quadratic function Q(u), determine a new value u(1) = (ugl), ugl), ey ugl))

= u(® — aVQ(u?) from given an initial approximation u(® = (u{”,
ugo), ey u(so)). The value of « is given by minimizing the single variable

function h(a) = Q(ul® — aVQ(u(®)). Here, V denotes the gradient

operator.

Even if the convergence of the given quadratic function Q(u) to
the global minimum may not be guaranteed, our algorithm for fitting
parabolas has the advantage of ensuring the convergence of Q(u) to a lo-
cal minimum. We give some numerical examples for fitting of parabolas
and observe the convergence of each quadratic function Q(u).

2. Orthogonal distance fitting of parabolas

Let us now consider parabolas as the model curve (1.1)

(2.1) y—b=1c(z—a)? (c#0)
in its parametric form
(2.2) r=a+t,

= b+ ct?.

Then the quadratic function to be minimized for fitting a parabola to
the given n data points (zk,yx) (k =1,...,n) is given by

n

(2.3) Q(u) = kgl [(xk —a—tg)?+(yx —b— cti)2]7

where the parameter vector u = (a,b,¢,t1,tz,...,t,) € RO,

We also have the following (n+3) equations induced by the necessary
conditions (1.4), (1.5) and (1.6) for a minimum: .

(2.4) Y (zk —a—tx) =0,
k=1

(2:5) i(yk —b—ct}) =0,
k=1
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n

(2.6) t2(yr —b—ct}) =0,
k=1

and :
(2.7) t?+p,~t,-+q,—=0 (t=1,...,n)
with

1 —2¢(y; — b)
(28) Di = 22 ’

a—z;

(2.9) g = 50

The above system of (n + 3) equations can be divided into two parts.
One is a linear system of the three equations (2.4), (2.5) and (2.6) for
a,b and ¢, whose coefficient matrix depends on t;,12,...,t,. The other
part is concerned with the n cubic equations (2.7). The ith cubic equa-
tion contains just t; as unknown and its coefficients depend on a, b and
c. There are some well-known methods for solving the linear system
of the first part and n cubic equations (2.7) respectively. Furthermore,
one may be able to propose mixed iteration algorithms which are con-
nected with both well-known methods above. In this connection, in [2]
H. Spath proposed an iteration algorithm(Spath’s ODF') for fitting of
parabolas. Here, we will present another parabola fitting algorithm. In
fact, the steepest descent method can be employed as a minimization
algorithm for minimizing the quadratic function (2.3). So, the parabola
fitting algorithm consists of both the steepest descent method for min-
imizing Q(u) and the root-finding algorithm for the n cubic equations
(2.7). We now describe our iteration algorithm for fitting of parabolas.

Algorithm A:

STEP 0. Let a(®,5(®) and c(?) be given as three initial approxima-
tions for unknowns a, b and c respectively. Set j := 0.

STEP 1. Apply PROCEDURE-1 for solving n cubic equations (2.7)
with u; = @@ uy = 4 and u3 = ¢(®. In other words, solve the
n cubic equations (2.7) for ¢y = tio) (k = 1,...,n) with respect to
a=a®b=>5 and ¢ = .
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Each cubic equation may have one or three real roots. Let D; be the
discriminant

~

Pi3 i 2
1 D; =(— =)*.
(210) B +(%)
In case D; > 0 we have one real root
— 4. _ P
(2.11) v1 = A; 34,
where

(2.12) A = (—-‘*;—‘ + /D)t

We then set t,(-o) = v1. For D; < 0 we have three real roots:

(2.13) v1 = B; — 3p*l;,~’

(2.14) v =whB; — L;Zi,

(2.15) vy = w?B; — %’ where

(2.16) B; = @exp(%i) with cosg; = ~—2- __ and
2y/ (5

(2.17) w= exp(%ri).

In this case we take one of the three roots assigned to tgo) in order to
reduce the quadratic function Q(u) most. Namely, if
(2.18) (zi —a® — )2 4 (y; — 5O — c(0y2)2

= min [(z; —a® —v;)2 4 (y; — 5O _ c(®v2)?], then we

k=1,2,3
set

(2.19) tfo) =y.

We thus get an approximation u(®) = (a®, p(0), c(°),t§°), ‘e ,t5,°)).

STEP 2. Apply PROCEDURE.-2 to the problem of determining
an approximation 4(i+1) — (&(j+1)’ 5(j+1)’5(j+1), iflj+1)’ . ’i-slj-i-l)) from
ul) = (g0, b0 (@) tgj), L ,tglj)).

