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ABSTRACT

Full wave solution to the 3-D radiation from a plane or volume array and propagation in a range independent wave
guide are considered in this paper. The situation is encountered frequently when using directional source, i.e. array
of sources in ocean environment. The three dimensional version of computer program “SAFARI” is extended for this
purpose. The solution technique uses Global Matrix Method for a laterally stratified medium, which finds the full
wave solution efficiently for the acoustic medium as well as elastic medium. Although the nature of this problem
involves the Bessel function of higher order, which introduce the convergence problem, the problem can be greatly
simplified by using superposition method for the solution to the individual sources, Numerical examples are
presented to demonstrate the solution technique.
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1. introduction stratified media has been a classical problem in

the analysis and prediction of ocean acoustic

The propagation and radiation in the laterally pressure field, Among various methods available

T nowadays, Global Matrix Method(1}3} gives the
Dept. of Ocean Eng, Korea Maritime University, . .

Instructor full wave solution for acoustic waves as well as

H4db: 19929 99 09 elastic waves of P, SV and SH, so as to treat
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ocean bottom interactions. Another advantage
comes from its ease of handling the directional
sources such as couples*, seismic sources-+3 and
line arrays[2](3]'~5:.

The radiation from a horizontal array of sources
has been treated in the paper by Schmud: and
Glattetre®®), However, the method is computa-
tionally intensive due to the higher orders of
Bessel functions required to expand the range-di-
rection field for each Fourier order in azimuthal
angle. In this article, a superposition method,
which eliminates Fourier expansion in azimuthal
angle, i1s discussed and numerical examples are

given with interpretations.

II. Theory

The solution technique in a laterally stratified
medium uses cylindrical coordinates. The advan-
tage of using cylindrical coordinates in range in-
dependent environment is that only one integral
transform in range direction is necessary since
the azimuthal angle is in the form of Fourier sum-
mation. First, the equation of motion is
depth-separated by Fourier transformation in the
azimuthal angle and Hankel transform in range.
The remaining ordinary differential equation in
the depth coordinate with proper boundary
conditions for horizontal interfaces yields a set of
linear system of equation for each interface. The
local matrix is properly combined to yield the glo-
bal matrix, giving a full wave solution simul-
taneously for each azimuthal Fourier order, and
for all layers. Once the depth-dependent solutions
are found for each layer, the inverse Hankel
transform is performed for each azimuthal

Fourier order. Now, the frequency domain sol-

ution is found by summing the Fourier orders.
The time domain solution is obtained by inverse
Fourier transforming the solutions for each fre-
quency., However, in this article, the transmission
loss for single frequency, i.e. CW, is of interest.
The mathematical background for Global
Matrix Method ca.: be found in the cited
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Figure(1) The Solution Procedure of Global Matrix
Method

references{1](3](4]. Here, the method is briefly
reviewed to show how the solution technique can
be incorporated to give the full wave solution to
the directional array radiation and propagation
problem,

2.1 Wave Equation and Homogeneous Solution
The equation of rration for displacement in a
homogeneous isotropic medium is

&u
at?

(A+2u)V (V -u)—puV XV Xut+pF=p (1)
where u and A are Lame’s constants and u is dis-
placement vector, p is density, and F is a body
force vector. Introducing the force potentials, ®,
L, M, N, and displacement potentials ¢, ¥, G, H,
and subsequently A, ¢ [6]{4], the body force, F

and displacement u are expressed as

F=(XY.Z)=Vd+V x(LM,L) (2)
u=(u,e,w)=Ve+V x (F,GH)
=V ¢+V XV x(0,0,A)+V X (0.0.y) (3)

The equation of motion reduces to homogeneous

wave equation for scalar potentials

(Vi+h?%g=0
(V2K (A, ¥) =0 (4)
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where h and k denote wave numbers of
compressional and shear waves, respectively, The
potentials are expanded in Fourier series in the

azimuthal angle 0, as

cos mé

se00=F oo [ G0

cos mé@ (5)

