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기계학습을 활용한 벌크선 용선 의사결정 지원에 관한  

연구 

 

임 상 섭 

한국해양대학교 대학원, 해운경영학과 

요  약 

 

 

본 연구는 벌크선 용선에 수반되는 기간연장옵션의 가격 결정 문제와 

일정기간 확보된 선박을 이용하여 다양한 대선 전략을 선택하는 문제를 

다뤘다.  

기간연장옵션은 관행상 계약당사자 사이에서 정확한 가치평가없이 

사용되며 심지어는 신용이 좋은 용선주를 유인하기 위해 옵션프리미엄 

없이 무상으로 주어진다. 기존 연구에서 제시된 인공신경망모델과 더불어 

새로운 2 가지 기계학습방법을 제시하였으며 이를 이용하여 기간연장옵션의 

가치를 실험적으로 평가하였다. 분석결과 기계학습방법이 기존 

금융시장에서 사용되는 블랙숄즈모델과 인공신경망 모델보다𝑅2을 기준으로 

98%에 육박한 아주 뛰어난 성능을 보였다.  

대선 전략을 선택하는 문제에 있어서는 위의 결과와 비교해볼 때 차이가 

있었다. 기계학습모델들이 다항로지스틱회귀모델보다 성능이 뛰어났지만 

제시된 모델 중 인공신경망 모델의 성능이 다른 기계학습모델보다 뛰어난 

결과를 보였다.  
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결론적으로 학습시간, 모델의 복잡성, 그리고 해석의 용이성을 고려하면 

용선의사결정에 가장 적합한 모델은 랜덤포레스트임을 알 수 있었다.  

본 연구는 기계학습모델들을 이용하여 해운의사결정문제 적용가능성을 

다뤘다는 측면에서 학문적 의의가 있고 새롭게 제시된 기계학습모델들의 

가치평가 능력과 분류 능력을 고려하면 해운 실무에 시사하는 바가 크다고 

할 수 있다.  

연구의 한계로서 기계학습모델의 성능 차이는 연구자의 설계 능력과 

배경지식에 더불어 사용하려는 데이터의 종류에 따라 결과에 많은 영향을 

미치기 때문에 단순 적용이 아닌 모델의 파라미터 조정에 보다 정교한 

연구가 필요할 것으로 사료된다.    

 

핵심어: 용선기간연장옵션; 용선전략; 기계학습; 인공신경망; 서포트벡터머신; 랜덤

포레스트
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Abstract 

 

 

This study deals with the valuation of the T/C option corresponding to the Bulk 

chartering contract and the choice of the periods of chartering-out the vessel secured 

for a certain period.  

The T/C option is granted without a precise valuation between the parties in 

practice and even free of charge with no option premium to attract a creditworthy 

charterer. In addition to the ANN presented in the previous research, two new 

machine learning methods are proposed and the value of the T/C option is evaluated 

empirically. As a result of the empirical analysis, it is shown that the machine learning 

methods are superior to the BSM and the ANN model used in the existing financial 

market, which is close to 98% based on 𝑅2. 

In the problem of selecting the charter-out method, the results are slightly different 

from the above problem. Although the machine learning-based models perform better 

than the multinomial logistic regression models, the performance of the ANN among 

the proposed models is outstanding. In conclusion, considering the learning time, the 

model complexity, and the simple interpretability, it is found that the most promising 

model for decision-making in chartering practice is the random forest. 

This study is of academic significance as it deals with the applicability of machine 

learning models in chartering problems. Furthermore, considering the evaluation 

ability and classification ability of the newly proposed machine learning models, it 

can be said that it is very important to the shipping industry. 



xii 

 

As a limitation of the study, since it is considered that the difference between the 

performance of the machine learning models tends to depend on the type of data to 

be used as well as the design ability and background knowledge of the researcher, 

more elaborate research is necessary to carefully adjust the parameters of the models 

rather than the simple application of the models.  

 

Keywords: Time charter option, Chartering-out strategy, Machine learning, 

Artificial Neural Networks, Support Vector Machines, Random Forest  
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Chapter 1 Introduction 

 

 

We are now living in the era of the Fourth Industrial Revolution, which was 

conceptualized by Schwab at the World Economic Forum in 20161. At the heart of 

the Fourth Industrial Revolution is a technological integration based on artificial 

intelligence learning. Although it is needed to keep track of whether these 

revolutionary changes have the massive impact on the industries and societies, it is 

evident that the innovations through the inexorable integration of technology will 

significantly help decision-making.   

In Schwab’s presentation, he mentioned that compared with other revolutions, the 

Fourth is exponentially evolving. Since the applicability of Artificial Intelligence (AI) 

is inexhaustible and versatile, it applies to the tangible and visible technologies like a 

robot or autonomous car, as well as the intangible and invisible ones such as 

management, business, marketing, and so on. As a result, efforts in overall industries 

to introduce or develop these innovative technologies are underway to stay 

competitive in the market.   

Nilsson (2010) defined AI as an activity to make machines intelligent, which are 

capable of functioning appropriately with the proper forecasts. Therefore, AI is not a 

machine but intelligence. However, in modern society, AI has been used confusingly 

with machine learning (ML). Bernard Marr demonstrated that ML is a machine 

                                         

1
 https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond 
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authorized for access to data and capable of self-learning 2 . That is, ML is an 

application of AI.  

In the shipping market, the Fourth Industrial Revolution is also a hot issue. 

Perhaps the world's first autonomous ship will commercialize in Norway, 20183. Even 

the present papers only covered the operational efficiency of port and ship (Ahmed 

and Hasegawa, 2013; Bal Beşikçi et al., 2016; Kourounioti, Polydoropoulou and 

Tsiklidis, 2016; De León et al., 2017; Lazakis, Raptodimos and Varelas, 2017; 

Pagoropoulos, Møller and McAloone, 2017).  

Unfortunately, these approaches are concerning the operation techniques only. 

Although these hardware innovations, of course, are also necessary and inevitable, it 

is not enough for supporting the decision-making in the shipping business. The more 

essential and fundamental points are relating to what kind of decisions in shipping 

can be supported by these tools, and the more improved determination that might be 

made through them. 

However, the studies using ML for other shipping related problems have been 

carried out once in a blue moon, which mostly focused on forecasting Baltic Dry 

Index (BDI) or maritime traffic as mentioned in the literature.  

In this context, this paper aims at applying the extent of AI technologies to the 

decision-making in shipping practice, especially the chartering-related tasks.   

 

                                         

2 https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-

machine-learning/#25f8c1212742 
3 http://fortune.com/2017/07/22/first-autonomous-ship-yara-birkeland/ 
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1.1   Purposes and Contributions 

The primary objective of this paper is to investigate the applicability of ML 

methods for the chartering practice and provide the improved framework for the 

decision-making.  

For achieving these purposes, the problems met in chartering-desk was defined as 

follows, 

 Evaluating the option to extend the period in time-charter contracts (T/C 

options) 

 Making the decision to charter-out the vessel secured 

Then, the state of the art ML methods will be applied to that questions. These 

approaches are as below  

 Artificial Neural Networks (ANN) 

 Support Vector Machines (SVM) 

 Random Forest (RF). 

This thesis can be differentiated from the other research for the following reasons. 

First, the paper shows that the ML tools can be used for chartering business. Notably, 

the SVM and RF can apply to pricing the T/C options and making chartering-decision. 

Second, with comparing the performance of the models, the paper will provide the 

suitable one among ML techniques. Above all, the article deals with the chartering 

and presents the new approach which is needed.  
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1.2   Structure 

The remainder of the paper is organize as follows. The details of chartering 

practice are demonstrated in Chapter 2. The earlier research is scrutinized in Chapter 

3. Chapter 4 introduces the methodologies of ML. In Chapter 5, it confirms the 

empirical results from each experiment. Finally, Chapter 6 summarizes the results and 

delivers the implicit interpretations of them.  
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Chapter 2  Chartering Practice 

 

 

Chartering decisions in the freight market is fraught with uncertainties originated 

from a highly volatile condition that exists in the shipping market. As reported by 

Stopford (2009), one of the most active markets is the freight market, where the 

participates trade carrying capacities depending on the term of usage in return for 

freight rates. This market naturally exposes to the freight volatility. 

The main decisions in shipping are divided into timing to buy or sell vessels and 

chartering in the spot or time charter contract (Karakitsos and Varnavides, 2014). 

Many pieces of research have been concerned with the timing of the investment for 

buying or selling carrying capacities as well as a ship itself. Most of them tried to find 

the right time to be a winner who beats the market (Alizadeh and Nomikos, 2006, 

2007; Goulelmos and Goulelmos, 2009; Alizadeh and Talley, 2011; Chistè and van 

Vuuren, 2014).  

A ship-owner or charterer having a vessel tries to sell its capacities with the 

specified period. Figure [1] represents the trading mix of carrying capabilities (Yun, 

Lim and Lee, 2017). 
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Figure 1 Freight Trading Mix 

 

As shown, the structure of trading mix may seem too complicated. Briefly 

speaking, the one who intends to acquire the usage of the ship selects an instrument 

listed on the left-hand side of the figure. Then, he/she sells its capacities to the 

counterparty on the right-hand side of the picture who demands a specified period. 

This forms of trading is called ‘Chartering' except for Sales and Purchase and 

Derivatives. The purpose of the chartering is to switch a freight rate between the 

parties. That is, the best of trading strategies is ‘buying-low selling-high.' 

According to Clarkson's source in Figure [2], the number of the time charter 

contract in Panamax sector was 711 fixtures for the last three years. Out of them, the 

1year-term of the deal was 166 fixtures (23.3%). Various T/C contracts had buffering 

ranges from 0 to 6 months. The 3-month interval was about 40% among the fixtures.    
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Figure 2 No. of Panamax Fixtures 

 

2.1   T/C Option to Extend 

Alizadeh and Nomikos (2009) introduced the implied options embedded in the 

time charter contract. These types of options usually consist of a mother contract plus 

an additional option (called T/C option) to extend the pre-specified period of the deal. 

Since the T/C option is given to the charterer for free without evaluating the economic 

Less than 10 month T/C contracts

523

1 year T/C contracts

166 (23.3%)

Time charter 

Contract 
T/C 

Option 

t
0
 t

T/C end
 t

 Option end
 

Figure 3 Structure of T/C Option 
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value, it might be quite profitable to the charterers. Figure [3] shows the structure of 

the T/C option.  

The reasons why the ship-owners grant counterparties the T/C options at no cost 

are as follows: 

1. To make the contract charming to the charterers. 

2. To sustain the relationship with a credible charterer. 

 

Starting off with the financial crisis, the world economic growth as the driver of 

the global trade has plunged. Unfortunately, consistently cumulated brand-new ships 

in shipping market have pushed the freight market down. These over-carrying 

capacities have strangled the players in the market. For ship-owner possessing the 

vessel built in the bull market, the expensive cost of the shipbuilding has been their 

constant curse. For the charterers borrowing the ship at a high charter rate, the crash 

of the freight rate has exhausted the chartering desk.  

Under this state of shipping market, to attract the charterers, the T/C options might 

tend to be used when experiencing the bearish market like the era of post-global crisis. 
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 This paper studies for pricing the 3-months T/C option embedded in their 1-year 

mother contract, especially in Panamax sector. These time conditions of the T/C 

contract and the option are reflected as shown in Figure [4]. 

 

The T/C options are different from the paper one usually traded in the derivative 

market. The distinction of the option between them is whether the mother contracts 

exist or not. This option cannot be individually traded in the market, as the optional 

period with physical operations of the vessel is not sufficient for time to generate the 

profit. However, this option might be so valuable that it should need to estimate the 

value of the options before chartering decision. 

 

 

 

 

 

Time charter 

Contract 
T/C Option 
(for free) 

t
0
 t

1-year
 t

 3-month
 

Figure 4 Specified Structure of T/C Option 
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2.2   Chartering-out Strategy 

The ship-owner or the charterer who secures carrying capacities has to find a 

trading counterparty willing to pay the freight rate in return for the term of usage. At 

this point, they may consider selling a part of the time of a ship. More specifically, 

the vessel obtained through the long-term can be chartered-out in forms of the short-

term.   

As confirmed in Table [1], the total number of Panamax fixtures was 2,400 

contracts in 2016. To be specific, the 448 owners made contracts for 1,292 vessels. 

The owners had various chances to sell the obtained vessels as below tables. The 

vessels can be sold into time-charter contracts, spot contracts, and combined contracts.  

t0 
tn 

Owned ship or 

Charter-in 

1 year T/C out 

6 month T/C out 

Spot 

Spot rate 

6month T/C rate 

1year T/C rate 

Figure 5 Comparison of Chartering-out Vessel 
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Table 1 The details of Panamax fixtures in 2016 

Object Fixtures 
No. of 

T/C 

No. of 

Spot 

No of Combined 

(pure Double T/C) 

Owner 446 
Spot 

contracts 
2,317 55 1,088 149(4) 

TTL 

Vessels 
1,292 

T/C 

contracts 
223 (based on the number of vessels 

 

As shown in Figure [5], there can exist many combinations to sell the secured 

vessel according to the charter periods. Yun et al (2016) revealed that the cause of the 

shipping companies' collapse might derive from the failure of the trading decision. 

These decisions happen very often in chartering practice. The wrong judgments have 

plagued the chartering desk and harassed the management of the shipping companies. 

In this regard, it raises another research question concerning the trading strategy in 

chartering. This question would intimately be linked to the well-known theory, 

Efficient Market Hypothesis. 

Since Fama’s studies (1965, 1970, 1991), whether the market is efficient has been 

controversial in academia even in the business fields. In the academic world, it 

accepted that there are three kinds of efficient market hypothesis (EMH): weak, semi-

strong, and strong form depending on the level of information reflected. Shortly 

speaking for the EMH, it is impossible to beat the market persistently because the 

market is efficient and all information is already reflected. Although the fact might 

be true, there exist a winner and loser in the market. It easily overlooked that the 

timing and duration are crucial for investment.   
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The shipping market where its players participate might meet the conditions of 

perfect competition, which are a competitive market, identical products, free entry 

and exit, and perfect information. The academic reseach to test the efficiency of the 

shipping market can be found in the literature (Ådland and Koekebakker, 2004; 

Adland and Strandenes, 2006; Alizadeh and Nomikos, 2006, 2007). The mixed results 

implicate that there is the room for success to beat the market regardless of the 

efficiency.   

Therefore, the ML tools are adapted to support chartering decisions. Adopting the 

ML tools are expected to improve the decision to be made in chartering practice. 
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Chapter 3   Literature Review 

 

 

The research questions of this paper are related to regression and classification, 

which are the representatives of decision-making. The decision is subsequently made 

through the process of learning based on them. This chapter investigates the previous 

studies on that problems. Besides, this research concerning shipping or maritime is 

also reviewed. 