Let VQ = (&(j),l;(j),é(j),fgj),...,fglj)) be the gradient of Q(u) at
u = u() such that
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=1

ap n . 3.4 ( -)2
B0) = —2k¥1(yk — b — D7),

. n N2 . . N\ 2
&) = _zkg_:l 0% (g — b0) — DTy

and
t‘ﬁj) _ —4ct§f’2(yk ) — c(i>t§j>2)
—9(zx —a® -t (k =1,...,n).
Then it follows from n equations (2.7) that
221 #=0 (k=1,...,n)
We also get an approximation
(2.22)  aUtD =4 —aV(Q),

where « is obtained by minimizing the single variable function
n

(223) k(@) = Y [(zk ~ (aP =adP) — )" + (yx — (b9 — b))
k=1
. N (8)2
—(ct) = ad@) 2],

STEP 3. Apply PROCEDURE-1 with u; = aU+V),u, = b0+
and us = ¢U+D. That is, solve the n cubic equations (2.7) for ¢y =
tiﬁ'l) (k = 1,...,n) with respect to a = U+ p = pUFD and ¢ =
U+, Let DEJ'H) be the discriminant

(+1) (j+1)

- 2 £

(224) D§]+ ) = ( 3 )3 +( 5 )2’

where

(2.25) P+ = 1 — 28U+ (y; — pUTD)
| z 25(1‘+1)2 ’

(2.26) gt L T

1 24(i+1)?

In case DEHI) > 0 we set
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(+1)
(G+1) _ 4G+ P
(2.27) 7T = Al A AGFD

where

‘ . (G+1) —
(228) AV = (<R — /DI,

When ng 1) < 0 there are three real roots:

(J+1)
_ U+ _ Pi
, 2, (7+1)
(2.30) vy = wBYUtY P
3UtY
, (5+1)
(2.31) v = w? B - B
3B;’
where
. (3+1) (3+1)
(2.32) BEJH) = lp; 3 | exp(sa'3 i)
(j+1)
. ( 2
with cos go(.]H) = BB and w = exp (—Ez)

i G+D) 3
2, /( |p; : |)3

In this case we get tgj“) = v such that

(2.33) (zi — @UHD — )2 4 (y; — DU — &+1)y2y2

= min [(z; = &UD — 02 + (g — BOHD — &lit0uzy]

And so, we get an new approximation
(2.34) w+1) . — (a(j+1), b+ (G+1) t§j+1), o ,tﬁ;jﬂ))

with U1 = gU+D U+ = jU+1D) apd G+ = G+1),

STEP 4. If Q(ul*V) < Q(ul)), then we set j := j+ 1 and go back
to STEP 2.

Due to the descent property of PROCEDURE-1, one may ensure

the convergence of Algorithm A to a local minimum independent of -

the initial approximation u(®). That is, it follows
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(2.35) QuU*)) < Q) (5=0,1,2,...).
Nevertheless, convergence to the global minimum may not be guaran-

teed. Unfortunately, it is possible for our algorithm to converge to other
than the absolute minimum.

3. Orthogonal distance fitting of rotated parabolas

Now we are interested in the problem of fitting 'general parabolas
(i.e. rotated parabolas) to given data points (zk,yx) (k=1,...,n).

Consider the parabolas rotated with unknown angle 6
(3.1) §—b=c(Z—-a)’ (c#0)

with & =z cosf +ysind and § = —zsinf + y cosb.
Then, the parametrlc form of rotated parabolas with additional param-
eter 9 can be given by
(3.2) zcosf+ysinf =a+t

—zsinf + ycosf = b + ct?,

or

(3.3) z=(a+1t)cosf — (b+ ct?)sinb
y = (a+t)sin@ + (b+ ct?) cosb.
Our problem is to determine the rotated parabolas (3.1) such that

the following quadratic function is minimized
n

(3.4) Q(a) = Z([xk — (a+ tx)cos 8 + (b + ct?)sin 6)?
k=1

+[yk — (a +tx)sin @ — (b + ctf) cos 6]?).
The basic idea for fitting the rotated parabolas is as follows:

Let (Zx,9x) (k=1,. n) be any new data points given by rotating
(zk,yx) with unknown angle 6. N amely,

(3.5) Tk —:ckcost9+yksm9
Yk = —zksin @ + yi cos b.

Consider the problem of fitting the following rotated parabolas to the
above data points (Zx,4x) (k=1,...,n):

(3.6) j=b=c(i—ay (c#0)

- 1n its parametric form
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T=a+t
¥ =b+ ct?.