Alr, 6, z) =m§_:0 A™(r,z) [ sin m0

i, 8, z)= i Y™ (r,z) [ —zlor;r:n%

-0
where the displacement potentials for each azi-
muthal Fourier order can be written as

#(r,z) =j(: [a": (s)e'Za(S) +a"21 (S)eZa(S) ]

sJm(rs)ds

A™(r,z) .__.j“: [br;‘ (S)e"‘Zﬂ(S) +b"; (s)eZﬁ(S) ]
Ja(rs)ds (6)

y™(r,2) =j‘: [T (s)e 28 +cf) (5)e?8(8) )
sJm(rs)ds

where s is horizontal wave number, and « and 8
represent vertical wave numbers of compressional
and shear waves, respectively.

Substitution of the potentials into Eq(3) leads
to the expression for the displacements, and the
stresses can be found from constitutive relations,
In the case of elastic medium interface, these 6
field parameters of displacements and stresses
constitute the boundary conditions for each
interface with 6 unknowns, which are

a(s), b7 (s), cT(s), a5 (s), by (s), ) (s) (7)
Next, the source term in the wave equation due
to acoustic monopole is represented via force

potentials.

2.2 Displacement Potential for Acoustic Monopole
The expression for the Green's function in

HEAREEE 1 E 5 R(199)

The expression for the Green's function is tr-
ansformed into cylindrical coordinates by Som-
merfeld-Weyl Intergral [8]

e ~ihR

R

= [ Jatsme "l 2 g (8)

Combining the above equation with Love-Stoke
Formalism {6], the displacement potential can be

shown to be
wt X — —_
valyl;g_q_»:“ ahte alzzd 2 4 (9)
4npw?’ Jo @
A=0
¥=0

The corresponding displacements and stresses at
the interface can be derived in the same way as
the homogeneous solution. Detailed derivation
can be found in the reference [4].

2.3 Global Matrix Method (GMM).

Once the field representation by homogeneous
and inhomogeneous source terms is obtained, the
problem is to find the unknown coefficients of the
homogeneous solution in Eq(7). The boundary
conditions of displacements and stresses consti-
tute normally 6 boundary conditions at each
interface, thus forming a set of local linear sys-
tem of equations. Since the boundary conditions
are to be satisfied at each boundary simul-
taneously, these sets of equations for each
interface, when combined, form a global matrix,
The unknown coefficients are found by solving
the global matrix numerically, and the homg-
geneous solution for each layer is found by
performing inverse Hankel transformation sum-

ming over Fourier orders for azimuthal angle.

2.4 Field due to an array of sources-Superposition
Method

The superposition method, literally, utilizes the

superposition of radiated field by a single source

placed on axis to represent the field caused by a

source displaced from the z-axis (i.e. r==0 in cyl-

indrical coord.). Figure(2) shows the horizontal
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array with sources off the z-axis. The field
caused by this array can be represented by sum-
mation of the field in the receiver positions in
Figure(3). For the horizontal displacements and
shear stresses, the field parameters need to be
transformed in the proper coordinate system,
which can be either rectangular or cylindrical.
Hence, the directivity caused by the horizontal
line array can treat the horizontally or vertically

polarized shear waves.

. Numerical Examples

3.1 Reftection from Ocean Bottom

For the acoustic pressure field reflected from
ocean bottom, two cases are discussed to demon-
strate the applicability of the superposition
method, The first example is the case of a verti-
cal line array, which can be solved by
2-dimensional version of Global Matrix Method!!.
The layer consists of 3 layers. The uppermost
layer is a fluid haif space with sound speed 1500
m/sec., The second layer is the ocean bottom
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Figure(2) Array of horizontally distributed sources.
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Figure{3) Reduced nuvmerical Model of horizontally
distributed sources.
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Figure(4) Sketch of geometry for the reflected field
from ocean bottom.
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Figure(5) Transmission loss by 2-dimensional version,
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Figure(6) Transmission loss by Superposition Method.
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Figure(7) Acoustic fileld due to horizontal line array,

