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A CHARACTERIZATION OF CROSSED
PRODUCTS WITHOUT COHOMOLOGY

JEONG HEE HoNG

1. Introduction

Let N be a II; factor and G be a finite group acting outerly on N.
Then the crossed product algebra M = N x G is also a II; factor and
N'YM = CI, i.e. N is irreducible in M. Moreover, N is regular in
M, in other words, M is generated by the normalizer Ap(IN).

In 1983, V. F. R. Jones asked a question in his paper “Indez for sub-
factors” whether or not the converse is true [jol, Problem 4]. Namely,
if N is a subfactor of M which is regular and has trivial relative com-
mutant, is M the crossed product of N by a group action?

In 1986, A. Ocneanu announced it at [o] for the hyperfinite II;
factors without proof. Using the results in [ppl], S. Popa ([pp2]) gave
a proof for Il factors and H. Kosaki ([k]) extended it to properly
infinite factors. Both S. Popa and H. Kosaki’s proofs essentially used
C. Sutherland’s vanishing cohomology result [su, Theorem 6.1].

"The cohomology enters the problem as follows. We deal with unitary
representatives in the cosets, which are not uniquely selected. Thus
those unitaries determine a 2-cocycle action of a finite group, and so
we obtain a twisted crossed product structure. In order to get a plain
crossed product for V. F. R. Jones’ problem, it is enough to select the
representative unitaries in such a way that 2-cocycle is a coboundary.
Thank to C. Sutherland [su, Theorem 6.1], it is known that a 2-cocycle
is coboundary when the group is finite and the underlying algebra is a
II; factor. Combined this with M. Pimsner and S. Popa’s analysis of
the relative commutants, we could give the required answer: if N ¢ M

is a regular II; subfactors with N'(Y\M = CI and [M : N] < oo, then
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M is the crossed product of N by a finite group G = Ny (N)/U(N)
acting outerly on N.

In this paper, we provide a complete proof of the converse problem
without using the cohomological property. In fact, the cohomological
result due to C. Sutherland is not necessary in this case. The downward
basic construction of N C M will work for this problem.

2. Preliminaries

2.1 Index and the basic construction for subfactors

Let M be a II; factor with the unique finite normal faithful trace
7. 7(I) = 1. Denote by L?(M, 7) the completion of M with respect to
the inner product < z,y >= 7(y*z), for z, y € M.

When N C M are I factors with the same identity, V. F. R. Jones
([jol]) defines the index of N in M as [M : N] = dimyL?*(M, 7), the
Murray and von Neumann coupling constant of N in its representation
by left multiplication on L?(M, 7). One of his main results in [jol] is
that [M : N] can only take the values {4cos*Z | n > 3} |J[4, oc].

A major ingredient in the basic construction is the existence of the
conditional expectation. If N C M are II; factors, then we denote
by En the unique trace preserving conditional expectation of M onto
N. Also we denote by ey the orthogonal projection of L(M, ) onto
L*(N, 7). Thus, starting from the initial inclusion N C M, we can
build a new algebra generated by M and ey. The von Neumann al-
gebra (M, en) = {M,en}" on LE(M, ) is called the (upward) basic
construction for N ¢ M ([g], [jol], [pp1])-

If [M : N} < oo, then (M, en) is also a II; factor with [M : N] =
[(M,en) : M] and 7(en) = [M : N]7!.

On the other hand, for a given inclusion N C M with finite index,
we can also build a subfactor P in N so that M is the (upward) basic
construction of P C N [jol, Lemma 3.1.8], i.e., there is a unique (up to
conjugacy by unitaries in N) projection e € M such that En(e) = [M :
N]~!I and M = (N, e). Such a construction of the subfactor is called
the downward basic construction for N C M. More precisely, if we
take P = {e}' (YN with En(e) = [M : N]7!I, then P is the downward
hasic construction of N € M. Unlike the upward basic construction,
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we note that P is unique only up to conjugacy by unitaries in N [ppl,
Corollary 1.8].

2.2 The relative commutant algebras

Thanks to V. F. R. Jones, A. Ocneanu, M. Pimsner and S. Popa,
it turns out that the relative commutants play an important role in
studying the subfactors. We first consider a finite group G acting
outerly on a I'T; factor M. When N is the fixed point algebra M, it is
well known that N is an irreducible regular subfactor of M. Moreover,
(M, en) is isomorphic to the crossed product algebra N x G | so that
N'((M, en) is isomorphic to the group algebra C[G].

Motivated by this phenomenon, M. Pimsner and S. Popa analyzed
the minimal projections in the relative commutant N’ [ }(M,en), as in
the case of C[G]. The following is a restatement of their result [ppl,
Proposition 1.9];

PROPOSITION 2.1. If [ M : N] < oo and N'{\M =CI, then

7(p) > _k_ for a minimal projection p € N' ﬂ(M EN)
~ [M:N] el

where p belongs to a factor summand of N'((M, en) isomorphic to

Mi(C).