Then a,b, c and additional unknown # must be computed in order that
the following corresponding quadratic function Q(%) is minimized:

(3.7) Q@)= [(F —a —t&)? + (§x — b—ct?)?],
k=1

where the parameter vector @ = (a, b, c, 6, t1,.. ., ta)

The necesséry conditions for a minimum of Q(ﬂ) with respect to d, b,c,
t1,...,t, are the same as for Q(u) with zx = 7 and yx = Uk in (2.3).
We thus have the following (n + 3) equations:

n

(3.8) Z(:T?k —a—tg) =0,

k=1
(3.9) > Gk —b=et?) =0,
k=1
(3.10) D ik —b-et?)=0
k=1
and
(3.11) 2 +pti+G=0 (i=1,...,n)
with
- 1— 20(55 - b)
(3.12) pi = Y R
. a-—1z;
(3.13) | =3

In addition, there is another equation induced by the necessary con-

dition a—Q = 0. Namely,

a6

n
(3.14) Z[(—rk sinf + yx cos ) (Zx — a — t;)
k=1
—(zk cos b + yr sin8)(Gx — b — ct?)] = 0.
The above equation (3.14) can be solved for the unknown angle 0 de-

pendent upon the other unknowns a,bc,ty,... t,.
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= arctan EZ=1[yk(a + tk) — Tk(b + ct2)]
(3.15) 6 = arct (Z;::l[l‘k(a+tk)+yk(b+ct%)]>.

Thus, using (3.15) and applying Algorithm A to the (n+3) equations
from (3.8) to (3.11), one may-be able to fit a rotated parabola §j —b =
c(% — a)? to the given new data points (Zx,9x) (k=1,...,n).

So, in view of the modification of Algorithm A, we can present an
iteration algorithm for solving our problem. We now describe our al-
gorithm for fitting general parabolas (3.1) to the given data points

(zk,yx) (k=1,...,n).
Algorithm B:

STEP 0. Let a(®,5® ¢(® and 6 additionally be given as four
initial approximations for unknowns a, b, ¢ and 8 respectively.
Set 7 :=0.

STEP 1. .Apply PROCEDURE-1 for solving n cubic equations
(3.11) with u; = a® uy; = b0 yuy = ¢ and uy = 69, In other
words, compute (k =1,...,n)

(3.16) #r = 7k c0s 89 + y sin 60
Gk = —zx sin 0 + yy cos 60,
and solve the n cubic equations (3.11) with t; = tio) (k=1,...,n)
with respect to a = a(®,b = 5 and ¢ = ¢(?.
We then get an approximation @(? = (a(?, b(°),c(°),o(°),t(1°),,. .. ,tﬁ,")).

STEP 2. Determine an angle 80+ from (3.15). Namely, get
(3.17)  UTYD

. . . o
oo [ Zhealve(a) +67) — 260 4t 1)
X ' )y ~ (N2

STEP 3. Compute (k =1,...,n)
(3.18) ir = zk cos 00D 4y sin U1
gk = —ZTk sin 6(]+1) + yk cos 6(]+1)
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and the gradient vQ = (d(j),B(J')?é(j)’é(j-'l-l)’t"gj)’_“’,Eslj)) of Q(ﬁ) ot
i = al) = (a0, b, ), gu+D) ) 4.

Here,

. (n . ;
(3.19) &\ = -2 kz (2 — a®) — ),
P n . N2
B = —2 3 (i — b9 — DD,
k=1

. n N2 i . N2
el) = —2 kz £9)7 (7 — b) — )7,
Moreover, it follows from n equations (3.11) and the necessary con-

.. 0Q
dition 20 = 0 that

(3.20) D=0 (k=1,...,n),
(3.21) 6G+1) = 0.

Apply PROCEDURE-2 for Q(i) with u{®) = (9. Find an approx-
imation
(3.22) GG+ = (GUHD U+ U+ gG+D 4D 40Dy

=) —aVQ.

The value of « is determined so as to minimize the single variable

function

(3.23)  h(a)= E [(Fx — (aP — aa) — tif))Z + (G — (b9 — ad)
. . 2
—(c) — ae)D 72,

STEP 4. Apply PROCEDURE-1 for solving n cubic equations (3.11)
with u; = aU+D u, = B0+ yy = &0+ and uy = U+, In other
words, compute (k =1,...,n) '

(3.24) Fr = zx cos 0UFD) 4y sin U+
Jx = —zx sin 00+ 4 y; cos 4G+
and solve the n cubic equations (3.11) with ¢t; = tij'*'l) (k=1,...,n)
with respect to a = a(+1) b = §(+1) and ¢ = &+,
We then get a new approximation
(3.25) GUHD) = (qU+D pU+1) (G+1) gG+D U+ 4Gy
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with g#+1) = &(i+1),b(f+1) = U+ and U+ — cU+1).

STEP 5. If Q(aV*V) < Q(a), then we set j := 7 + 1 and go back
to STEP 2.