with compressional wave speed of 1600 m/csec
and shear wave speed of 400 m /sec, respectively.
The third and last layer is the sub-bottom half
space with compressional wave speed 1800
m/sec, and shear wave speed 600 m/sec, re-
spectively. Figure(5) is the result by
2-dimensional version for the source array of 41
elements centered at 50 m steered to 25° down-
ward and reflected from the ocean bottom. The
y-axis is the depth axis from 50 m to 125 m. The
x-axis is the range from 0 m to 300 m. The levels
are intensity level of the acoustic field due to the
array of sources normalized as 0 dB re Im and
normalized as 0 dB re Im and lupa. Figure(5) is
the result by 3-dimensional version using superpo-
sition method for the same geometric and source
configurations. Figure(5) and Figure(6) show
good agreement.

The second example is the case of a horizontal
array which can only be treated in 3-dimensional
version. Figure(7) shows the acoustic field from
a horizontal array with 41 elements of 0.75 m
apart steered to 65° (grazing angle 25°) in the
vertical direction. This steering direction has
been used to observe the same radiation direction
as the previous example. As expected, the beam
is broader than that of the first example, since
the beam steering direction is toward the
end-fire. The strong field in the near range is
considered to be caused by interpolation error due

to spatial sampling. which is required for field

W E 11 % 5 ®A992)

parameter transformation, This problem remains
to be further studied and resolved.

3.2 Propagation in Stratified Ocean

The acoustic feld for a relatively long range is
treated in this section, The depth is 1600 m. and
the sound velocity profile in the water is shown
in Figure(10). The ocean bottom geometrv and
properties are shown in Figure(8). The absorp-
f10n in the ocean hottom is 0.1 dB /km /Hz.

Figure(9) shows the acoustic field due to a ver-
tical hne array without steering. The source fre-
quency is 100 Hz, and the total number of 21
sources are spaced 17.29 m apart, centered at the
depth of 183 m, and weighted to radiate Gaussian
beam pattern., The ray tracing diagram for the
same environment, shown in Figure(10), agrees
with the acoustic field shown in Figure(9). The
vertical line array can be treated in 2 dimensional
version of SAFARI!!! Next, the pressure field
caused by a slant array with 10° dip angle is
shown in Figure(11), and the pressure field due
to a downward vertical array with Gaussian beam
steered 10° downward is shown in Figure(12).
The same plots for 20° dip angle are shown in Fig-
ure(13) and Figure(14), respectively.

It is shown that the radiated field from slant
arrays which can only be calculated by 3
dimensional version agrees well with the field
from steered array radiaton, which confirms the
applicability of the superposition method.
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Figure(8) Ocean bottom properuies.
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Figure(9) Acoustic field due to a vertical line array
without steering(Gaussian beam pattern).
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Figure( 10) Ray tracing.
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Figure( 11) Acoustic field due to a 10° slant vertical line
array.
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Figure( 12) Acoustic field due to a vertical line array
with Gaussian beam steering 10° downward.
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Figure( 13) Acoustic field due to a 20° slant vertical hine
array.
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Figure( 14) Acoustc field due to a vertical line array
with Gaussian beam steering 20° downward.
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V. Summary

The “SAFARI™ program based on Global
Matrix Method has been extended to treat the
arbitrary shaped array of acoustic monopoles by
superposition. The superposition method is shown
to be numerically efficient without convergence
problem, while the previous field representation
by Fourier series in azimuthal angle involves
higher orders of Bessel function causing numeri-
cal convergence problem for highly directional
sources, Numerical examples show that the
method describes the 3-dimensional characteri-

stics of the acoustic field accordingly.
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