 

3.1   Regression-related Problem with Machine Learning 

In finance studies, there have been many efforts to apply artificial neural network 

model (ANN) to forecasting the price of the stock.(Roh, 2007; Chen, Härdle and 

Jeong, 2010; Guresen, Kayakutlu and Daim, 2011; Wang et al., 2011; De Oliveira, 

Nobre and Zárate, 2013; Ticknor, 2013; Kumar and Thenmozhi, 2014), gold (Kocak 

and Un, 2014; Kristjanpoller and Minutolo, 2015), oil (Sompui and Wongsinlatam, 

2014; Kristjanpoller and Minutolo, 2016) and other commodities (Zhang, 2003; Chen, 

Härdle and Jeong, 2010; Khashei and Bijari, 2010; Chaudhuri and Ghosh, 2016).  

Zhang (2003) combined ANN and ARIMA for time series forecasting because the 

series can be composed of both linear and nonlinear parts. As their achievement of 

prediction is easily confirmed in their area, the former is better estimated by using the 

econometric model, and the latter by ANN.  

Roh (2007) designed the framework to predict the volatility and the direction of 

the stock price. To overcome the lack of economic background, he carefully chose 
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the inputs from the parameters of financial time series models such as EWMA and 

ARCH-family. The finding was that the ANN-EGARCH model outweighed others. 

Khashei and Bijari (2010) proposed the novel model equipped with ARIMA and 

ANN in predicting three types of data (Wolf's sunspot, Canadian lynx series, and 

UK/US exchange rate). They included the lags of errors from ARIMA forecasts as 

the variables as well as that of the original series. The difference with the Zang’s 

hybrid model (2003) is whether the original series is included in what ANN learns.  

Wang et al. (2011) proposed the neural network model assigning the pre-processed 

series to the input variable, which is called ‘wavelet-decomposition' that can be used 

to divide the signal into high and low frequency. Although the model performance 

differed according to the level of decomposition of the series, one of the proposed 

model was more suitable for their data than ANN.  

Guresen et al. (2011) used a dynamic architecture for ANN (DAN2) developed by 

Ghiassi and Saidane (2005) to compare the naïve model of ANN and Roh’s hybrid 

model (Roh, 2007). Despite the possibility of DAN2, the simple ANN empirically 

proved to be the best one.   

Wang et al. (2012) came up with the integrated model which linearly summates 

the results produced by each model like ANN, ARIMA, and ESM (exponential 

smoothing model). Their experiments revealed the outcome of which the hybrid one 

can be more fitted than others.  

Ticknor (2013) tested ANN equipped with Bayesian regularization term to predict 

the stocks. To protect the likelihood of overfitting during the training process, the 

penalized term was added to the cost function. 
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De Oliveira et al. (2013) attempted to identify the variables according to technical, 

fundamental, and time series analysis of the stock, macroeconomic factors, and 

financial data. Even though they used the parsimonious form of ANN, the procedure 

of extracting the important ones from scrutinizing the relation among the variables 

was plausible and understandable. 

Sometimes exceptional cases are found in literature, as it is with the findings of 

Kocak and Un (2014) which are contrary to others. They compared ANN with the 

conventional model, ARCH-family to predict the returns of gold. Their paper 

concluded that as unexpected, the extrapolation of GJR-GARCH (1,1) outweighed 

that of ANN. 

Sompui and Wongsinlatam (2014) showed that for predicting the crude oil price, 

ANN having the appropriate number of hidden neuron had better performance than 

the least-square model.  

Kristjanpoller and Minutolo (2015) devised the hybrid model including GARCH 

model and ANN model for forecasting the volatility of Gold price. They used the 

advantages of each model to overcome the limitation inherently included in them.  

For example, GARCH generalized by Bollerslev (1986) can capture the volatility 

clustering of time series. With ANN learning errors from GARCH forecasting, the 

hybrid one can improve the performance.   

Kristjanpoller and Minutolo (2016) modified the ANN to learn the forecast from 

GARCH. At the same time, as the factors having an impact on oil price were orderly 

introduced in the model as the inputs to identify which one is the most important 

variable to predict the price. 
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Chaudhuri and Ghosh (2016) adopted NARX (nonlinear autoregressive models 

with exogenous input) neural network model (Lin et al., 1996) as the modified form 

of recurrent neural network to gauge the future exchange rate of India/US. NARX is 

characterized by feeding the output of output layer as the input. Then, it can be shown 

in 𝐲(𝐭) = 𝐟(𝐲(𝐭−𝟏), 𝐲(𝐭−𝟐),… , 𝐲(𝐭−𝐧𝐲), 𝐮(𝐭−𝟏), 𝐮(𝐭−𝟐),… , 𝐮(𝐭−𝐧𝐮))  where y(t)  is 

regressed on its previous values and other exogenous inputs, u().  

In relatively recent time, new techniques of ML have been introduced in the 

literature. Support vector machine (SVM) and Ensemble learning model are 

representative ones. One of the main issues in the application of ANN is how well the 

model is designed to protect the occurrence of over-fitting or under-fitting outcomes. 

The studies reviewed have shown that SVM is superior to ANN in forecasting the 

price of the stock (Trafalis and Ince, 2000; Pai and Lin, 2005), oil, and, other 

commodities rather than ANN.  

Trafalis and Ince (2000) compared SVM with ANN and radial basis function 

neural network (RBFNN) concerning forecasting US stock prices. They searched the 

optimal parameters of SVM by changing the value of penalty term and kernel 

parameters in turn. However, the paper showed that the results varied case by case. 

Tay and Cao (2001) used SVM and ANN to predict various financial time series 

such as government bonds and index futures. They selected the input variables 

extracting the relative change in the percentage of the price. In most experiments, 

SVM yielded the higher performance than ANN. They demonstrated the reason of the 

superiority of SVM over ANN. Specifically speaking, SVM has the structural risk 

minimization principle, fewer parameters to be tuned, and the convergence of global 

minimum in the cost function.   
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Pai and Lin (2005) followed the hybrid model that Zhang designed (Zhang, 2003). 

The concept is that the series of interest can be divided into linear and nonlinear 

components. ARIMA estimates the data, and then ANN learns the residual that 

ARIMA cannot estimate. Lastly, the hybrid model incorporates forecast of ARIMA 

and ANN.   

Chen et al. (2010) devised the hybrid model organized by SVM and GARCH and 

compared it with other models such as moving-average model, GARCH, EGARCH, 

and ANN+GARCH. To estimate the parameters, they simulated the data under the 

assumption of the artificial condition, normal distribution, and student t distribution. 

Then, they found that the hybrid one performed the highest.   

Kumar and Thenmozhi (2014) created the variety of the integrated models that 

combine ANN, SVM, RF, and ARIMA, which are the representatives of ML tools and 

time series analysis respectively. They compared the proposed models with other 

naïve models and found that the formers yielded the better performances of prediction 

than the latter.  

It is difficult to find that the RF has been used for predicting in domestic literature.  

Suh (2016) confirmed a high prediction accuracy of RF regarding extrapolating the 

future path of foreign exchange. In particular, by using the feature selection of RF, 

the variables affecting on forecasting exchange rate were picked in order of the most 

importance.  
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Table 2 Application of ANN in Financial Market 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Zhang(2003) 
Forecasting UK/US 

exchange rate 

ANN+ARIMA vs. ARIMA, ANN 

Time-lagged variables 
MSE, MAD Hybrid model >>others 

Roh(2007) 

Forecasting volatility 

and direction of KRX 

stock index 

ANN+EWMA and ANN+ARCH family vs. ANN 

Kospi 200, lags of Gov. bonds yield and price. Open 

interest, parameters of time series models 

MAE, Hit ratio 
ANN+EGARCH 

>>others 

Khashei and 

Bijari(2010) 

Forecasting UK/US 

exchange rate 

ANN+ARIMA vs. ARIMA, ANN, Zhang 

model(2003) 

Time-lag 

MAE, MSE Hybrid model>>others 

Guresen et al.(2011) 

Forecasting 

NASDAQ stock 

exchange index 

ANN, ANN+GARCH, Dynamic ANN, 

DANN+GARCH 

Time-lagged variables, parameters of GARCH 

MSE, MAD ANN >> others 

Wang et al.(2011) 
Forecasting Shanghai 
stock index 

Wavelet DBPNN vs. ANN 

Decomposed series 
MAE, RME, MAPE WDBPNN >>ANN 

Wang et al.(2012) 
Forecasting Shenzhen 

and Dow Jones 

Indices 

ANN, ESM(exponential smoothing), ARIMA, 

RWM(random walk) vs. hybrid model with their 

errors 

weighted errors from each model by Genetic 

Algorithm 

MAE, RMSE, MAPE, 

ME, DA 
Hybrid model>>other 
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Ticknor(2013) Forecasting US stocks 

BRNN vs. ARIMA, ANN 

Daily high, low, and close price, 6 technical 

indicators 

MAPE BRNN>>others 

De Oliveira et 

al.(2013) 
Forecasting a Brazil 

stock 

ANN vs. actual 

Variables from economic and financial theory, 

technical, fundamental, and time series analysis 

MAPE, RMSE, THEIL, 

POCID(% of correct 

directional prediction) 

ANN 

Kocak and 

Un(2014) 

Forecasting gold 

returns 

ANN vs. ARCH-family 

Time-lagged variables 
MSE, MAE GJR-GARCH >>ANN 

Sompui and 

Wongsinlatam(2014) 
Forecasting oil price ANN vs. LSM(least-square) MSE ANN>>LSM 

Kristjanpoller and 

Minutolo(2015) 

Forecasting gold price 

volatility 

5 ANN+GARCH vs. GARCH 

Spot and futures price of gold, Daily variation of 
exchange rate and oil price, DJI and FTSE returns 

MSE, RMSE, MAD, 

MAPE 

Hybrid model 

incorporating all 

variables >> other 

models and GARCH 

model 

Kristjanpoller and 

Minutolo(2016) 

Forecasting oil price 

volatility 

ANN+GARCH vs. ARFIMA, GARCH 

GARCH forecast, oil price return, Dow Jones, FTSE, 

and exchange rate 

MSE, RMSE, MAD, 

HMAE(heteroscedasticity-

adjusted) 

ANN-GARCH>> 

Chaudhuri and 

Ghosh(2016) 
Forecasting Indian/US 

exchange rate 

NARX vs. ANN, ARCH-family 

Real-time variables including returns of Dow Jones, 

HangSeng, and DAX, crude oil price, India and US 

VIX 

MSE, R2,  TI(Theil 

Inequality) NARX >> others 
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Table 3 Application of SVM and RF in Financial Market 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Trafalis and Ince 

(2000) 

Forecasting stock 

prices 
SVM vs. ANN, RBFNN(radial basis function) MSE Mixed results 

Tay and Cao(2001) 

Forecasting S&P 

stock index futures, 

US 30y bond and 10y 

bond, German 10y 

bond, French stock 

index futures. 

SVM vs.ANN 

Time-lagged variables from 5days relative 

difference in percentage of price 

NMSE(normalized),MAE,DS, 

WDS(weighted) 
SVM>>others 

Pai and Lin(2005) 
Forecasting stock 

prices 
Hybrid model vs. SVM, ARIMA MAE, MAPE, MSE, RMSE 

Hybrid 

model(SVM+ARIMA) 

>>SVM, ARIMA 

 

Chen et al.(2010) 
Forecasting NYSE 

index 

SVM+GARCH vs. moving average, GARCH, 

EGARCH, ANN+GARCH 

Residuals of GARCH process 

MAE, DA Hybrid model>>others 

Kumar and 

Thenmozhi(2014) 

Forecasting S&P 

CNX Nifty index 

SVM+ARIMA, ANN+ARIMA, RF+ARIMA, 

ARIMA, ANN, RF, SVM 

Time-lagged variables 

NMSE, MAE, RMSE, DA 
SVM+ARIMA >> 

others 

Suh (2016) 
Forecasting foreign 

exchange in Korea 

Random Forest + GARCH vs. AR(autoregressive), 

GARCH 
RMSE 

Hybrid model >> 

others 
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Notice that the application of ML techniques in forecasting has been verified in 

the vast financial literature. Similarly, it can find that the body of studies on the 

pricing of the financial and commodity options by using ML methods.  

Yao et al. (2000) carried out forecasting of Nikkei 225 stock index options with 

ANN. They carefully choose three parameters used in Black-Scholes Models (BSM) 

because of the model performance compared with previous studies. For the 

comparison between ANN and BSM, they separated the data according to moneyness 

of the option. BSM presented the better pricing at-the-money option than ANN, while 

it showed that the performance of the latter is useful for pricing in-the-money and 

out-of-money option. 

Gencay and Qi (2001) adopted the regularization technique to reduce the 

possibility of overfitting in ANN. For aiming at pricing and hedging the option, they 

introduced three kinds of regularization such as Bayesian penalty term, early stopping 

criteria, and bagging. Also, the authors selected the normalized spot and option prices 

by strike price as variables. ANN with Bayesian term substantially reduced the error 

in pricing and hedging, whereas the bagging had the limitation of time-consuming, 

but the highest performance than others.  

Morelli et al. (2004) used ANN and RBFNN to estimate the option price and 

Greeks. What is unique about this paper is that the experiments were partitioned into 

two types of the dimensionality of inputs. When all the variables of BSM were 

exploited, despite the fact that the time to calculate was consuming, the performance 

of ANN became equivalent to RBF.  
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Tseng et al. (2008) designed ANN with Grey model and EGARCH to capture the 

time-varying asymmetric volatility of return of the options in Taiwan. Grey model 

developed by Deng (1982) has been verified to extract the useful information from 

small samples and poor information and EGARCH pioneered by Nelson (1991) has 

been widely accepted to explain the asymmetry in the volatility of time series, which 

is more weighted on the negative information. Having combined ANN with Grey 

model and EGARCH, they tried to enhance pricing the option, but the results were 

not better than expected.  

Liang et al. (2009) attempted to improve the valuation of the option, which follows 

the process that the forecasts from the binomial tree, finite difference, and Monte-

Carlo simulation. The results from these experiments implicated that since the factors 

affecting the option markets are mixed with linear and nonlinear elements, instead of 

forecasting with a single model, they proposed the novel model combining the ML 

models and the above models. The proposed model produces the more precise 

forecasts of the option price as it can learn the predictions generated from each model. 