When [M : N] < oo, it is known (g, Lemma 4.6.2] that N[ [(M, ex) is
a finite dimensional algebra over C with

dime(N' (] (M, en)) < [M : NI,

Due to Proposition 2.1, we have a better bound for dim¢e (N’ (M, en))
when N is irreducible in M.

COROLLARY 2.1. For an irreducible subfactor M C M with finitc
index, we have

2< dime(N'[() (M,en)) < [M:N].
Proof. Since the Jones projection ey € N' (| (M, en) has the prop-

erty 7(en) = [M : N]!, ey is minimal and central in N'[) (M, en)
(cf. Proposition 2.1). So we get

(N' m <M)€N))CN =Cen,
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and hence 2 < dim¢(N'((M, en)).
Let N'( (M, en) = Ef=1 ®M;,(C) be the matrix algebra decom-

position with

(N,ﬂ (M, en))p; & Mn,(C),

where {p;}¥_, denote the minimal projections in the center of N’ [ (M
en). There are Z i1 T mutually orthogonal projections, say pl, in

N'N(M, en) with 37, .p! = I, for 1 < j < n;. From Proposition 2.1,
we have

n;
(p‘) 2 M N for all 7,

because p! € (N' (M, en))p; = My, (C), for all j. Thus we get

n;

A L
1“ZZT(P1)>Z"'[M N] M:N]Z}n?’

i=1 j=1

or [M:N]> Z _;n? = dim¢(N'N(M,en)). O

When the depth of an irreducible subfactor N C M is 2 ([g, Section
4.6] for the definition), the right hand side of the equality in Corollary
2.1 holds [s Proposition 6]. From now on, we let M; = (M, en), M, =
(M1, en), where epr denotes the orthogonal projection implementing
the cond1t10na.l expectation Eps from M; onto M.

COROLLARY 2.2. If N'(\M =CI and N C M has depth 2, then

dime(N'(\M1) = [M : NJ.

Proof. Let J = (N'(YMj)em(N'(1M;) be the ideal generated by
em in the algebra N’ (M. Since N C M has depth 2 and N'(\M =
CI, N'(MM; is a factor. Thus we have N'(YM; = J. This implies
that

T(I5) =71(Innm,) =1,

where 7 denotes the normalized trace on N' [ M.

._18_




A CHARACTERIZATION OF CROSSED PRODUCTS WITHOUT COHOMOLOGY

Now let Tr be the canonical trace on N’ M which takes 1 on a
minimal projection. By the uniqueness of the trace on N' (| M3, there
is a constant ¢ > 0 such that Tr(z) = cr(z) for z € N'(| M. Thus

dim¢(N'(\My) = Tr(I;) =cr(I;) =cl=c.

Since eps is minimal in N’ (YM2, 1 = Tr(eym) = cr(epm) = ¢ [M : N] 71,
or ¢ = [M : N]. This completes the proof. O

2.3 The normalizer

The normalizer of N in M, denoted by AM(N), is the set of all
unitary elements in M that normalize N, i.e.

Nu(N) = {u e (M) | uNu* = N}.

Clearly, Mp(N) is a group with a normal subgroup ¢/(N). We study
the factor group Ny (N)/U(N) (it is called the Weyl group of N C
M), and the von Neumann algebra Mp(IN)", the weakly closed *—
subalgebra generated by M (IN) in M. It is clear that

Nu(N)! = span(Ny (N))

and N C My (N)” ¢ M.

When [M : NJ] < oo, M is a finitely generated projective module
over N, i.e. there is a so-called Pimsner—Popa basis {m;} of M over
N such that En(m{m;) = é;; fi, with f; projections in N [ppl, Propo-
sition 1.3]. Here, the projections f; can be chosen to be identity (for
all but possibly one ¢, which happens when [M : NJ is not an integer).
A Pimsner—Popa basis {m;} of M over N satisfies

1. > mim! =[M:N]I,
2. Zm,-eNm’{ = I,
3. every z € M can be written as = ), m;En(mjz).

Thanks to a Pimsner-Popa basis of M over N, we can give a charac-
terization of the Weyl group N (IN)/U(N) of N C M in terms of the
existence of suitable projections in N{\M;. Let G = Ny(N)/U(N)
be the Weyl group of N C M. Choose a representative ug of the coset
[ug] in G = Nm(N)/U(N) for each g € G.
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PROPOSITION 2.2. Let [M : N] < o0 and N'(\M = CI. Then we
have the following:
1. En(ugu}p) =0, if g # h,
2. there is a 1 — 1 correspondence between elements of G
Num(N)/U(N) and projections p € N'(YM; with Ep(p) =
[M: N]I,
3. G =MNu(N)/U(N) is a finite group of order < [M : NJ.

