

공학석사 학위논문

회전형 역진자 시스템의 극점배치 제어기와 2차 최적제어기 비교 연구

Comparison of Pole-Placement controller and LQR for the rotary inverted pendulum

2017년 2월

한국해양대학교 대학원

기관시스템공학과

심 명 보

본 논문을 심명보의 공학석사 학위논문으로 인준함

- 위원장 공학박사 김성환 인
- 위 원 공학박사 소명옥 인
- 위 원 공학박사 정병건 인

2016년 12월 27일

1945

한국해양대학교 대학원

목 차

Abstract iii
Nomenclature iv
제 1 장 서 론
1.1 연구 배경1
1.2 연구 내용 및 구성
제 2 장 시스템 모델링
2.1 역진자 시스템의 비선형 모델
2.2 역진자 시스템의 선형 모델
2.3 역진자 시스템의 상태 및 출력 방정식11
2.4 질량 추가시 역진자 시스템의 상태 및 출력 방정식
제 3 장 상태공간에서의 제어시스템 설계
3.1 극점배치16
3.1.1 극점배치에 의한 설계
3.1.2 극점배치를 위한 조건 17 17 17 17 17 17 17 17 17 17 17 17 17
3.1.3 폐루프극점의 위치 선정 18
3.1.4 국섬배지에 의한 설계 ···································
3.2 2자 최직세어 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5.2.1 2자 회식도 8기군세 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
제 4 장 제어기 설계
4 1 극적배치 제어기 석계 ···································
4.2. 극적배치 제어기 실험 ···································
4.2.1 공칭 모델에 대한 극젂배치 제어기의 응답특성
4.2.2 진자 말단부 질량 증가 시 극점배치 제어기의 응답특성
4.3 2차 최적제어기 설계

	4.4 2	2차	최적	제어기	실험	•••••		•••••	•••••		••••••	49
	4.2	2.1	공칭	모델에	대한	2차	최적제이	기의	응답특성	•••••	••••••	49
	4.2	2.2	진자	말단부	질량	증가	시 2차	최적	제어기의	응답특성	•••••	53
제	5 る	} ;	결론	•••••	•••••	•••••	•••••	•••••	•••••			58
차	고프	치										50

Comparison of Pole-Placement and LQR controller for the rotary inverted pendulum

Myeong-bo Sim

Department of Marine System Engineering Graduate School of Korea Maritime and Ocean University

Abstract

The inverted pendulum systems is difficult to control due to the inherent instability and nonlinear behavior. Some of the pendulum parameters may not be known exactly in practice, which influences significantly the system dynamics.

This study investigates the design and analysis of two controllers used to stabilize the rotary inverted pendulum. Firstly, state feedback controller is designed using Pole-Placement. Secondly, Quadratic Optimal Regulator is designed to determine the desired closed-loop poles such that it balances between the acceptable response and the amount of control energy required.

The outlines of this study are to :

(i) develop mathematical model of the inverted pendulum by using Euler-Lagrange. (ii) introduce theory of Pole-Placement controller and Quadratic Optimal Regulator. (iii) design Pole-Placement controller and Quadratic Optimal Regulator. (iv) validate effectiveness of both controllers with experiment. (v) compare responses of both controllers.

Nomenclature

A^{*}	: Complex conjugate transpose of system matrix
B_p	: Pendulum viscous damping coefficient at the pivot axis
B_r	: Rotary arm viscous damping coefficient at the pivot axis
B^{*}	: Complex conjugate transpose of input matrix
CCW	: Counterclockwise
d	: Disturbance
E_{ka}	: Kinetic energy of the arm
E_{kp}	: Kinetic energy of the pendulum
E_{pot}	: Potential energy of the pendulum
G	: Transfer function matrix of nominal model
Н	: Positive semidefinite hermitian matrix
I_m	: Current for stator
J	: Performance index
J_p	: Moment of inertia of the arm
J_r	: Moment of inertia of the pendulum
K	: Controller
\overline{K}^{*}	: Complex conjugate transpose of controller matrix
k_g	: Total gear ratio
k_m	: Motor back-electromotive force constant
k_t	: Motor current-torque constant
L	: Lagrangian of the rotary inverted pendulum