Most results found in the literature commonly said that since the performance of 

the ANN is comparable to that of the BSM, the ANN is eligible for the alternative of 

the BSM. 
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 Table 4 Application of Machine Learning Methods in Pricing Options 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Yao et al.(2000) 
Forecasting option price in 
NIKKEI 225 index 

ANN vs. BSM 

Spot price, strike price, time to maturity 
NMSE(normalized) 

Mixed results 

ATM: BSM better 

ITM,OTM: ANN better 

Gencay and 

Qi(2001) 

Pricing and hedging S&P500 

index option 

ANN with Bayesian regularization, early stopping, 

and bagging 

Dependent: C/X, independent: S/X, time to maturity 

MSPE, 

AHE(average 

hedging error) 

ANN+Bayesian 

regularization >> others 

Morelli et 

al.(2004) 

Pricing European and 

American option and Greek 
letters 

ANN vs. RBFNN 

Spot price, time to maturity 
Error unknown 

Mixed results 

RBFNN had fast training 

time 

ANN is robust tool in 

Greek modeling. 

Tseng et al.(2008) 
Pricing Taiwan stock index 
option 

ANN+Grey+EGARCH vs. ANN+EGARCH 

Spot price, strike price, risk-free rate, time to 

maturity, Grey+EGARCH volatility 

RMSE, MAE, 
MAPE 

Mixed results 

Liang et al.(2009) 
Forecasting option price in 

Hong Kong 

ANN and SVM with BT(binomial tree), FD(finite 

difference), and MC(Monte Carlo) 

Forecasts from BT, FD, and MC 

MAE, TAFE(total 

average absolute), 

ARFE(average 

relative), 

TARFE(total 

average relative) 

Hybrid SVM>> ANN 
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In another field, the applicability of ML has been seen as well.  

Diaz-Robles et al. (2008) exploited ANN to predict air quality in Chile. For the 

study, they built the hybrid model with ANN and ARIMA, Multi-linear regression 

(MLR) respectively. When it comes to the model performance, the one with ANN and 

ARIMA had the best.   

Hung et al. (2009) proposed ANN to forecast the real-time rainfall in Bangkok. 

The best model chosen by comparing the performance of them had the time lag 

variable as well as the meteorological parameters.  

Zhu and Wei (2013) made a hybrid model integrating ARIMA and the least square 

SVM (LSSVM) to approximate linear and non-linear patterns of the carbon price. 

They adopted a heuristic algorithm, particle swarm optimization (PSO) to optimize 

the parameters used in LSSVM.  

Zhang et al. (2013) tried to seek the proper model revealing the high level of 

prediction in pork price in China. By the way, the demonstration about the structure 

of the model they used is insufficient in their paper. It noted that the prediction power 

of the model, however, is sufficient to forecast the pork price. 

Lama et al. (2016) employed the time-delay neural network with GARCH for 

predicting the edible oil price in India and Global market. To find the optimal 

parameter of time-lags they used ARIMA and then, based on that, the forecasts of 

each model was combined. Unfortunately, it was surprisingly noticed that the 

performance of the combined model positioned between naïve GARCH and TDNN. 

The reason they demonstrated was that the performance largely depends on the size 

of bandwidth and kernel function used.  
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Mirakyan et al. (2017) applied SVM, ANN, and ridge regression to estimate the 

electricity price. Instead of the use of single model only, they used the weighted 

forecasts processed by giving equal-weight, inverse-RMSE weight, and OLS weight 

to the prediction of each model respectively. The most predictable model was the 

hybrid model with inverse-RMSE weight, while the simple ridge regression was 

comparable to the best.  

Ahmad et al. (2017) utilized ANN and RF to forecast the energy consumption of 

a hotel in Spain. They included the social parameters like the number of guest and the 

number of room booked as well as the weather factors and time-lag of consumption. 

Through the feature selection of RF, the considered variables were ranked by the level 

of importance. Afterwards, they concluded that though the predictability of ANN 

surpassed RF, the latter may deserve to be comparable to the performance of the 

former.  
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Table 5 Application of Machine Learning Methods in Other Area 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Diaz-Robles et 

al.(2008) 

Forecasting air quality in 

Chile 

ANN+ARIMA vs. MLR, ARIMA, ANN 

Time-lagged and Meteorological variables 

E2(coefficient of 

efficiency), ARV(average 

relative variance), RMSE, 

R2, SEP(percent standard 

error of prediction), 

PI(persistence index), BIC 

ANN+ARIMA >> 

others 

Hung et al.(2009) 
Forecasting real-time 

rainfall in Thailand 

Seven ANN 

Rainfall as well as humidity, temperature pressure, 

cloudiness etc 

EI(Efficiency index), 

RMSE, R2 
No comparison 

Zhu and Wei 

(2013) 
Forecasting carbon price 

Hybrid model(ARIMA+LSSVM) >>ARIMA+ANN, 

LSSVM, ANN, ARIMA 

unknown 

RMSE, Directional 

statistics 

Hybrid model >> 

others 

Zhang et 

al.(2013) 
Forecasting pork price 

SVM 

unknown 
RMSE No comparison 
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Lama et al.(2016) 
Forecasting volatility of 

edible oil price 

TDNN(Time-delay) +GARCH vs. TDNN, GARCH 

Times-lagged but variable specification is unknown 

RMSE 

Theil-U 

DA 

Mixed results 

The performance of 

Combined model 

positioned between 

other models 

Mirakyan et 

al.(2017) 
Forecast electricity price 

SVM, ANN, RR(ridge regression), hybrid model 

Times-lagged but variable specification is unknown 

RMSE, MAPE, 

MdAPE(median) 

Mixed results 

but a hybrid model 

has consistently 

outperformed others 

in most cases 

Ahmad et 

al.(2017) 

Predicting energy 

consumption of building 

ANN vs. RF 

Weather condition, time-span, number of guests, room 

booked and time-lagged variables 

RMSE, CV(coefficient of 

variation), MAD, MAPE 

ANN>>RF 

Though ANN 

outperforms RF, the 

latter is comparable 

to the former 

 

 

 

 



28 

 

3.2   Classification-related Problem with Machine Learning 

The choice between some alternatives is intuitively no less sophisticated but no 

less straightforward than the regression-related problem. 

Fernández-Rodrı́guez et al. (2000) employed ANN to test the trading strategy in 

Madrid stock index. According to the trading strategy from ANN, they traded the 

stock index and found the returns is more profitable than a prior model (Pesaran and 

Timmermann, 1992).  

Kim (2003) suggested that the predictability of SVM outperformed ANN and 

case-based reasoning. He tuned the parameters with regard to penalty term C and 

kernel δ2. He checked whether SVM consistently outweighs others by using 

McNemar tests. 

Huang et al. (2005) used SVM for predicting the movement of NIKKEI 225 index. 

They selected S&P 500 index and US/JP exchange rate that significantly influence 

Japan's export as the inputs. Then they built a combining SVM to capture the 

relationship between a day before prior behavior of inputs and today's direction of 

NIKKEI index. Finally, they compared the forecast of the proposed model with SVM, 

the random walk model, Elman neural network (ENN), and other statistical methods. 

Moreover, they noticed that the reason why SVM outperforms others is based on ‘the 

structural risk minimization principle.' 

Kara et al. (2011) applied the proposed model to forecast the direction of the stock 

price in emerging market. They extensively experimented to find the suitable 

parameters of the model to be optimized. Afterwards, the designed SVM model 

outperformed the result of ANN and prior research.  
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Wang and Choi (2014) constructed SVM using the variables through the principal 

component analysis (PCA). Since the shortcoming of SVM is the calculation of 

transformed inputs to a high dimension, they reduced the number of stocks having an 

effect on the composed index under PCA and incorporated them with the 

macroeconomic factors as inputs. Also, the period of their experiments was designed 

to follow rolling windows of time in order that the model can be generalized any time.  

Wang and Shang (2014) used the least square SVM (LSSVM) to forecast the 

direction of China Security index 300. The ten variables were chosen through 

technical analysis. Compared with the Bayesian neural network, QDA, and LDA, the 

SVM was accepted as the valuable model to predict. Eventually, they tested whether 

the LSSVM consistently surpasses others under McNemar test. 

Tanaka et al. (2016) introduced RF technique for capturing the warning signal 

before bank failure. The distinction of the study is the choice of the variables. The 

former studies included the macroeconomic data to predict the financial crisis, while 

they made use of bank-level financial data only. They ended up with comparing the 

existing model such as logistic regression and decision trees with RF and then they 

achieved constructing the RF-based early warning system. 
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Table 6 Application of Machine Learning Methods in Classification-related Problems 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Fernández-
Rodrı́guez et 

al.(2000) 

Forecasting the optimal 

trading strategy 

Trading with ANN vs. Buy & hold, prior model 

Time-lagged variables 

Hit ratio 

Sharp ratio 
ANN>>others 

Kim(2003) 
Forecasting the 

direction of KOSPI 

SVM vs. ANN, CBR(case-based reasoning) 

12 Variables from technical analysis 
Hit ratio SVM>>ANN, CBR 

Huang et al.(2005) 
Forecasting the 
movement of NIKKEI 

index 

Hybrid model vs. SVM, ENN, LDA(linear 

discriminant), and QDA(quadratic discriminant) 

Binary variables of S&P500  and US/JP exchange rate 

Hit ratio Hybrid>SVM>>others 

Kara et al.(2011) 

Forecasting the 

direction of stock price 

in ISE 

SVM vs. ANN, prior research models 

10 indicator from technical analysis 
Hit ratio SVM >> others 

Wang and 

Choi(2014) 

Forecasting the 

direction of KOSPI and 

HIS 

SVM+PCA vs. SVM, ANN, ANN+PCA, RW 

2 stocks from PCA, 2 macroeconomic factors 
Hit ratio SVM+PCA >> others 

Wang and 

Shang(2014) 

Forecasting the 

direction of CSI 300 
LSSVM vs. BNN, LDA, QDA Hit ratio LSSVM>>others 

Tanaka et al.(2016) 

Forecasting early 

warning signals in 

bank failure 

RF vs. Decision tree, Logistic regression 

48 indicator from groups like profitability ratio, 

capitalization, loan quality, and funding 

Accuracy unknown RF>>others 
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3.3   Maritime-related Problem with Machine Learning 

In maritime sector, the studies on the application of the ML disciplines have 

occasionally been introduced. The problems discussed in this research are mainly 

related to forecasting.  

Li and Parsons (1997) attempted to confirm the prediction power of ANN and 

suggest a useful framework with regard to ANN in forecasting of tanker freight rate. 

The variables they used are dirty spot rate, tanker demand, and tanker supply. This 

study had concentrated on tuning the appropriate parameters and if they are not 

correct, it might cause poor or good predictions. Also, they considered the time 

consuming and model complexity for constructing an ideal model. Compared with 

autoregressive moving averages model (ARMA), the rates ANN produced were more 

precisely and consistently matched to the actual rates. 

Mostafa (2004) indicated that it is useful for ANN to be utilized in forecasting the 

traffic volumes of Suez canal. The distinct points that differentiated from other 

research are that he did not normalize the input data and did not adopt the biases terms 

in the hidden layer. Despite that, it noted that ANN achieved the higher performance 

than the traditional statistical model, ARIMA. This result shows again that since the 

performance of ANN strongly depends on the type of data to be used and the 

parameters to be tuned by an experienced expert, these limitations should be taken 

into account when using ANN.  

Lyridis et al. (2004) built more than 100 ANN with the different number of inputs 

and hidden nodes. Then, they extracted the right models according to the out-of-

sample performance corresponding with each forecast interval. Although the results 
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for a short-term interval was comparable to the unknown naïve model, the longer the 

forecast interval, the larger the difference between them. 

Yang et al. (2008) revealed the forewarning system for freight rates in the shipping 

market. The variables they chose are CCFI, CCBFI, and BDI as they are the 

representatives reflecting information about shipping demand and supply. In 

particular, based on the opinions of an experienced expert, they extracted the warning 

signal from the freight rates. The forewarning power the model produced was 

accurate with 100% in the out-of-sample test, while it is disappointing that the reasons 

why they determined the level of warning signals are insufficient.  

von Spreckelsen et al. (2012) investigated the potential of ANN in forecasting the 

spot rate and FFA for Tanker market and comparing the profit gains of the trading 

strategies stemmed from the results of univariate models and multivariate models. 

Perhaps, since the forecasting and trading interval was set as one-day ahead, the 

performance of other time series models might have been comparable to that of ANN. 

Furthermore, they pointed out that while it is helpful for FFA prices to predict the spot 

rate, the opposite does not hold. 

Fan et al. (2013) constructed the neural networks replacing the standard transfer 

functions with the wavelet function that can extract the necessary information from 

noisy data. Though the forecasts of ARIMA was almost equal to WNN during the 

short-term period, the longer the prediction interval, the better the performance of 

WNN increases. 

Lyridis et al. (2013) developed the ANN model with the proper number of hidden 

layers and input variables in order to forecast FFA prices. According to the correlation 

coefficient, the candidate variables were filtered out. Even though the results from 
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the final model satisfied for trading, the authors recommended to be careful about 

using it in real trade.  

Santos et al. (2014) used the naïve ANN model and radial basis function (RBF) 

NN model that adopts RBF instead of the typical transfer function like a sigmoidal 

function. For predicting the future T/C rates of VLCC, they chose the lagged variables 

that represent the information about supply and demand and market condition. 

Although the RBFNN consistently outperformed others regardless of the forecasting 

time interval, it was done mainly for the short-term forecast. 

Han et al. (2014) proposed SVM model incorporating the wavelet analysis that 

can denoise BDI. Prior to implementing SVM model, BDI was decomposed into high 

frequency and low frequency until attaining the satisfied level of denoising BDI. 

Compared with ANN and statistical models, the proposed model achieved the utmost 

results rather than others.   

Daranda (2016) attempted to apply ANN to predict vessel routes at Baltic sea. He 

had not only analyzed the waypoints and routes the mass traffic had heavily used but 

also utilized ANN to train the pattern of the traffic routes. The model revealed quite 

accurate forecasts. 

Bao et al. (2016) employed SVM with correlation-based feature selection that 

helps to reduce the redundant variables. They mentioned that they had approached 

the variable selection with the macroeconomic views. Due to the structural 

superiorities of SVM, the paper showed that its performance deeply outperformed the 

comparative model, ANN. 