Proof. 1. Note that f = aduyu} determines an automorphism on
N. Thus we have ujuyz = f(r)uyujy, for £ € N. Taking En of both
sides, we get En(uguy)z = f(r)En(ugu}). Since § = aduyu} is outer
if g # h, we get En(uguy)=0,if g # h.

2. See [ppl, Proposition 1.7].

3. Since N'(|M; is finite dimensional, there are only finite many
central projections in N’ () M. But the projections of trace [M : N]™*
are central in N’ () M;. It now follows from Property 2 that G is finite.

If [ug] # [un] in G, it follows from Property 1 that ugeyuj and
upeNuy, are orthogonal if g # k. Thus p = }° 5 ugenuy is a projec-
tion in M. Since p < I, we have

1>7(p) = Z T(ugenuy) = Z T(ugEpm(en)uy) = Z[M : NJ71,

g€G 9€G 9€G

which implies that [M : N] > |G|. O

3. Main result

Note that {u, | g € G = Ny (N)/U(N)} is not necessarily a group.
In fact, there is a 2—cocycle i : G x G — U(N) such that

ugup = p(g, h)ugr, for each g,h € G.

Then adwuy|n determines a 2—cocycle action of G on N (for details,
see [c1]).

Now we investigate the proper choices of the representative unitaries
to remove the 2-cocycle p on G = NMp(N)/U(N).
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LEMMA 3.1. Let [M : N] < oo and N'(\M = CI. If N is regular
in M, then {u, | g € G = Np(N)/U(N)} form a Pimsner-Popa basis
of M over N.

Proof. Let L = )_ ug N. It is clear that L is a x— subalgebra of M.
Let {3 ugz% |z, € N}, be a net in L that converges ultraweakly to

an element y in M. For a fixed h € G, we have u}, Y ugz8 = u}y.
Since En is ultraweakly continuous, we see that

En(uj ) ugxg) == En(ujy).

But En(uy Y ugzg) = 3 En(ujuy)zd = z§f (Property 1 of Proposi-
tion 2.2). Thus we have

¥ =5 En(u}y).

In other words, Y u, 25 = Y uyEn(u}y). Since ZygEN(zL; y) €
L, we see that L is ultraweakly closed, i.e. L = M. This means that
every element * € M can be written as ¢ = 5 u,z,, ¥, € N. Thus
we have

En(uj z) = En(uj Zuy ) = ZEN(UZ“g)fy = Th,

and so ¢ = ) uyzy = Y ugENn(ujz). This implies that {u,} foria a
Pimsner-Popa basis of M over N. [0

Lemma 3.1 indicates that [M : N] = |[My(N)/U(N)| for an irre-
ducible regular subfactor N C M with finite index. Let (M : N] = n,

an integer. Denote by P the downward basic constructions for N ¢ M
with Jones projection ep;

PCNCMcCM,.

We have 7(ep) = % Note that the central projection ep is also minimal
in the center of P' (Y M; s, Corollary 4].

LEMMA 3.2. Let [M: N]=n and N'(\M =CI. If N is regular in
M, then we have the following properties.
1. N'O\M, =C",
2. P"NM; = M,(C).

_21_



Jeong Hee Hong

Proof. 1. By Lemma 3.1, we have ) ugenuj, = I. Since each
projection ugenu, is minimal and central in N'(YM; (Proposition
2.1), we have N' (\M; = C".

2. Since ep is minimal in P'[|M;, the ideal J generated by ep
is a matrix algebra. For any f, a minimal projection in N'{M;j,
define g5 = 7(f)"!fepf. Since ep is minimal in P'(\Mi, epfep =
m(f)ep. Thus we have g% = 7(f)"*fepfepf = 7(f)™' ferf = gy, i-e.
¢s are mutually orthogonal projections in J. Moreover, 7(>_ f gf) =
Zfr(f)‘lr(fepf) = Zf‘r(ep) = Zf-,l; = 1. Hence ) ;95 = I.
Since I € J, the result follows. O

LEMMA 3.3. Let [M : N] = n and N'(\M = CI. If N is regular
in M, then, for each g € G = Np(N)/U{N), there is a unique unitary
vy € P'(\M such that

* __ *
1. UgENUG = VgENVg,
2. vgep =ep.

Proof. (Existence) Since ugenuy € N'(1M, C P'(1M, is a pro-
jection of same trace as e, it follows from Property 2 of Lemma 3.2
that for any ¢ € G, there is an element w, € P’'(|M; such that
wyenwy = ugenuy. Then, it follows from [ppl, Lemma 1.1] that there
is an element v, € P' ()M such that vsenv; = wyenw;. Moreover, vg
is unitary. Indeed, Ep(vgenv;) = Epn(ugenuy) = [M: N]~!I. Since
vy € M, we see that v, Ep(en)v; = [M : N]='I, or vgv, = I. Hence
vy 1s unitary and so Property 1 holds.