L_p	: Total length of the pendulum
L_r	: Rotary arm length from pivot to tip
L_m	: Inductance for stator
М	: Controllability matrix
m_p	: Mass of the pendulum
N	: Transformation matrix
n	: Noise
Р	: Positive definite matrix for Reccati equation
Q	: Positive semi-definite hermitian matrix
R	: Positive definite hermitian matrix
R_m	: Resistance of stator
u	: Control input vector
u^{*}	: Ttranspose vector of control input
V_m	: Input voltage fo the control motor
$x_{1,} x_{2,} x_{3,} x_{4}$: State variables
\hat{x}	: State variables
x_G	: x - coordinate of the pendulum center of gravity
x^{*}	: Complex conjugate transpose of state vector
$y_{1,} y_{2}$: Output variables
y_G	: y - coordinate of the pendulum center of gravity
z_G	: z - coordinate of the pendulum center of gravity
α	: Pendulum angle
$\dot{\alpha}$: Pendulum angle velocity

– v –

- θ : Arm angle
- $\dot{\theta}$: Arm angle velocity
- au : Torque from the control motor to the arm

제1장서 론

1.1 연구 배경

어떤 제어 대상에 대한 제어시스템을 설계한다고 하면, 첫 단계는 물리 법칙을 이용하여 제어 대상의 수학적 모델을 구하는 것이다. 수학적 모델 은 일반적으로 비선형 방정식으로 표현되는 데, 제어시스템을 설계하기 위해서 수학적 모델을 동작점 부근에서 선형화해야 한다. 하지만 실제로 선형화되지 않은 동역학이나 매개변수의 변화 등과 같은 모델의 불확실성 그리고 외란의 영향이 존재하기 때문에, 만족스러운 성능을 유지하는 것 은 어려운 일이다.

실제 시스템을 선형화한 모델을 구했다면, 그 모델에 대하여 가능하면 낮은 차수의 제어기를 설계하여야 한다. 이때 제어기는 정상상태 오차, 과도 응답, 안정성 여유 또는 폐루프 극점 위치에 대한 요구 사항을 만족 하도록 설계한다. 하지만 상기의 요구 사항을 만족하는 제어 기법의 적용 은 대개 단일입력-단일출력(SISO:Single Input-Single Output) 시스템으로 제한되어 있다. 설혹 다중입력-다중출력(MIMO:Multiple input-Multiple Output) 시스템에 적용이 성공하였다고 할지라도, 계산이 복잡하여 요구 조건을 직접 다루기 어렵거나 만족스러운 성능을 얻기가 어렵다.

회전형 역진자는 고차, 불안정, 다변수, 비선형 시스템이며, 외란이 발 생하면 자체적으로 안정화되지 못하는 특성이 있다. 이러한 역진자 시스 템의 안정화는 초기 조건이나 외란에 대하여 역진자를 직립으로 유지시키 는 것으로서 전형적인 비선형 제어 문제로 연구되어 오고 있다[1],[2].

1.2 연구 내용 및 구성

본 연구에서는 불안정한 회전형 역진자 시스템의 진자를 제어하기 위한 극점배치 기법과 2차 최적제어 기법을 이용한 제어기를 설계한다. 공칭

- 1 -

모델뿐만 아니라 질량이 추가된 상태에서도 강인 성능을 유지할 수 있는 제어기 설계를 목표로 한다.

이를 위하여 제2장에서는 라그랑주 방정식을 이용하여 역진자 시스템의 비선형 운동방정식을 도출하고, 선형화하여 상태공간으로 표현한다. 제3 장에서는 극점배치 이론과 2차 최적제어 이론에 대해 설명한다. 제4장에 서는 회전형 역진자 시스템을 제어하기 위해 극점배치 기법을 이용한 제 어기 및 2차 최적제어기를 설계하고, 실험을 통하여 그 유효성을 확인한 다. 마지막으로 제5장에서는 본 논문의 결론을 제시한다.