Eslami et al. (2017) came up with a hybrid model built with both ANN and an 

adaptive genetic algorithm (AGA)to foresee tanker freight rates. Three inputs were 
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chosen amid the suggested variables from the relevant literature through stepwise 

regression. The evolution mechanism of the AGA can parameterize the essential 

criteria. When it comes to the accuracy, the hybrid model improved the results 

compared with the previous research and the two traditional models. 
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Table 7 Application of Machine Learning Methods in Maritime Sector 

Authors Fields 
Model and Benchmark 

Variables 
Performance Results 

Li and 

Parsons(1997) 

Forecasting Tanker 

freight rates 

Univariate-ANN, Multivariate-ANN, ARMA 

Tanker spot rate, Tanker demand, and supply  

Adjusted average of 

MSE(ADAMSE) 

Multivariate-

ANN>>others 

Mostafa(2004) 
Forecasting Suez canal 
traffic volume 

ANN vs. ARIMA 
Time lagged variables 

RMSE ANN>>ARIMA 

Lyridis et 

al.(2004) 
 

Forecasting Tanker 

freight rates 

Various ANN vs. Naïve model(Unknown) 

Oil demand, fleets, crude oil price and 

production, T/C rates, newbuilding and 
secondhand prices, bunker and scrap prices, oil 

stock, and 2 event dummies.  

MSE Mixed results 

Yang et 

al.(2008) 

Classifying the level of 
forewarning for freight 

rates 

SVM 

CCFI, CCBFI, and BDI 
Hit ratio No comparison 

von Spreckelsen 
et al.(2012) 

Forecasting and  

trading Tanker spot rate 

and FFA 

Univariate-ANN and ARIMA and 

Multivariate-ANN, VAR, and VECM and RW 

Spot rate, FFA 1M, and 2M 

𝑅2, RMSE, Theils-

U, Trading profits 

Mixed results but 

univariate-ANN are 
dominant overall.  

 

Fan et al.(2013) 
Forecasting Tanker 

freight rates 

Wavelet-NN(WNN) vs. ARIMA 
Amex oil index, Brent oil price, S&P500 

volatility, S&P Global1200, Dow Jones, and 

MSCIAC world transportation 

MAE, RMSE, 

MAPE 
WNN >>ARIMA 
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Lyridis et 

al.(2013) 

Forecasting dry FFA 

prices 

4 ANN 
Spot rate, order-book, fleet development, scrap 

value, T/C rate, contracting, sales, deliveries, 

and newbuilding prices for Capesize 

MSE No comparison 

Santos et 

al.(2014) 

Forecasting T/C rate for 

VLCC 

ANN, RBFNN vs. ARIMA 

1-year and 3-year T/C rate, Spot rate, 

demolition price, world crude oil output, 
deliveries, demolitions 

MAPE, RMSE, 

Theil-U 
RBFNN>>others 

Han et al.(2014) Forecasting BDI 

Wavelet-SVM vs. ARMA, ANN, VAR 

Time-lagged variables from decomposed 

wavelets 

RMSE WSVM>>others 

Daranda(2016) 
Forecasting vessel route 

ANN 

Waypoints, speed, course, MMSI number, 
vessel dimension, type of vessel 

- No comparison 

Bao et al.(2016) Forecasting BDI 

SVM vs. ANN 

World GDP growth, iron ore, coal, and grain 
demand, vessel supply, fuel price 

RMSE SVM>>ANN 

Eslami et 

al.(2017) 

Forecasting Tanker 

freight rate 

ANN+AGA vs. regression, moving average 

Fleet productivity, crude oil price, and bunker 

price 

RMSE ANN+AGA>>others 
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Chapter 4   Methodology 

 

 

4.1   Option Pricing  

There are a variety of option pricing models invented. These models can roughly 

be classified into the parametric and non-parametric models. This chapter introduces 

some representative models among them in a nutshell.  

 

4.1.1   Benchmark: Black-Scholes-Merton model (BSM) 

The Black-Scholes-Merton option pricing model (BSM) was invented by three 

scholars named in the title of the model (Black and Scholes, 1973; Merton, 1973). 

Their contributions have been enormous and tremendous, and the model is still 

widely accepted as the benchmark model in the market trade and the academic 

research because of its analytical tractability (Lajbcygier and Conner, 1997; Andreou, 

Charalambous and Martzoukos, 2006; Shinde and Takale, 2012). Since the derivation 

of the model is beyond this paper, the specification of the BSM is briefly described 

as follows. 

c = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) 

𝑑1 =
ln (

𝑆0
𝐾
) + (𝑟 +

𝜎2

2 )𝑇

𝜎√𝑇
  , 𝑑2 = 𝑑1 − 𝜎√𝑇 

Where c is the European call option price, 𝑆0 is the spot price at time 0, 𝐾 is 

the strike price, 𝑁(∙)  is the cumulative probability distribution function, 𝑟  is the 
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risk-free rate, 𝜎  is the spot price volatility, and 𝑇  is the time to maturity of the 

option.  

As reported in the literature, the main drawbacks of BSM are the unrealistic 

presumptions. Most of the parameters are assumed to be constant during the life of 

the option. In particular, the volatility of the spot price is unknown in the initial stage 

of option pricing. Nevertheless, because of the simplicity of the model to price the 

option, the model is still loved and attractive to the fields and academia. 

If this formula can apply to pricing the TC options, the assumptions with regard 

to exercise the option must be required as well as the presumptions of BSM. The 

details of its premise will be discussed in Ch. 5. 

 

4.1.2   Machine Learning Methods 

Artificial intelligence was first programmed by Alan Turing and Arthur Samuel in 

the 1950s. Since then, various types of ML have been introduced, and although there 

have been considerable difficulties to solve, they have been improved and evolved 

through the efforts of scholars.  

The concept of ML is to mimic the learning process in the human brain. The 

designed models go through the process that adjusts the weights of parameters in the 

learning algorithm. Then, the final one can be set by the generalization techniques 

like n-folds cross-validation, early stopping, and regularization. 

The epitomes of ML are ANN, SVM, and Ensemble learning. The next sections 

demonstrate the conceptual and mathematical approaches to these methodologies.   

 



39 

 

4.1.2.1   Artificial Neural Networks(ANN) 

As shown in the literature, the applicability of ANN has been quite diverse. In 

addition, Tkáˇ and Verner (2016) confirmed that ANN has been widely used in a 

variety of business areas including accounting, credit rating, decision support, 

derivatives pricing, bankruptcy, and so on. Based on the review papers summing up 

the applicability of ANN, the structure of ANN is illustrated in Figure [6]. 

 

Figure 6 Structure of ANN 

 

ANN is conceptually similar to the learning process of the neuron. More precisely, 

input layers accept the variable information, which is then passed throughout the 

networks between the layers. This mechanism can be expressed mathematically as 

bellows.   

For the input in the hidden nodes,  
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𝑛𝑒𝑡𝑗 =∑𝑥𝑖𝑤𝑗𝑖
𝑖

 

where 𝑥𝑖 is each input node and 𝑤𝑗𝑖  is the weights that reveal the connection 

strengths between the input node i and the hidden node j.  

The outputs in the hidden nodes are the outcomes transformed through the transfer 

function, 𝑔(𝑧) =
1

1+𝑒−𝑧
.  

𝑎𝑗 = 𝑔(𝑛𝑒𝑡𝑗) 

For the input in the output nodes,  

𝑛𝑒𝑡𝑘 =∑𝑎𝑗𝑤𝑘𝑗
𝑗

 

where 𝑤𝑘𝑗  is the weights between the hidden nodes j and the output nodes k. 

The k th output of the out layers is 𝑜𝑘 = 𝑔(𝑛𝑒𝑡𝑘).  

For regression, the transfer function, 𝑔(𝑧), adopts the linear function to approximate 

numerical values.  

The learning process of ANN is employing the error back-propagation that adjusts 

the synaptic weights. The following equations show how to process that algorithm in 

this discipline.  

The 𝐸 represents the loss function of the neural networks.  

𝐸 =
1

2
∑(𝑡𝑘 − 𝑜𝑘)

2

𝑗

 

where 𝑡𝑘 means a target value and 𝑜𝑘 is the estimates of the model. To removing 

the square term when differentiating, the 1/2 term is added to the equation.  
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Through the error back-propagation algorithm, the model adjusts the synaptic 

weights in the output nets until achieving the convergence to a certain threshold.  

∆𝑤𝑘𝑗  ∝  −
𝜕𝐸

𝜕𝑤𝑘𝑗
 

where 𝑤𝑘𝑗 denotes a weight from the neuron j of the hidden layer to k neuron of 

the output layer.  

Because the error is not directly a function of a weight, the partial derivative can 

be expanded by using the chain rule as follows. 

∆𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑤𝑘𝑗
= −𝜂

𝜕𝐸

𝜕𝑜𝑘
 
𝜕𝑜𝑘
𝜕𝑛𝑒𝑡𝑘

 
𝜕𝑛𝑒𝑡𝑘
𝜕𝑤𝑘𝑗

 

where ŋ is a learning rate, 𝑛𝑒𝑡𝑘 denotes the k net input of output layer.  

For convenient calculation, let’s consider each partial derivative separately.   

1. 
𝜕𝐸

𝜕𝑜𝑘
=

𝜕(
1

2
∑ (𝑡𝑘−𝑜𝑘)

2
𝑗 )

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘) 

2. 
𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 

𝜕(1+𝑒−𝑛𝑒𝑡𝑘)
−1

𝜕𝑛𝑒𝑡𝑘
=

𝑒−𝑛𝑒𝑡𝑘

(1+𝑒−𝑛𝑒𝑡𝑘)
2 =

1

1+𝑒−𝑛𝑒𝑡𝑘
(1 −

1

1+𝑒−𝑛𝑒𝑡𝑘
) = 𝑜𝑘(1 − 𝑜𝑘) 

3. 
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
=
𝜕(𝑤𝑘𝑗𝑎𝑗)

𝜕𝑤𝑘𝑗
= 𝑎𝑗   𝑤ℎ𝑒𝑟𝑒 𝑎𝑗 𝑖𝑠 𝑎 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗.  

Substitute above equations into ∆𝑤𝑘𝑗 

∆𝑤𝑘𝑗 = 𝜂 (𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)⏞            

𝛿𝑘

𝑎𝑗 

The final adjustment of error is derived from replacing the part of the local 

gradient with 𝛿𝑘. 

∆𝑤𝑘𝑗 = 𝜂𝛿𝑘𝑎𝑗 

In a similar way, the weights of the hidden nets can be updated.  
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∆𝑤𝑗𝑖  ∝  −[∑
𝜕𝐸

𝜕𝑜𝑘
𝑘

𝜕𝑜𝑘
𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑎𝑗

]
𝜕𝑎𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
 

∆𝑤𝑗𝑖 = −𝜂[∑
𝜕𝐸

𝜕𝑜𝑘
𝑘

𝜕𝑜𝑘
𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑎𝑗

]
𝜕𝑎𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

= 𝜂[∑(𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)
⏞            

𝛿𝑘

𝑤𝑘𝑗]

𝑘

𝑎𝑗(1 − 𝑎𝑗)𝑥𝑖

= 𝜂[∑𝛿𝑘𝑤𝑘𝑗]

𝑘

𝑎𝑗(1 − 𝑎𝑗)𝑥𝑖 = 𝜂 [∑𝛿𝑘𝑤𝑘𝑗]

𝑘

𝑎𝑗(1 − 𝑎𝑗)
⏞              

𝛿𝑗

𝑥𝑖

= 𝜂𝛿𝑗𝑥𝑖  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

 

4.1.2.2   Support Vector Regression(SVR) 

The proper use of ANN requires the appropriate estimates of the parameters and 

the sufficient number of sample. Therefore, ANN is always exposed to the empirical 

risk minimization.  

For pursuing the principle of the structural risk minimization, the SVM was 

formulated by Vapnik (1995, 1997). This principle looks for the minimization of an 

upper bound of generalization error and simultaneously for the minimization of error 

from the training data.  

Another core property of SVM is that the mechanism of the model is analogous to 

dealing with the quadratic programming (QP) problem so that SVM obtains the 

unique and globally optimal solution, while ANN is often getting stuck in local 

minima. This SVM can be expanded to regression problems, which is called ‘SVR.'   
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Given a set of data (𝑥𝑖 , 𝑦𝑖), where input vector 𝑥𝑖 ∈ ℝ
𝑝 and output scalar 𝑦𝑖 ∈

ℝ1. The latter, 𝑦, is treated as the target value in SVR. The aim of the model is to 

find a linear regression function 𝑓(𝑥), which isestimates the real function, 𝑔(𝑥) as 

below.  

𝑓(𝑥) = 𝑤𝑇𝑥𝑖 + 𝑏 

The ε-insensitive SVR is harnessed to solve the linear regression.  

𝑚𝑖𝑛     
1

2
𝑤𝑇𝑤 

𝑠. 𝑡    
𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀

𝑦𝑡 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀
 

The ε-insensitive loss function, 𝐿𝜀, is  

𝐿𝜀(𝑦, 𝑓(𝑥)) = {
|𝑦 − 𝑓(𝑥)| − 𝜀   𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≥ 𝜀

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The ε-insensitive SVR is ignoring the error less than 𝜀, which forms the 𝜀-tube 

as shown in Figure [7] and the ε-insensitive loss function is in Figure [8].  

 

Figure 7 𝛆-insensitive SVR 
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Figure 8 𝛆 -insensitive Loss Function 

 

Consider the infeasible case where the data cannot satisfy the constraints. The 

slack variables 𝜉𝑖 , ξ𝑖
′ are introduced as illustrated in Figure [7] and [8].  

𝑚𝑖𝑛     
1

2
𝑤𝑇𝑤 + 𝐶∑(𝜉𝑖 + ξ𝑖

′)

𝑛

𝑖=1

 

𝑠. 𝑡    
𝑦𝑖 − 𝑤

𝑇𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + ξ𝑖

′

𝜉𝑖 , ξ𝑖
′ ≥ 0

 

where penalty term, C, controls the trade-off relationship between the error and 

the flatness of the 𝑓(𝑥).  

Then, the corresponding loss function is  

|𝜉|𝜀 = {
0        𝑖𝑓 |𝜉| ≤ 𝜀
|𝜉| − 𝜀   𝑖𝑓 |𝜉| > 𝜀

. 

The Lagrange multiplier technique is required to solve the quadratic problem. 
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𝐿 =
1

2
𝑤𝑇𝑤 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

′)

𝑛

𝑖=1

−∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
′𝜉𝑖
′)

𝑛

𝑖=1

−∑𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑤
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

−∑𝛼𝑖
′(𝜀 + 𝜉𝑖

′ + 𝑦𝑖 − 𝑤
𝑇𝑥𝑖 − 𝑏)

𝑛

𝑖=1

 

where 𝜂𝑖 ,  𝜂𝑖
′ , 𝛼𝑖 , and 𝛼𝑖

′  denotes the Lagrange multipliers that satisfy the 

constraints of 𝜂𝑖 , 𝜂𝑖
′, 𝛼𝑖 , 𝛼𝑖

′ ≥ 0. 