4. Numerical examples

To test our algorithms we give some examples for fitting of parabo-
las. Especially, we observe convergence of the corresponding quadratic
function in each case. In fact, it is certain that each quadratic function
converges to a local minimum.

Example 1. Let be given seven data points (—=7,24),(-3,0),(-2,
-1),(0,3),(1,8),(4,35),(7,80), lying exactly on the parabola y=(z+
2> —1witha=—-2,b=-landc=1.

We use Algorithm A for fitting a parabola y — b = ¢(z — a)? to the

above data points. The quadratic function to be minimized is given by
n

Qv) = 3 [(zk = a—tx)? + (ys = b— ct2)?].

k=1

(i) Using a® = 0,5(®) =1 and c(® = 2 as three initial approximations
we obtain good approximations a, b and ¢ very close to the exact values
in less than 1000 iterations. This good result is visualized as the solid
parabola in Figure 1. As seen in Figure 2, the solid line shows the
convergence of Q(u) to a local minimum ( properly speaking, the global
minimum).

(i) When a(® = 0,5® = 1.and ¢ = —2 we get a = 2.13,b =
119.13,¢c = —6.28 after 1000 iterations. This result is given as the
dashed parabola in Figure 1. Also, the dashes in Figure 2 represents
that the quadratic function Q(u) converges to a local minimum.

Here we see that one may receive different local minima for different
initial approximations. Thus the choice of good initial approximations
is needed to get a best approximation ( hopely, the global minimum).

Example 2. By rotating the data points of Example 1 with the an-
gle ¢ = T in the counterclockwise direction we get the data points

(—31\/5 17\/5) (—3\/5 —3\/2_) (—\/7 —3\/5) (—3!2 3_@) (—7\/5 M)
2 12 ) 2 9 y 2 v 9o : 2 2 ) y "9 )
("3;‘/5, 392‘/5), ( —73‘/5, 872‘/5), lying exactly

2
on the rotated parabola
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T

P24+ = (-1 + 1)),

Y= 2((-2+) + (-1 +2)).
We use Algorithm B for fitting a rotated parabola § — b = ¢(z —

a)? (c# 0) with # = zcos + ysinb and § = —zsinf + ycosb to
the above data points.

200
-100} N
i
-200- -
|
300} J
.
’
’
-400+
-s00L/ . i
{
-600 L " " " J
-8 -6 4 -2 [} 2 4 8 8
Figure 1

The value of quadratic function Qfu)
3 a8

s
Fl

—— ]

100200 300 400 S0 600 700 8% 960 aco
The number of iterations : n

3
[

Figure 2
Here the quadratic function Q(i) is given by

Q(a) = i([xk —(a +1t)cos 0 + (b + ct?)sin 6)?

k=1
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+[yx — (a + tx)sin @ — (b + ct2) cos §]?),

where the parameter vector @ = (a,b,¢,0,t;,...,tn).

(i) When a(® = 0,5 =1 and {® = 2 as in Example 1, with
6(°) = 0 as an initial approximation for Algorithm B we get a =
—2.85,b = —1.03,c = 1.40 and 8 = 0.5642 after 1000 iterations. We
see this result as the dotted parabola fitted to the given data points in
Figure 3, and also convergence of the quadratic function Q(@) as the
dashed line in Figure 4.

(ii) Usiné a® =0, =1 and ¢(” =2 with 69 = I for Algorithm
B we get good approximations near to a = —2.00,b = —1.00,¢ = 1.00
and 6 = 0.7854 in less than 1000 iterations. We see this best fit as the
solid parabola in Figure 3. The convergence to a local minimum(more
precisely, global minimum) is shown by the solid line in Figure 4.

the value of quadratc functon O
3 H
//

5
%

‘00 300 402 500 639 720 800 90 1000
e number of Keratons n

H .
‘. .
P2 SUPRU SRV

Figure 4
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Example 3: Given any data points (—3,40), (—3,2), (-2,30), (-2
.»3), (-1,4), (1,5), (0,10) we employ Algorithm A and Algorithm
B for fitting a parabola and a rotated parabola respectively. Using
a® = 0,6 = 1,0 = 2 in common as initial approximations, and
additionally § = 0 for Algorithm B, we obtain two parabolas fitted to
the given data points. In Figure 5 the dashed parabola and the solid
rotated parabola after 2000 iterations are visualized for Algorithm
A and Algorithm B respectively. Also, as can be seen in Figure 6,
convergence of each algorithm to a local minimum is guaranteed.

o e

Figure 5

The value of quadraiic function Q
3

106 .
Q 200 400 600 800 1000 1200 1400 1600 1800 2000
The number of iterationsan

Figure 6
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