제 2 장 시스템 모델링

2.1 역진자 시스템의 비선형 모델

본 연구의 대상인 회전형 역진자 시스템은 Figure 2.1과 같이 진자와 암 그리고 암을 구동하는 모터로 구성되며, 암의 회전만으로써 거꾸로 세 워진 막대를 넘어지지 않게 제어하는 것을 목적으로 한다. 역진자는 본질 적으로 불안정하며, 비최소위상 시스템이다. 이러한 시스템의 제어기를 설계하기 위해서는 동작점 부근에서의 선형 모델을 필요로 한다. 따라서

Figure 2.1 Rotary inverted pendulum

본 절에서는 구동부를 포함한 역진자 시스템에 라그랑주 동역학을 적용하 여 비선형 모델을 구하고 이로부터 동작점 부근에서의 선형모델을 구한다 [3],[4].

Figure 2.2 Rotary inverted pendulum conventions

(b) Looking the pendulum from z axis

Figure 2.3 Coordinates of the inverted pendulum system

Figure 2.3은 제어 대상으로 하는 역진자 시스템의 동역학적 직교 좌표 계를 단순화하여 표현한 것이다. 진자의 평형점은 진자가 역으로 세워진 상태이며, 이때의 각도 α는 0° 이다. Figure 2.3 (a)에서 각도 α는 반시계 방향을 양의 각도로 한다. Figure 2.3 (b)에서 각도 θ는 암의 각도를 나타 내며 반시계 방향을 양의 각도로 한다.

또한 진자의 질량을 m_p , 진자의 길이를 L_p , 질량중심에 대한 진자의 관성 모멘트를 J_p , 진자의 감쇠 계수를 B_p , 암의 길이를 L_r , 질량중심에 대한 암의 관성 모멘트를 J_r , 암의 감쇠 계수를 B_r 로 나타낸다.

역진자 시스템의 수학적 모델을 유도하기 위해 역진자의 무게중심 좌표 (x_G, y_G, z_G) 를 구하면 다음과 같다.

$$\begin{bmatrix} x_G \\ y_G \\ z_G \end{bmatrix} = \begin{bmatrix} L_r \cos\theta + \frac{1}{2} L_p \sin\alpha \sin\theta \\ L_r \sin\theta - \frac{1}{2} L_p \sin\alpha \cos\theta \\ \frac{1}{2} L_p \cos\alpha \end{bmatrix}$$
(2.1)

무게중심의 속도 v_G 를 좌표축 별로 구하면 다음과 같다.

$$\begin{bmatrix} \dot{x}_{G} \\ \dot{y}_{G} \\ \dot{z}_{G} \end{bmatrix} = \begin{bmatrix} -L_{r} (\sin\theta)\dot{\theta} + \frac{1}{2}L_{p}(\cos\alpha)(\sin\theta)\dot{\alpha} + \frac{1}{2}L_{p}(\sin\alpha)(\cos\theta)\dot{\theta} \\ L_{r} (\cos\theta)\dot{\theta} - \frac{1}{2}L_{p}(\cos\alpha)(\cos\theta)\dot{\alpha} + \frac{1}{2}L_{p}(\sin\alpha)(\sin\theta)\dot{\theta} \\ -\frac{1}{2}L_{p}(\sin\alpha)\dot{\alpha} \end{bmatrix}$$
(2.2)

진자의 위치 에너지는 E_{pot} 를, 병진 운동과 회전 운동을 고려한 진자의 운동에너지를 E_{kp} 로, 암의 회전 운동 에너지를 E_{ka} 로 표현하여 정리하면 다음과 같다.

$$E_{pot} = m_p g \, \frac{L_p}{2} \cos\alpha \tag{2.3}$$

$$E_{kp} = \frac{1}{2} m_p v_G^2 + \frac{1}{2} J_p \dot{\alpha}^2$$
(2.4)

$$E_{ka} = \frac{1}{2} J_r \dot{\theta}^2 \tag{2.5}$$

역진자 시스템의 라그랑지안 L은 역진자 시스템 전체의 운동에너지로 부터 진자의 위치에너지를 뺀 것과 같으므로, 다음과 같은 식을 유도할 수 있다.