The minimization of the above function is conducted by partially differentiating 

with regard to w, b, and 𝜉.  

𝜕𝐿

𝜕𝑤
= 𝑤 −∑(𝛼𝑖 −

𝑛

𝑖=1

𝛼𝑖
′)𝑥𝑖 = 0 →  w =∑(𝛼𝑖 −

𝑛

𝑖=1

𝛼𝑖
′
)𝑥𝑖 

𝜕𝐿

𝜕𝑏
=∑(𝛼𝑖 −

𝑛

𝑖=1

𝛼𝑖
′) = 0 

𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0 

𝜕𝐿

𝜕𝜉𝑖
′ = 𝐶 − 𝛼𝑖

′ − 𝜂𝑖
′ = 0 

Substitute the results through partial derivative into the Lagrange function.  

𝑚𝑎𝑥    𝐿(𝛼𝑖 , 𝛼𝑖
′)

= −
1

2
∑∑(

𝑛

𝑗=1

𝑛

𝑖=1

𝛼𝑖 − 𝛼𝑖
′)(𝛼𝑗− 𝛼𝑗

′)𝑥𝑖
𝑇𝑥𝑗 − 𝜀∑(𝛼𝑖 − 𝛼𝑖

′)

𝑛

𝑖=1

+∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
′)

𝑛

𝑖=1

 

𝑠. 𝑡.        
∑ (𝛼𝑖 − 𝛼𝑖

′)𝑛
𝑖=1 = 0

𝛼𝑖,𝛼𝑖
′ ∈ (0, 𝐶)
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Replace w = ∑ (𝛼𝑖 −
𝑛
𝑖=1 𝛼𝑖

′)𝑥𝑖  with w in 𝑓(𝑥) = 𝑤𝑇𝑥𝑖 + 𝑏.  

𝑓(𝑥) =∑(𝛼𝑖 −

𝑛

𝑖=1

𝛼𝑖
′)𝑥𝑖

𝑇𝑥 + 𝑏 

Finally, b can be calculated by using the Karush-Kuhn-Tucker (KKT) conditions. 

The key to them, that is, requires that the product between dual variables and 

constraints be zero at the point of the solution.  

𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 +𝑤
𝑇𝑥𝑖 + 𝑏) = 0 

𝛼𝑖
′(𝜀 + 𝜉𝑖

′ + 𝑦𝑖 −𝑤
𝑇𝑥𝑖 − 𝑏) = 0 

(𝐶 − 𝛼𝑖)𝜉𝑖 = 0 

(𝐶 − 𝛼𝑖
′)𝜉𝑖

′ = 0 

Because of the conditions above, the samples with corresponding 𝛼𝑖 , 𝛼𝑖
′ = 𝐶 lie 

outside the 𝜀-insensitive tube. Furthermore, 𝛼𝑖𝛼𝑖
′ = 0 and the multipliers cannot be 

simultaneously nonzero. Hence, if 𝛼𝑖 , 𝛼𝑖
′ ∈ (0, 𝐶)  has a certain value, the slack 

variables is zero.  

b = 𝑦𝑖 − 𝑤
𝑇𝑥𝑖 − 𝜀   for 𝛼𝑖 ∈ (0, 𝐶) 

b = 𝑦𝑖 − 𝑤
𝑇𝑥𝑖 + 𝜀   for 𝛼𝑖

′ ∈ (0, 𝐶) 

For the non-linear regression, the input space is transformed into higher feature 

space through the non-linear function, ∅(𝑥𝑖) . The optimal regression function is 

𝑓(𝑥) = 𝑤𝑇∅(𝑥𝑡) + 𝑏.  

By using the kernel function, K(𝑥𝑖 , 𝑥) = ∅(𝑥𝑖)
𝑇∅(𝑥), the same procedures are 

conducted. 
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𝑚𝑎𝑥    𝐿(𝛼𝑖 , 𝛼𝑖
′)

= −
1

2
∑∑(

𝑛

𝑗=1

𝑛

𝑖=1

𝛼𝑖 − 𝛼𝑖
′)(𝛼𝑗− 𝛼𝑗

′)𝐾(𝑥𝑖 , 𝑥) − 𝜀∑(𝛼𝑖 − 𝛼𝑖
′)

𝑛

𝑖=1

+∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
′)

𝑛

𝑖=1

 

𝑠. 𝑡.        
∑ (𝛼𝑖 − 𝛼𝑖

′)𝑛
𝑖=1 = 0

𝛼𝑖,𝛼𝑖
′ ∈ (0, 𝐶)

 

Likewise, the w and the hyperplane are derived as 

w =∑(𝛼𝑖 −

𝑛

𝑖=1

𝛼𝑖
′)∅(𝑥𝑖) 

𝑓(𝑥) = ∑ (𝛼𝑖 −
𝑛
𝑖=1 𝛼𝑖

′)𝐾(𝑥𝑖 , 𝑥) + 𝑏. 

The strongest advantage of SVM makes use of the kernel function, which can 

make the computational complexity of the high-dimensional space reduced. The 

exemplars of the kernel are as below Table [8]. 

 

Table 8 Type of Kernel Function 

Kernel type Equation 

Linear 𝐾(𝑥𝑡 , 𝑥) = 𝑥𝑡
𝑇𝑥 

Polynomial 𝐾(𝑥𝑡 , 𝑥) = (𝑥𝑡
𝑇𝑥 + 1)𝑑 

Radial Basis Function 𝐾(𝑥𝑡 , 𝑥) = exp (
−‖𝑥 − 𝑥𝑡‖

2

2𝜎2
) 
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4.1.2.3   Random Forest (RF) 

Having been inspired by the combination of decision trees and bagging ideas, 

Breiman (2001) proposed the random forest (RF).  

This model is  

 excellent versatile from classification to regression;  

 relatively fast to learn; 

 simple to tune few parameters; 

 able to be applied to high-dimension problems; 

 easy to be implemented in parallel. (Cutler, Cutler and Stevens, 2012) 

A Random Forest is a tree-based ensemble method with each tree having a 

collection of random variables. The trees used in Random Forests are following the 

algorithm of the binary recursive partitioning trees in Table [9].  

 

Table 9 Algorithm of the Binary Recursive Partitioning Trees (Cutler, Cutler and Stevens, 

2012) 

The training data 𝔇 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1,2,⋯ , 𝑛},   𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2,⋯ , 𝑥𝑖,𝑝)
𝑇  

1. Begin with all observations (𝑥1, 𝑦1),⋯ , (𝑥𝑁 , 𝑦𝑁) in a single node. 
2. Repeat the following steps recursively for each unsplit node until the stopping 

criterion is met: 

a. Find the best binary split among all binary splits on all p predictors. 

b. Split the node into two descendant nodes using the best split (Step 2a). 

3. For prediction at x, pass x down the tree until it lands in a terminal node. Let k denote 

the terminal node and let y𝑘1 ,⋯ , y𝑘𝑛 denote the response values of the training data in 

node k. Predicted values of the response variable are given by: 

 ℎ̂(𝑥) = �̅�𝑘 =
1

𝑛
∑ 𝑦𝑘𝑖
𝑛
𝑖=1 for regression 

 ℎ̂(𝑥) = arg𝑚𝑎𝑥𝑦 ∑ 𝐼(𝑦𝑘𝑖 = 𝑦)
𝑛
𝑖=1  for classification, where 𝐼(𝑦𝑘𝑖 = 𝑦) = 1 if 

𝑦𝑘𝑖 = 𝑦 and 0 otherwise.  
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A Random Forest uses trees ℎ𝑗(𝑋, Θ𝑗) as base learners, where Θ𝑗  is a collection 

of random variables. For the training data 𝔇 = {(𝑥𝑖, 𝑦𝑖): 𝑖 = 1,2,⋯ , 𝑛}, where 𝑥𝑖 =

(𝑥𝑖,1, 𝑥𝑖,2, ⋯ , 𝑥𝑖,𝑝)
𝑇  denotes the p predictors and 𝑦𝑖  denotes the response, and a 

particular realization θ𝑗   of Θ𝑗  , the fitted tree is denoted ℎ̂𝑗(𝑥, θ𝑗 , 𝔇)  (Breiman, 

2001). Because of the random component θ𝑗 , at least two randomnesses under above 

process are given to the model. First, as with bagging, each tree is fit to an 

independent bootstrap sample from the original data.. Second, when splitting a node, 

the best split is found over a randomly selected subset of m predictor variables instead 

of all p predictors, independently at each node. The detailed algorithm for Random 

Forest is as shown in Table [10]: 

 

Table 10 Algorithm of Random Forests (Cutler, Cutler and Stevens, 2012) 

The training data 𝔇 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1,2,⋯ , 𝑛},   𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2,⋯ , 𝑥𝑖,𝑝)
𝑇  

For 𝑗 = 1 to J :  

1. Take a bootstrap sample 𝔇𝑗  of size N from 𝔇. 

2. Using the bootstrap sample 𝔇𝑗  as the training data, fit a tree using binary recursive 

partitioning: 

a. Begin with all observations in a single node. 

b. Repeat the following steps recursively for each unsplit node until the stopping 

criterion is met: 

(i) Choose m predictors at random from the p available predictors. 

(ii) Find the best binary split among all binary splits on the m predictors 

from Step (i). 

(iii) Split the node into two descendant nodes using the split from Step (ii). 

To make a prediction at a new point x, 

• 𝑓(𝑥) =
1

𝐽
∑ ℎ�̂�(𝑥)
𝐽
𝑖=1  for regression 

 𝑓(𝑥) = arg𝑚𝑎𝑥𝑦 ∑ 𝐼(ℎ�̂�(𝑥) = 𝑦)
𝐽
𝑖=1  for classification 

where ℎ�̂�(𝑥) is the prediction of the response variable at x using the j th tree  
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When a bootstrap sample is taken from the data, some observations do not make 

it into the bootstrap sample. These are called “out-of-bag data,” and are extremely 

useful for estimating generalization error and variable importance.  

 

Table 11 Algorithm of Out-Of-Bag Predictions 

𝔇𝑗  denotes the j th bootstrap sample and ℎ�̂�(𝑥) denotes the prediction at x from the j th 

tree for 𝑗 = 1,⋯ , 𝐽. For 𝑖 = 1 to N: 

1. Let 𝒯𝑖 = {𝑗 ∶ (𝑥𝑖 , 𝑦𝑖) ∉  𝔇𝑗} and let 𝐽𝑖 be the cardinality of 𝒯𝑖. 

2. Define the out-of-bag prediction at 𝑥𝑖 to be 

• 𝑓𝑜𝑜𝑏(𝑥𝑖) =
1

𝐽𝑖
∑ ℎ�̂�(𝑥𝑖)𝑗∈𝒯𝑖  for regression 

 𝑓𝑜𝑜𝑏(𝑥𝑖) = arg𝑚𝑎𝑥𝑦 ∑ 𝐼(ℎ�̂�(𝑥𝑖)𝑗∈𝒯𝑖 = 𝑦) for classification 

where ℎ�̂�(𝑥𝑖) is the prediction of the response variable at 𝑥𝑖 using the j th tree. 

 

For regression with squared error loss, generalization error is typically estimated 

using the out-of-bag mean squared error (MSE): 

𝑀𝑆𝐸𝑜𝑜𝑏 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑜𝑜𝑏(𝑥𝑖))

2
𝑁

𝑖=1

 

where 𝑓𝑜𝑜𝑏(𝑥𝑖) is the out-of-bag prediction for observation i.  

For classification with the zero-one loss, generalization error rate is estimated 

using the out-of-bag error rate: 

𝐸𝑜𝑜𝑏 =
1

𝑁
∑ 𝐼(𝑦𝑖 ≠ �̂�

𝑜𝑜𝑏
(𝑥𝑖))

𝑁
𝑖=1 . 
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4.2   Trading Strategy  

The trading strategy is a pre-specified rule for obtaining the profitable return. This 

strategy is closely related to the efficient market hypothesis (EMH). The strategy aims 

to beat the market and hence, succeed the higher profit than the market.   

The trading strategy is usually formed by exploiting the technical analysis and the 

fundamental analysis. Fama (1965, 1970, 1991) suggested that there may be three 

types of the market: a weak-form, a semi-strong form, and a strong form of efficiency. 

The first assumes that the pattern in past price will repeat in the future. Therefore, the 

technical analysis that can identify the pattern is used, which is like moving averages 

and filter rules. The second presumes that the price will reflect the firm value in the 

future. Hence, the fundamental analysis that can extract the latent value from financial 

data is usually exploited, which is known as the ratio analysis. Unfortunately, it is not 

possible to test the last form as it is unknown whether there exist the strategies using 

the internal information of the firm of interest.  

Whether the freight market is efficient is controversial in academic research. Some 

(Hale and Vanags, 1989; Veenstra, 1999; Kavussanos and Alizadeh, 2002a, 2002b, 

Alizadeh and Nomikos, 2006, 2007) have rejected the efficiency, while others (Hale 

and Vanags, 1992; Glen, 1997; Ådland and Koekebakker, 2004; Adland and 

Cullinane, 2005; Adland and Strandenes, 2006) have concluded mixed results. They 

have used the technical or fundamental indicators like Table [12].  
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Table 12 Type of Indicators from Technical and Fundamental Analysis 

Type Description 

Technical 

Analysis 

Filter Rule 
Bollinger Bands 𝐶𝑃 − (𝑀𝐴𝑛 ± 𝑘 ∗ 𝑆𝐷𝑛) 

MA envelopes 𝐶𝑃 − (𝑀𝐴𝑛 ± 𝑘%) 

Moving-

Average 

Rule 

Moving Average 

Convergence 

Divergence(MACD) 

𝑀𝐴5 −𝑀𝐴20 

Momentum 

and 
Oscillator 

Relative Strength 

Index(RSI) 

 

𝑅𝑆 =

1
𝑛
∑ 𝑈𝑀𝑃𝑖
𝑛
𝑖

1
𝑛
∑ 𝐷𝑀𝑃𝑖
𝑛
𝑖

 

𝑅𝑆𝐼 = 100 −
100

(1 + 𝑅𝑆)
 

Stochastic Oscillator 

𝑘(%) =
𝐶𝑃𝑥 − 𝐿𝑃𝑛
𝐻𝑃𝑛 − 𝐿𝑃𝑛

 

𝑀𝐴𝑂𝑆(%) = (
1

𝑛
∑𝑘𝑖

𝑛

𝑖

) ∗ 100 

Fundamental 

Analysis 

Financial 

Ratio 

Analysis 

Profitability 
𝑅𝑂𝐸 =

𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝐴𝑣𝑔 𝐸𝑞𝑢𝑖𝑡𝑦
 

𝑅𝑂𝐴 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑇𝑇𝐿 𝐴𝑠𝑠𝑒𝑡𝑠
 

Liquidity 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 

Activity 
𝐴𝑠𝑠𝑒𝑡 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟

=
𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠

𝑇𝑇𝐿 𝐴𝑠𝑠𝑒𝑡𝑠
 

Leverage 
𝐷𝑒𝑏𝑡 𝑟𝑎𝑡𝑖𝑜

=
𝑇𝑇𝐿 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑇𝐿 𝐴𝑠𝑠𝑒𝑡𝑠
 

Economic 

Analysis 
Price-Earnings ratio 𝑃𝐸 =

𝑃𝑟𝑖𝑐𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠
 

 

Since analyzing the past behavior of the underlying assets is not enough for 

predicting the future price, Alizadeh and Nomikos (2007) used the price-earnings 

(P/E) ratio as the fundamental indicator for making up for the drawback of the 

technical indicators. The P/E ratio has proved to be the economic indicator for 

investment and divestment timing of stocks in financial markets (Fama and French, 

1992; Campbell and Shiller, 1998).   
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This paper also uses the same indicators in order to overcome the lack of 

theoretical background in picking the variables. Additionally, this focuses on the point 

that the chartering-out strategies based on the ML methods can beat the returns of the 

shipping market.  