For Property 2, note that ep is a minimal and central projection in
P'(AM. Hence vyep = cep, for some scalar c¢. Replacing v, by cvy,
we have the result.

(Uniqueness of v,) Suppose that there is a unitary w € P'[}M such
that weyw* = vgenv, and wep = ep. Since w*v, commutes with ey
(Property 1), we have w*vy € M N {en} = N. Therefore, w*v, €
P'(IN =CI. i.e. there is a scalar k such that v, = kw. But Property
2 implies that ep = vgep = kwep = kep, or k = 1. This completes
the proof. O

We are now in a position to give a proof of the main theorem.
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THEOREM 3.1. Let N C M be In factors with N'(\M = CI. If
[M : N] =n and M = Ny (N)", then there is an outer action of G on
N such that

M -—_-NM(N)” =N X G,

where G = Np(N)/U(N) is a finite group of order n.

Proof. 1t follows from the uniqueness pointed in Lemma 3.3 that
{vglg € G} form a group. Thus, ad vg|N determines an action of
G on N. Moreover, o, is outer if ¢ # e. Indeed, if it is inner, then
there is a unitary w, € N such that « = adw, = adv,, for all
g # e. Thus v;w, € N'(\M = CI, and so there is a scalar kg such
that w, = kyv, € N, a contradiction. Hence N x G is also a II;
factor. Since N x G is generated by N and {v,|g € G}, we see that
NxG=Nuy(N)'. O

4. An application to depth 2 subfactors

When M = N x G is the crossed product by an outer action of a
finite group G on N, N C M has depth 2 [g, Section 4.7]. In par-
ticular, N'(\M = CI, and the relative commutant N’ (M, is a |G]
dimensional abelian aigebra.

In 1986, A. Ocneanu announced that the converse is true for the
hyperfinite I; factors ([o]): if N C M are hyperfinite IT; factors with
[M : N] = n, N'M = CI, N'(M; is abelian, and N ¢ M has
depth 2, then M is the crossed product algebra N x G by an outer
action of G with |G| = n. Due to Corollary 2.2, his conditions can
be replaced by the following; N'(\M = CI, N'(\M, is a [M : N]

dimensional abelian algebra.

We relate Theorem 3.1 to a characterization of crossed product al-
gebras for Il factors. Note that the order of the Weyl group G is
determined by the number of mutually orthogonal projections p in
N'(YM; with Ep(p) = [M : N]~!I (Proposition 2.2). In the case of
N'(AM = CI, Em(p) belongs to N'(\M, so it is simply 7(p)I. Con-
sequently, to determine the size of G in the crossed product algebra
Nu(N)" =N xG, it is sufficient to find projections in N’ (Y M,;, each
of trace [M : N]™!. This method is particularly useful in the case
when N'(\M; contains (M : NJ such projections. The condition of
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[M : N] dimensional abelian algebra guarantees the existence of such
projections. We have the following characterization of crossed product
algebras [pp2, Corollary 1.1.6].

THEOREM 4.1. Let N C M be II, factors with [M : N} = n and
N'(\M = CI. If N'(\M; is an n-dimensional abelian algebra, then
M is the crossed product algebra N x G, where G is a group of order
n acting outerly on N.

Proof. Since N'(\M; = C", there exist n mutually orthogonal min-
1

imal and central projections, say p; (1 < ¢ < n), each of trace 3.
Since Ear(pi) € N'(\NM = CI for any projection p; € N'{Mi,
Em(p:) = 7(pi)l = LI = [M : N]7'I, for all . Thus we have
\G| = |[Mp(N)/U(N)| = n (Proposition 2.2). It follows from Theorem
3.1 that there is an outer action of G on N such that Mp(N)" = NxG.
The multiplicative property of Jones index [jol, Proposition 2.1.8] for
rhe tower

NcNuy(N)'=NxGcCcM
gives that
n=[M:N]=M:NxG|NxG:N]=[M:NxG]n.
Thus] we[zlllave [M:NxG]=1,and so M = N x G [jol, Proposition
2.1.8].

The duality of the crossed product algebras and the fixed point
algebras gives the following corollary as an immediate consequence of
Theorem 4.1.

COROLLARY 4.1. If N C M are I]; factors with N'(\{M = CI and
M'{YM; is a [M : N] = n dimensional abelian algebra, then there is
an outer action of a finite group G with |G| = n such that N is the
fixed point algebra MC.

REMARK 4.1. These characterizations of crossed product algebras
can be extended to properly infinite factors due to H. Kosaki ([k]).
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