 

4.2.1   Benchmark: Multinomial Logistic Regression (MLR) 

The MLR is the expanded binary logistic regression (BLR), which can classify 

more than three multiple outcomes.  

Before explaining the BLR,the definition of odds needs to be known. Since the 

dependent variables of the BLR are categorical, they should be dealt with the 

probability ratio and logarithm in order to make the discrete variables continuous.  

This can be described as follows: 

ln (
𝑝𝑖(𝑦𝑖 = 1)

1 − 𝑝𝑖(𝑦𝑖 = 1)
) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑚𝑥𝑖𝑚 

where 𝑝𝑖 is the probability that 𝑦𝑖 has certain categorical value.  

The final function can be derived, 

ln (
𝑝𝑖(𝑦𝑖 = 1)

1 − 𝑝𝑖(𝑦𝑖 = 1)
) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑚𝑥𝑖𝑚 = 𝑧𝑖 

𝑝𝑖(𝑦𝑖 = 1)

1 − 𝑝𝑖(𝑦𝑖 = 1)
= 𝑒𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2+⋯+𝛽𝑚𝑥𝑖𝑚 = 𝑒𝑧𝑖  

𝑝𝑖(𝑦𝑖 = 1) = (1 − 𝑝𝑖(𝑦𝑖 = 1))𝑒
𝑧𝑖  

𝑝𝑖(𝑦𝑖 = 1)(1 + 𝑒
𝑧𝑖) = 𝑒𝑧𝑖  
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𝑝𝑖(𝑦𝑖 = 1) =
𝑒𝑧𝑖

1 + 𝑒𝑧𝑖
=

1

1 + 𝑒−𝑧𝑖
=

1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2+⋯+𝛽𝑚𝑥𝑖𝑚)
 

The coefficients of the BLR can be estimated by Maximum Likelihood Estimation 

(MLE) that maximize the likelihood of given observations. 

𝑝𝑟𝑜𝑏𝑖(𝑦𝑖|𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑚) = {𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

(1−𝑦𝑖)} 

Assume all the samples are independent, the likelihood function is taken. 

𝐿 =∏𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

(1−𝑦𝑖)

𝑛

𝑖=1

 

Adopt 𝑝𝑖 into this function, 

𝐿 =∏(
𝑒(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚)

1 + 𝑒(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚)
)𝑦𝑖(

1

1 + 𝑒(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚)
)(1−𝑦𝑖)

𝑛

𝑖=1

 

Take the logarithm both sides of above function, 

𝑙𝑛𝐿 =∑[

𝑛

𝑖=1

𝑦𝑖{(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑚𝑥𝑖𝑚) − 𝑙𝑛(1 + 𝑒
(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚))}

+ (1 − 𝑦𝑖){𝑙𝑛(1) − 𝑙𝑛(1 + 𝑒
(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚))}] 

=∑[

𝑛

𝑖=1

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑚𝑥𝑖𝑚) − 𝑙𝑛 (1 + 𝑒
(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚))] 

In order to estimates the coefficients that maximize the probability, the function is 

partially differentiated with respect to each parameter 𝛽𝑘 . 

𝜕𝑙𝑛𝐿

𝜕𝛽𝑘
=∑(

𝑛

𝑖=1

𝑦𝑖 −
𝑒(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚)

1 + 𝑒(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑚𝑥𝑖𝑚)
)𝑥𝑖𝑘 = 0 
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When there are several classes, more than three, the BLR is extended to MLR that 

can classify multiple categorical variables.  

ln (
𝑝𝑖𝑗

𝑝𝑖𝐽
) = ∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀

𝑚=0

 , (𝑥𝑖0 = 1) 

𝑝𝑖𝑗

𝑝𝑖𝐽
= exp (∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀

𝑚=0

) 

where 𝑝𝑖𝑗 is the probability that i th sample is in j th dependent category.  

By using ∑ 𝑝𝑖𝑗
𝐽
𝑗=1 = 1 and ∑ 𝑝𝑖𝑗

𝐽−1
𝑗=1 = 1− 𝑝𝑖𝐽, 

∑ 𝑝𝑖𝑗
𝐽−1
𝑗=1

𝑝𝑖𝐽
=
1− 𝑝𝑖𝐽

𝑝𝑖𝐽
=∑exp (∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀

𝑚=0

)

𝐽−1

𝑗=1

 

𝑝𝑖𝐽 =
1

1 + ∑ exp (∑ 𝛽𝑗𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )𝐽−1

𝑗=1

 

𝑝𝑖𝑗 = exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )𝑝𝑖𝐽 =

exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )

1+∑ exp (∑ 𝛽𝑗𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )

𝐽−1
𝑗=1

 . 

If among the elements of the denominators, 1 is manipulated to the ratio 
𝑝𝑖𝐽

𝑝𝑖𝐽
=

𝑝𝑖(𝑦𝑖=𝐽)

𝑝𝑖(𝑦𝑖=𝐽)
= exp(∑ 𝛽𝐽𝑚𝑥𝑖𝑚

𝑀
𝑚=0 ),  

𝑝𝑖𝑗 =
exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀
𝑚=0 )

exp(∑ 𝛽𝐽𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )+∑ exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀
𝑚=0 )

𝐽−1
𝑗=1

=
exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚

𝑀
𝑚=0 )

∑ exp(∑ 𝛽𝑗𝑚𝑥𝑖𝑚
𝑀
𝑚=0 )

𝐽
𝑗=1

. 

As the similar methods to estimate the coefficients of BLR, MLE is utilized for the 

approximation of the parameters of MLR. To derivate the likelihood function, it is 

needed to incorporate the dummy variables, 𝑔𝑖𝑗 , where i th observation belongs to j 

th class and then, ∑ 𝑔𝑖𝑗
𝐽
𝑗=1 = 𝑔𝑖1 +⋯+ 𝑔𝑖𝐽 = 1.  
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The likelihood function is shown as  

𝐿 = ∏ [𝑝𝑖1
𝑔𝑖1 × 𝑝𝑖2

𝑔𝑖2 ×⋯× 𝑝
𝑖𝐽

𝑔𝑖𝐽]𝑛
𝑖=1 . 

If taking natural logarithm,  

𝑙𝑛𝐿 = ln (∏ [𝑝𝑖1
𝑔𝑖1 × 𝑝𝑖2

𝑔𝑖2 ×⋯× 𝑝
𝑖𝐽

𝑔𝑖𝐽]𝑛
𝑖=1 ) = ∑ [𝑔𝑖1 ln(𝑝𝑖1) + 𝑔𝑖2 ln(𝑝𝑖2) +

𝑛
𝑖=1

⋯+𝑔𝑖𝐽 ln(𝑝𝑖𝐽)] = ∑ ∑ [𝐽
𝑗=1

𝑛
𝑖=1 𝑔𝑖𝑗ln (𝑝𝑖𝑗)]. 

To estimate the coefficients of MLR,  

𝜕𝑙𝑛𝐿

𝜕𝛽𝑀𝑗
= 0, 𝑚 = 0,1, ⋯ ,𝑀, 𝑗 = 1,2,⋯ , 𝐽 − 1. 

 

 

4.2.2   Artificial Neural Networks (ANN) 

ANN for classification has a different feature from the one for regression. The 

major distinction is the transfer function in the nodes of output layers. For the 

classification, it is better for ANN to harness the sigmoidal function that it can be 

continuously and easily differentiable.  
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4.2.3   Support Vector Machines (SVM) 

SVM was originally invented for the linear classification, then it was extended to 

the nonlinear case and regression-related problems.  

 

In the linearly separable case as Figure [9], the optimal boundary is the black line 

that has the equal distance between two classes. Since the red vectors are supporting 

to make an optimal boundary only, this method is called ‘support vector machines’.  

The optimal boundary is 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0  and a certain class is 𝑓(𝑥) =

𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏). This optimal boundary is also called ‘optimal hyperplane’ in a case 

where the feature space is in high-dimension. The distance between both dot lines is 

called ‘margin,’ and this margin has 
2

‖𝑤‖
. Under the constrains 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) ≥ 1, 

optimizing the hyperplane is to maximize the margin or to minimize the reverse of it, 

1

2
‖𝑤‖. The norm ‖𝑤‖ presents quadratic terms 𝑤𝑇𝑤. This case can be expressed 

mathematically as follows,  

Figure 9 Hard-m argined SVM 
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𝑚𝑖𝑛     
1

2
𝑤𝑇𝑤 

𝑠. 𝑡 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1. 

This constrained convex optimization can be solved by using Lagrange multipliers.  

𝑚𝑖𝑛   𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤𝑇𝑤 −∑𝛼𝑖(𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) − 1)

𝑛

𝑖=1

 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤𝑇𝑤 −∑𝛼𝑖𝑦𝑖𝑤

𝑇𝑥𝑖

𝑛

𝑖=1

− 𝑏∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

+∑𝛼𝑖

𝑛

𝑖=1

 

This function must satisfy the Karush-Kuhn-Tucker (KKT) conditions as follows, 

- 
𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑤
= 0 and 

𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑏
= 0 

- 𝛼𝑖(𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) − 1) = 0 

- 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) − 1 ≥ 0 

- 𝛼𝑖 ≥ 0. 

For taking the derivative of 𝐿(𝑤, 𝑏, 𝛼) with respect to w and b respectively  

𝜕𝐿(𝑤, 𝑏, 𝛼)

𝜕𝑤
= w −∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 = 0 → w =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 

𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑏
= −∑ 𝛼𝑖𝑦𝑖

𝑛
𝑖=1 = 0 → ∑ 𝛼𝑖𝑦𝑖

𝑛
𝑖=1 = 0. 

Substitute these conditions into 𝐿(𝑤, 𝑏, 𝛼), 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 ∙∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 −∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

∙∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 +∑𝛼𝑖

𝑛

𝑖=1

 

𝐿(𝑤, 𝑏, 𝛼) = ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1 . 
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This 𝐿(𝑤, 𝑏, 𝛼) can be changed to 𝐿(𝛼). Then, during the training phase, it is 

tried to find 𝛼 that minimize 𝐿(𝑤, 𝑏, 𝛼).  

max    ∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

s. t.  
∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0

𝛼𝑖 ≥ 0
 

So far, the SVM with a hard margin was explained. However, there can be many 

cases where the classes are non-separable linearly as Figure [10].  

 

Given the dataset where the hard-margined SVM cannot be applied, introducing 

the slack variable is needed to relax the constraints. This is called ‘soft-margined 

SVM’ that can be derived from hard-margined SVM as below.  

 

Figure 10 Soft-margined SVM 
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𝑚𝑖𝑛     
1

2
𝑤𝑇𝑤 

𝑠. 𝑡 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 

When introducing the slack variable into the constraints, the objective function 

should tolerate the penalty term.  

𝑚𝑖𝑛     
1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

 

𝑠. 𝑡    
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖
𝜉𝑖 ≥ 0

  

The relationship between the width of margin and the penalty C is trading-off. In 

a similar way of hard margined case,  

𝑚𝑖𝑛   𝐿(𝑤, 𝑏, 𝛼, 𝛽) =
1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

−∑𝛼𝑖(𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) −∑𝛽𝑖𝜉𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

𝐿(𝑤, 𝑏, 𝛼, 𝛽) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 −∑ 𝛼𝑖𝑦𝑖𝑤

𝑇𝑥𝑖 − 𝑏∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 +∑ 𝛼𝑖

𝑛
𝑖=1 −𝑛

𝑖=1

∑ 𝛼𝑖𝜉𝑖
𝑛
𝑖=1 − ∑ 𝛽𝑖𝜉𝑖

𝑛
𝑖=1 . 

 

The KKT conditions are given as, 

- 
𝜕𝐿(𝑤,𝑏,𝛼,𝛽)

𝜕𝑤
= 0 , 

𝜕𝐿(𝑤,𝑏,𝛼,𝛽)

𝜕𝑏
= 0 , and 

𝜕𝐿(𝑤,𝑏,𝛼,𝛽)

𝜕𝜉
= 0 

- 𝛼𝑖(𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) = 0 

- 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0 
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- 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0. 

For taking the derivative of 𝐿(𝑤, 𝑏, 𝛼, 𝛽) with respect to w, b, and ξ respectively,  

𝜕𝐿(𝑤, 𝑏, 𝛼, 𝛽)

𝜕𝑤
= 𝑤 −∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 = 0 → 𝑤 =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 

𝜕𝐿(𝑤, 𝑏, 𝛼, 𝛽)

𝜕𝑏
= −∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 → ∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 

𝜕𝐿(𝑤,𝑏,𝛼,𝛽)

𝜕ξ
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0. 

Substitute these conditions into 𝐿(𝑤, 𝑏, 𝛼, 𝛽). 

𝐿(𝑤, 𝑏, 𝛼, 𝛽) =
1

2
𝑤𝑇𝑤 −∑𝛼𝑖𝑦𝑖𝑤

𝑇𝑥𝑖 +∑𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

𝐿(𝑤, 𝑏, 𝛼, 𝛽) =
1

2
∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 ∙∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 −∑𝛼𝑖𝑦𝑖𝑥𝑖 ∙∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝑥𝑖 +∑𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

This 𝐿(𝑤, 𝑏, 𝛼, 𝛽) can be changed to 𝐿(𝛼). Then, during the training phase, it is 

tried to find 𝛼 that minimize 𝐿(𝑤, 𝑏, 𝛼, 𝛽).  

max    ∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

s. t.  
∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶
 

0 ≤ 𝛼𝑖 ≤ 𝐶 is due to 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0. Because 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0, 𝐶 should 

be greater than or equal to 𝛼𝑖. The soft-margined SVM that can linearly classify was 

presented so far.  
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Unfortunately, there exist non-linear cases in the real world as shown in Figure 

[11]. This data cannot be linearly separable through fore-mentioned methods. To 

solve the case SVM should be equipped with the kernel trick, K(x, x′) = ∅(𝑥)𝑇∅(𝑥), 

that can transform the input features to higher dimensional feature space. Once the 

transformation is carried out, the hyperplane that classifies the non-linear dataset can 

be conveniently found as illustrated in Figure [12]. 

 

Figure 12 Transformation to Higher Dimensional Space4 

                                         

4 http://efavdb.com/svm-classification/ 

Figure 11 Non-linear data 
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The optimal hyperplane is 𝑤𝑇∅(𝑥) + 𝑏 = 0. Furthermore, if 𝑤 = ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 𝑥𝑖 

is substituted into the hyperplane. 

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

∅(𝑥𝑖)
𝑇∅(𝑥) + 𝑏 =∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

𝐾(𝑥𝑖 , 𝑥) + 𝑏 = 0 

Recall the optimal problem in soft margined SVM and then  

max    ∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

→ ∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑗=1

𝑛

𝑖=1

 

s. t.  
∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 =0
0≤𝛼𝑖≤𝐶

. 

4.2.4   Random Forest (RF) 

Since the concept of RF is originated from the decision tree, the application of it 

is easily extended to the classification. After tuning the parameters of RF, dealing 

with the outcomes from trees are different from the regression. For classification, the 

called ‘voting’ is counting the number of the results from the constructed trees while 

RF for regression is to average the results from the trees. This procedure is confirmed 

in Part 4.1.2.3.   

 

4.3   Performance Measures  

This part presents the criterion of the model selection. To choose the best model 

with other candidates, or choose the parameters to achieve the optimal performance, 

the specific criteria for selection is needed. Although many performance measures 

have been presented in the literature, there has not been a consensus about which 
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measures are appropriate to evaluate the model performance. Hence, the most 

common methods are introduced as below Table [13].  

 

Table 13 Type of Performance Measures 

Measurements Equations 

MAE(Mean Absolute Error) 
1

𝑛
∑|𝑥𝑖 − 𝑥𝑖

𝑛

𝑖=1

| 

RMSE(Root Mean Squared Error) √
1

𝑛
∑(

𝑛

𝑖=1

𝑥𝑖 − 𝑥𝑖)
2 

COR(Correlation Coefficients) 𝑟 =
𝐶𝑜𝑣(𝑥, 𝑥)

𝜎𝑥𝜎�̂�
 

R2 𝑟2 

 𝑥: Model estimation 𝑥 ∶ Actual observation, �̅� : Mean of actual observation. Cov() : Covariance, 

𝜎 : Standard deviation. 

 

MAE and RMSE are the scale-dependent measures. The former measures the 

magnitude of the deviation from the true value with disregard to its direction. The 

latter uses the square root of MSE to measure the forecast error. This measure can be 

more sensitive than other measures because RMSE imposes more weights on the 

larger error. Assume various candidate models produce equal MAE, the relationship 

between them can be expressed as follows.  

MAE ≤  RMSE ≤ √𝑛𝑀𝐴𝐸 

Moreover, if all individual errors in a model have an equal magnitude, two 

measures are the same.. Furthermore, the upper bound of RMSE becomes √𝑛𝑀𝐴𝐸 
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in an extreme case where only the one of the error set has 𝑛𝑀𝐴𝐸 and the all of rest 

have zero. lthough RMSE is widely used in the literature, some misunderstanding or 

misinterpretation often had been found (Willmott and Matsuura, 2005).  

RMSE can be affected by three factors, which are the variability within the 

distribution of error, √𝑛, and MAE. Hence, Willmott and Matsuura (2005) suggested 

that it is more appropriate for MAE to be used for the performance measure.  

The correlation coefficient is an alternative which shows a forecast verification. 

This measures can be interpreted as the strength of the linear relationship between the 

actual values and the estimates (Barnston, 1992). 𝑅2  provides the model 

performance with the proportional variability. So far, it explained the types of the 

measures to be used in the regression problems.  

For the classification, the mechanism of the measure is more straightforward. The 

most widely used score is the hit ratio. This counts the number of accurately matching 

the observations and the forecasts. So it is intuitively understandable and conceptually 

interpretable for a clumsy reader.  
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Chapter 5   Research Results 

 

5.1   Valuation of T/C Extension Option 

5.1.1   Data and Frameworks 

Based on the backgrounds and the methodologies previously described, this 

chapter illustrates the detailed descriptions of the data and the blueprint of the model 

for two problems as mentioned before.  

Figure [13] depicts the design of modeling the problems to be solved.  

 

Figure 13 Flow chart of Pricing Options 
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The raw data used in this paper include four freight rates and US 90days treasury 

bond rate. The formers are downloaded from the Shipping Intelligence Network. 

Although the data having different periods as listed in Table[14] are taken, this fact 

does not impose a severe problem on this experiment because the primary purpose of 

the paper is to confirm the applicability of Machine Learning to the chartering 

practice. The first and last year of data is only used for producing the volatility of the 

freight rate and are then excluded from subsequent analysis. 

Table 14 Descriptions of Data 

Size Data Period Observation 

Capesize 172,000 dwt 2010-07-23 ~ 2016-11-18 331 

Panamax 72,000 dwt 2002-03-01 ~ 2016-08-26 757 

Supramax 52,000 dwt 2002-12-27 ~ 2016-04-01 693 

Handymax 45,000 dwt 2002-03-01 ~ 2013-06-28 592 

 

More precisely, each freight rate is classified into the time charter trip(tct), 3-

month time charter(3m), and 1-year time charter(1yr). Among them, 3m is artificially 

generated by linearly interpolating tct and 6-month time charter rate in order to treat 

as the underlying assets. The rest is obtained from US Federal Reserve Bank of St. 

Louis (https://fred.stlouisfed.org/series/TB3MS). The frequency of all data is on 

weekly period. Table [14] shows the descriptive analysis of the data.  

The statistic of the Jarque-Bera presents whether the distribution of the data 

satisfies the normality. The calculated statistic reveals that all of them are a non-

satisfactory condition of the normal distribution. Additionally, the typical test for the 

existence of the unit root in particular series of interest is the augmented Dickey-

Fuller (ADF) method that can analyze the stationarity. 

https://fred.stlouisfed.org/series/TB3MS
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Table 15 Descriptive Analysis of Freight Rates and the US 3 month T-bill 

Statistics Ctct C3m C1yr Ptct P3m P1yr Stct S3m S1yr Htct H3m H1yr rf 

Mean 12301.0 14243.1 15499.6 21234.6 22602.1 21762.5 20503.4 21214.4 20308.6 20058.0 20460.5 19203.0 0.012 

Median 8737.5 11187.5 13500.0 15250.0 16218.8 15250.0 15812.5 16093.8 15250.0 16375.0 16515.6 14750.0 0.003 

Maximum 45125.0 42312.5 36500.0 93193.5 93846.8 82000.0 73125.0 73312.5 70000.0 65250.0 67937.5 60000.0 0.050 

Minimum 1562.5 2668.8 4975.0 2350.0 3500.0 4750.0 2400.0 3075.0 4250.0 3437.5 4843.8 6750.0 0.000 

Std. Dev. 9735.8 8704.4 7023.1 18308.5 18632.6 17434.3 14576.1 14790.0 14237.7 13034.4 13338.0 12454.7 0.016 

Skewness 1.4 1.2 0.8 1.6 1.6 1.8 1.4 1.5 1.7 1.3 1.4 1.5 1.228 

Kurtosis 4.1 3.8 3.0 5.4 5.4 5.8 4.7 4.8 5.2 4.3 4.5 4.4 3.133 

Jarque-Bera5 
118.4 86.0 34.5 499.7 521.4 659.2 305.3 347.7 463.6 212.8 243.7 263.6 191.1 

0 0 0 0 0 0 0 0 0 0 0 0 0 

ADF 

test 

Level 
-4.69 -3.89 -2.07 -2.81 -2.98 -2.91 -2.86 -2.84 -2.71 -2.47 -2.24 -2.16 -1.92 

0.00 0.01 0.56 -0.19 -0.14 -0.16 0.18 0.18 0.23 0.34 0.47 0.51 -0.64 

1st Diff 
-10.5*** -12.9*** -5.7*** -12.5*** -11.5*** -9.1*** -13.9*** -14.3*** -11.7*** -13.3*** -13.7*** -14.8*** -4.2*** 

0 0 0 0 0 0 0 0 0 0 0 0 -0.004 

Observations 331 331 331 757 757 757 693 693 693 592 592 592 757 

 

                                         

5 
𝑛

6
[𝑆𝑘2 +

(𝐾𝑢−3)2

4
] ,where 𝑛 is the number of observations, 𝑆𝑘 is skewness, and 𝐾𝑢 is kurtosis. 
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Figure 14 Bulk Freight Rate
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Since the 1% critical value for the test statistic is -3.97, it then rejects the null 

hypothesis that the series is nonstationary in the logarithmic first difference. That is, 

the series does not have stationarity. 

Furthermore, Figure [14] and [15] provides the exploration of the data with the 

charts. 

 

Figure 15 US 3-month T-bill rate 

 

5.1.2   BSM Modeling 

For applying BSM to pricing the T/C option, there should be pre-assumptions 

that bound the mechanism of the T/C option pricing. Yun et al. (2017) supposed; 

that redelivery flexibility is ignored; that the time lag between the contract and the 

delivery of the vessel does not occur; that the prices between the option period and 

the firm period are equal; that the exercise of the option is only limited at maturity; 

and that when exercising, the payoff of the option is based on a 3-month T/C rate at 

maturity.  
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 The BSM needs five input variables such as spot price, strike price, time to 

maturity, risk-free rate, and spot return volatility to value the T/C option. The only 

unknown component is the volatility of the underlying asset. This paper uses the 

return of 3-month T/C rate for one year to yield the equally-weighted historical 

volatility as shown in Figure [16].  

The Table [16] shows the input variables of BSM.  

 

Table 16 Input Variables of BSM 

Variables Data 

S Underlying price of the underlying asset  3m-T/C rate 

X Strike price 1yr-T/C rate 

Rf Risk-free rate 90d T-bill 

𝜎 Volatility of return for S 1yr-SD of Spot rate 

T Maturity 1 year 
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Figure 16 Volatility of Return for the Underlying Asset(tct) 

②  Capesize ④  Panamax 

③  Supramax ①  Handymax 
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5.1.3   ANN Modeling 

Although the merit of the model is that the assumptions over the variables are not 

needed (Smith and Gupta, 2000; Zhang, 2003; Roh, 2007; Kristjanpoller and 

Minutolo, 2015), note that the results lack the economic background because of the 

learning process concealed under its ‘black box’ (Roh 2007). To circumvent the 

drawback of the ML techniques, the variables to be utilized are the same as the ones 

of BSM except for the time to maturity. Instead of the time to maturity, the spot rate 

is randomly added for capturing the market dynamics. 

Despite the fact that the learning methods have an exceptional prediction power, 

they are not without drawbacks. For ANN, since it needs enough data size to fit the 

model, the training algorithm is relatively sluggish, and during the process of learning, 

the “over-fitting” often arise. Therefore, fitting the model has to be carefully carried 

out. In particular, the crucial parameters to be determined are involved with how 

many inputs, hidden layers, and hidden nodes are needed. This point is strongly 

associated with the model selection. To achieve successfully tuning the parameters 

the n-fold cross-validation technique and the grid search tools are applied. In addition 

to this, as shown in the body of the literature, one hidden layer is theoretically 

sufficient for approximating the non-linear functions (Kaastra and Boyd, 1996; Zhang, 

Patuwo and Hu, 1998; Basheer and Hajmeer, 2000; Fadlalla and Lin, 2001; Atsalakis 

and Valavanis, 2009).  

For preprocessing, all the data at hand undergo the scaling called normalization, 

and they are randomly scattered with disregard to time sequence as it satisfies 

statistical assumption that the distribution of the return in any point of data is constant 

(Yun, Lim and Lee, 2017). This randomized distribution of data is depicted in Figure 

[17].
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Figure 17 Original and Randomized Series of Freight Rates 
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Subsequently, the data is split into the training set and the test set according to the 

ratio of 80:20. Then, through the 10-folds cross-validation technique in the training 

set, the best parameters can be found that the weight decay and the number of the 

hidden neurons are shown in Table [17] and Figure [18]. According to the reviewed 

literature (Kaastra and Boyd, 1996; Zhang, Patuwo and Hu, 1998; Basheer and 

Hajmeer, 2000; Fadlalla and Lin, 2001; Atsalakis and Valavanis, 2009), they revealed 

that one hidden layer is enough for most problems.  

 

Table 17 Optimal Parameters of ANN 

Size No. of Hidden nodes Decay 

Capesize 18 0.01 

Panamax 14 0.01 

Supramax 17 0.01 

Handymax 13 0.01 
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①  Capesize ②  Panamax 

③  Supramax 
④  Handymax 

Figure 18 Optimal Parameters of ANN 
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5.1.4   SVR Modeling 

For SVR, the usage of the kernel functions makes SVR a more powerful model 

than others. Furthermore, as mentioned before, the model pursues the structural risk 

principle different from others and many researchers pointed out that the advantages 

of SVR are the global optimality. However, the excellent performance of this model 

is highly dependent on choosing the cost and sigma parameters and the kernel 

function.  

In order to discover the best fitting parameters, the cost, C, and sigma proved to 

be depicted in Table [18] and Figure [19] individually by using cross-validation. The 

kernel function to be used is the radial basis kernel (called Gaussian Kernel) that is 

mostly picked up in the literature. 

 

Table 18 Optimal Parameters of SVR 

Size Sigma C 

Capesize 1 10 

Panamax 1 20 

Supramax 1 100 

Handymax 1 50 
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②  Panamax ①  Capesize 
 

③  Supramax ④  Handymax 

Figure 19 Optimal Parameters of SVR 
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5.1.5   RF Modeling 

The RF model is the derivative of the decision tree, especially of the 

classification and the regression tree (CART). The main issue of the tree-based 

model is how to treat the overfitting problem as dissolved. It uses the stopping rule 

or the pruning for preventing overly fitted model to the in-sample data. Fortunately, 

Breiman (2001) devised the RF model with the similar mechanism of the bagging 

technique. The distinction between the RF and the bagging is that the bootstrapped 

trees generated in the learning process are de-correlated from each other as it 

randomly picks m predictors instead of the full number of p predictors. Typically, 

the parameter m is approximated to √𝑝.  

The appropriate number of m and trees are presented in Table [19] and Figure 

[20] respectively. The RF model can identify the essential variables that improve 

prediction accuracy. However, since the variable importance are not needed in this 

paper, this information is not given.  

 

Table 19 Optimal Parameters of RF 

 Size m No. of trees 

Capesize 5 500 

Panamax 4 500 

Supramax 3 500 

Handymax 4 500 
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②  Panamax ①  Capesize 

③  Supramax ④  Handymax 

Figure 20 Optimal m of RF 
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5.1.6   Results and Discussion 

Given the parameters tuned, each model is applied to the test sample respectively. 

The outcomes of the experiments are depicted in Figure [21] to Figure [24]. As 

illustrated in these figures, it is confirmed that the ML models far outweigh the 

conventional model. The following table [20] and [21] summarize the results based 

on the performance measures.  

 

Table 20 Summary of Option pricing(Left:Capesize, Right:Panamax) 

 

Table 21 Summary of Option pricing(Left:Supramax, Right:Handymax) 

 

On the basis of all criteria, the candidate models achieve the fair predictions rather 

than the benchmark model. In particular, SVM and RF as the newly introduced 

models in this paper appear to be promising. The best model in terms of the resultant 

performances is in the order of RF, SVM, ANN, and BSM.  

Measures BSM ANN SVM RF  Measures BSM ANN SVM RF 

MAE 4958.2 222.4 142.6 145.2  MAE 2247.8 379.9 228.6 178.3 

RMSE 6356.3 495.3 385.0 342.3  RMSE 2967.8 780.9 510.8 409.2 

COR -0.107 0.810 0.900 0.923  COR -0.068 0.957 0.982 0.989 

R2 0.011 0.657 0.810 0.853  R2 0.005 0.916 0.964 0.977 

Measures BSM ANN SVM RF  Measures BSM ANN SVM RF 

MAE 3091.1 277.3 130.1 108.7  MAE 3255.7 483.9 198.9 143.6 

RMSE 4027.3 637.9 268.1 276.2  RMSE 3977.0 775.2 295.8 235.0 

COR 0.05 0.96 0.99 0.99  COR -0.26 0.94 0.99 1.00 

R2 0.002 0.920 0.986 0.985  R2 0.066 0.888 0.986 0.991 
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Figure 21 Comparison of T/C option prices: Capesize 
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Figure 22 Comparison of T/C option prices: Panamax 
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Figure 23 Comparison of T/C option prices: Supramax 
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Figure 24 Comparison of T/C option prices: Handymax 
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5.2   Decision for Chartering-out Strategies 

5.2.1   Data and Frameworks 

This chapter deals with solving how long the contract in chartering is chosen. 

Since the type of this problem is the classification, the logistic regression is treated as 

the benchmark model, and the candidate models are used in the classifier model. 

Figure [25] exhibits the overall setting of the experiment.   

 

 

Figure 25 Flow Chart of Classified Chartering-out Decision 
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The data used are spot rate(tct), 6-month time charter(6m), 1-year time 

charter(1yr), earnings(earning), and newbuilding price(nb) in Capesize, Panamax, 

and Supramax sector respectively. All of them are downloaded from the Shipping 

Intelligence Network. The period of the data is revealed in Table [22]. The reason 

why Handymax is excluded is the availability of the data. However, the data for the 

first 11 weeks and the last year are excluded because the former period is calculated 

for the moving average and the latter period for the profit of the spot play.  

 

Table 22 Descriptions of Data 

Size Data Period Hire rate Observation 

Capesize 2009-07-17 ~ 2016-10-21 $17,000/day 380 

Panamax 2002-03-01 ~ 2016-08-26 $12,000/day 757 

Supramax 2002-12-27 ~ 2016-04-01 $10,000/day 693 

 

In addition to the freight rates, further variables are derived from the technical 

analysis and the fundamental analysis. From the point of view of technical analysis, 

investigating the past price behaviors itself has been known for helping to forecast 

the future dynamics of its prices. From another point of view, analyzing the public 

information about the financial data of individual firms can be conducive to 

forecasting the prices. The first point has usually been utilized for testing the weak-

form of the efficient market and the second one for verifying the semi-strong form of 

it. Table [23] shows the indicators that this paper adopts.  
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Table 23 Additional Variables from Technical and Fundamental Analysis 

Type Description 

Technical 

Analysis 

(Alizadeh 

and 

Nomikos, 

2009) 

 

Term ratio 
𝐹𝑅𝑡𝑐𝑡
𝐹𝑅1𝑦𝑟

 
This ratio reveals the relativeness 

between two prices. 

Size  

Difference 

2𝐹𝑅1𝑦𝑟
𝑝𝑚𝑥

− 𝐹𝑅1𝑦𝑟
𝑐𝑎𝑝𝑒

 

3𝐹𝑅1𝑦𝑟
𝑠𝑚𝑥 − 𝐹𝑅1𝑦𝑟

𝑐𝑎𝑝𝑒
 

This is a kind of ‘spread trading’. It 

is the difference between twice of 

Panamax and one Cape and the 

difference between triple Supramax 

and one Cape.  

MA ratio 
4𝑀𝐴

12𝑀𝐴
 

The moving average is most 

commonly used in the market and 

academia. It is the ratio between 

fast and slow moving averages.   

Fundamental 
analysis 

P/E ratio ln (
𝐹𝑅1𝑦𝑟

𝐹𝑅𝑒𝑎𝑟𝑛
) 

The price-earnings ratio as the 

valuable indicator can be used to 

identify the proper timing of 

investment or divestment. 
(Campbell and Shiller, 1987, 1998, 

Alizadeh and Nomikos, 2006, 

2007) 

 

The ML models used in this study are kind of supervised learning where the target 

values are previously known in training phase. There are three kinds of decisions, 

which are the spot, 6-month, and 1-year charter-out contracts, and these desired 

decisions can be estimated through the real operations of each charter-out decision at 

the specific point of time on the basis of the charter-in rate as shown in Table [22]. 

The fact that the voyage charter rate is equal to the time-charter equivalent of spot 

rate (TCE) should be assumed for this experiment. Furthermore, it notes that the 

assumption of random hire rate does not affect the profit and loss of the real operation. 

Figure [27] provides how many the number of the target decision are. The ‘A’ type 

decision denotes spot-play, ‘B’ 6-month, and ‘C’ 1-year.  
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Figure 26 No. of Desired Chartering-out Decisions 

 

In a similar way to preprocess the data in the previous problem, all the data is 

normalized and randomly scattered with disregard to time sequence because it 

satisfies statistical assumption that the distribution of the return in any point of data 

is constant (Yun, Lim and Lee, 2017). The modified data is charted in Figure [27] The 

samples are split into the training set and the test set according to the ratio of 80:20.
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Figure 27 Original and Randomized Series of Freight Rates
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5.2.2   MLR Modeling 

The conventional MLR does not need to tune the parameters. Therefore, the 

preprocessing phase is excluded.  

 

5.2.3   ANN Modeling 

In order to find the optimal parameters such as the weight decay and the number 

of hidden nodes, the 10-folds cross-validation and the grid search are carried out. The 

weight decay and the number of the hidden nodes are presented in Table [24] and 

Figure [28].  

 

Table 24 Optimal Parameters of ANN 

Size No. of Hidden node Decay 

Capesize 24 0.01 

Panamax 21 0.01 

Supramax 26 0.01 

 

The number of the hidden layer is also important from the overfitting point of view. 

Since as reported in previous literature, the one hidden layer is sufficient for learning, 

the one hidden layer is the setting in this experiment.  



92 

 

①  Capesize ②  Panamax ③  Supramax 

Figure 28 Optimal Parameters of ANN 
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5.2.4   SVM Modeling 

Similar to the regression case, the best parameters can be obtained through 10-

folds cross-validation and the grid search. The value of the sigma in the Gaussian 

kernel function is 1 and the cost, C, is in Table [25].  

Table 25 Optimal Parameters of SVM 

Size Sigma C 

Capesize 1 8 

Panamax 1 10 

Supramax 1 2 

The results of the parameter tuning are depicted in Figure[29] as well.  

 

5.2.5   RF Modeling 

The Table [26] and Figure [30] present that how many the optimal number is out 

of 9 predictors. Furthermore, the number of the constructed trees is confirmed in 

Table [26]. These parameters have undergone 10-folds cross-validation in order for 

tuning.  

Table 26 Optimal Parameters of RF 

Size m No. of trees 

Capesize 5 500 

Panamax 8 500 

Supramax 6 600 

 

5.2.6   Results and Discussion 

Table [27] to [29] show the results of the models respectively. 
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②  Panamax ①  Capesize ③  Supramax 

Figure 29 Optimal Parameters of SVM 
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Panamax ①  Capesize Supramax 

Figure 30 Optimal m of RF 
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Table 27 Test Results of Capesize 

 

Table 28 Test Results of Panamax 

 

Table 29 Test Results of Supramax 

 

 

MLR ANN SVM RF MLR ANN SVM RF MLR ANN SVM RF

4 9 11 11 5 4 3 2 6 2 1 2

0.05 0.12 0.15 0.15 0.07 0.05 0.04 0.03 0.08 0.03 0.01 0.03

1 2 2 2 16 26 26 25 15 4 4 5

0.01 0.03 0.03 0.03 0.21 0.34 0.34 0.33 0.20 0.05 0.05 0.07

0 0 0 0 6 4 4 3 23 25 25 26

0.00 0.00 0.00 0.00 0.08 0.05 0.05 0.04 0.30 0.33 0.33 0.34

5 11 13 13 27 34 33 30 44 31 30 33 76

Row

TTL

29

15

32

Column TTL

A(tct) B(6m) C(1yr)Capesize

Predicted default

Actual

default

A

(tct)

B

(6m)

C

(1yr)

MLR ANN SVM RF MLR ANN SVM RF MLR ANN SVM RF

38 37 40 39 3 4 4 5 3 3 0 0

0.24 0.23 0.25 0.24 0.02 0.03 0.03 0.03 0.02 0.02 0.00 0.00

16 10 7 5 30 39 41 49 14 11 12 6

0.10 0.06 0.04 0.03 0.19 0.24 0.26 0.30 0.09 0.07 0.08 0.04

14 4 5 2 11 9 9 5 32 44 43 50

0.09 0.03 0.03 0.01 0.07 0.06 0.06 0.03 0.20 0.27 0.27 0.31

68 51 52 46 44 52 54 59 49 58 55 56 161

Row

TTL

Column TTL

C

(1yr)
57

Actual

default

A

(tct)
44

B

(6m)
60

Panamax

Predicted default

A(tct) B(6m) C(1yr)

MLR ANN SVM RF MLR ANN SVM RF MLR ANN SVM RF

13 13 11 13 0 0 1 0 0 0 1 0

0.18 0.18 0.15 0.18 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

1 0 0 1 21 33 34 32 14 3 2 3

0.01 0.00 0.00 0.01 0.29 0.45 0.47 0.44 0.19 0.04 0.03 0.04

0 0 0 0 2 1 1 1 22 23 23 23

0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.01 0.30 0.32 0.32 0.32

14 13 11 14 23 34 36 33 36 26 26 26 73Column TTL

Row

TTL

C

(1yr)
24

Actual

default

A

(tct)
13

B

(6m)
36

Supramax

Predicted default

A(tct) B(6m) C(1yr)
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The final results are summed up in Table [31]. As shown in the table, the 

performance of the RF is slightly preferred to the ANN. If considering the complexity 

of the calculation of ANN, the RF model is more competitive. 

 

Table 30 Summary of Chartering-out Decisions 

   

Size MLR ANN SVM RF 

Capesize 0.5657 0.7894 0.8153 0.8157 

Panamax 0.6211 0.7453 0.7701 0.8571 

Supramax 0.7671 0.9452 0.9312 0.9315 
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Chapter 6   Conclusion 

 

This paper proposes the prominent models to support the decision in chartering 

practice based on the forecasting accuracy. The problems defined in the previous 

chapter are the valuation of the T/C options and the decision to choose the period of 

charter-out. They can be closely linked to the regression-related problem and the 

classification-related problem. This point precisely matches to the applicability of the 

ML disciplines.  

First, the commonly used instruments to attract the charterers is the T/C options 

in time charter contracts. Although options have the considerable economic values, 

two parties have been using them without evaluating. The BSM eminent in the 

financial market is considered as the benchmark model and three ML models as the 

candidates. It is worth noting that the key of modeling the ML techniques is how well 

the parameters in them are tuned to prevent “overfitting.” The cross-validation 

technique and the grid search algorithm are simultaneously adapted to tune them. The 

results from the fitted models greatly surpass the benchmark one. The relatively 

recently developed model, RF closely approximates the real value of the T/C option. 

Considering the time consumption, the model complexity, and easily interpretable 

results, the RF is more competitive than others.  

Second, the chartering desks often face whether they sell a part of the period of 

the secured carrying capacities or a whole set. The service life of the charter-in vessel 

is usually determined as one year. Using the obtained vessels, the person in charge of 

the chartering decision has to determine to make them exposed to the spot, 6-month 

time charter, or 1-year time charter. The target selections of chartering decision are 
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discovered on the basis of the real profits or losses made by the real operation of the 

vessel. The multinomial logistic regression as the statistical model is treated as the 

benchmark model and the rests as candidates. In similar ways above, the parameters 

in the models have to be determined well in order to resolve the “overfitting.” 

Consequently, the RF model stands out well against ANN and SVM except for 

Supramax where the forecast accuracy of ANN is relatively higher than SVM and RF 

despite the results from much literature have told the SVM and RF are superior to the 

ANN. Likewise, the application of the ML methods is carefully carried out as the 

performance of them highly depends on the type of data to be used, and the structure 

of the models. In that sense, it is noted that the experience and the background 

knowledge of the researchers are quite important in applying the models to the 

problems. Oddly, it is ironic that the deeper the technology evolves, the more the 

researcher’s ability will be important. This might be that the machine models had 

been originated from the learning process of the human brain.  

So far, this paper explores the applicability of the ML methodologies in chartering 

practice. The implication of the outstanding results of them is significant in the 

shipping industry. The questions relating to these problems are so pervasive in the 

maritime sector that can be solved by applying these models. In this sense, this paper 

will significantly contribute to triggering the post studies in the pricing of charter and 

decision-making of maritime business. However, if oneis not a guru in the shipping 

industry or does not understand the ML methods, it is quite chanllenging to find the 

practical problems to be dealt with. Consequently, the collaboration of experts in the 

fields and academia is crucial. 
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