$$\begin{split} L &= E_{kp} + E_{ka} - E_{pot} \\ &= \frac{1}{2} m_p v_G^2 + \frac{1}{2} J_p \dot{\alpha}^2 + \frac{1}{2} J_r \dot{\theta}^2 - m_p g \frac{L_p}{2} \cos\alpha \\ &= \frac{1}{2} (m_p L_r^2 + \frac{1}{4} m_p L_p^2 \sin^2\alpha + J_r) \dot{\theta}^2 + \frac{1}{2} (\frac{1}{4} m_p L_p^2 + J_p) \dot{\alpha}^2 \\ &- \frac{1}{2} m_p L_r L_p (\cos\alpha \dot{\theta}) \dot{\alpha} - m_p g \frac{L_p}{2} \cos\alpha \end{split}$$
(2.6)

θ와 α에 대한 라그랑지안 방정식은 다음과 같은 관계가 성립한다.

$$\frac{d}{dt}\left(\frac{\delta L}{\delta \dot{\theta}}\right) - \frac{\delta L}{\delta \theta}$$

$$= \left(J_r + m_p L_r^2 + \frac{1}{4} m_p L_p^2 \sin^2 \alpha\right) \ddot{\theta} + \frac{1}{2} m_p L_p^2 (\sin \alpha) (\cos \alpha) \dot{\alpha} \dot{\theta} \\
+ \frac{1}{2} m_p L_r L_p (\sin \alpha) \dot{\alpha}^2 - \frac{1}{2} m_p L_r L_p (\cos \alpha) \ddot{\alpha} \\
= \tau - B_r \dot{\theta}$$
(2.7)

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\alpha}} \right) - \frac{\delta L}{\delta \alpha}$$

$$= -\frac{1}{2} m_p L_p (\cos \alpha) \ddot{\theta} + (J_p + \frac{1}{4} m_p L_p^2) \ddot{\alpha}
- \frac{1}{4} m_p L_p^2 (\sin \alpha) (\cos \alpha) \dot{\theta}^2 - \frac{1}{2} m_p L_p g \sin \alpha
= -B_p \dot{\theta}$$
(2.8)

식 (2.7)에서 *τ*는 구동 모터에서 역진자 시스템의 암으로 전달되는 토 크이다.

다음으로는 암에 토크를 가하는 구동모터 계통의 수학적 모델을 구하도 록 한다. 모터의 제어 입력 전압을 V_m , 전기자 권선의 저항을 R_m , 인덕 턴스를 L_m 이라 하면 등가회로는 Figure 2.4와 같고 전압 방정식은 다음 과 같다.

Figure 2.4 Motor system for rotary inverted pendulum system

$$V_m = R_m I_m + k_g k_m \dot{\theta} + L_m \dot{I}_m$$
(2.9)

여기서 전기자 권선의 인덕턴스는 극히 작으므로 무시하면 다음과 같다.

$$V_m = R_m I_m + k_g k_m \dot{\theta} \tag{2.10}$$

$$I_{m} = \frac{1}{R_{m}} (V_{m} - k_{g} k_{m} \dot{\theta})$$
(2.11)

모터의 발생 토크는 전류 I_m 에 비례하며 토크변환비율 k_t 와 관계된다. 또한 감속기어를 거치면서 k_g 비율만큼 회전속도가 변화하므로 다음과 같 이 정리된다.

$$\tau = k_g k_t I_m = k_g k_t \left(\frac{V_m - k_g k_m \dot{\theta}}{R_m}\right)$$
(2.12)

2.2 역진자 시스템의 선형 모델

Collection @ kmou

역진자 시스템의 진자를 상향 수직으로 세웠을 때를 평형점으로 간주하 고, 평형점 근방에서 진자가 미소각도 변화한다고 하면, α≈0, α≈0, θ≈0으로 가정하여 sinα≈α, cosα≈1, αα≈0으로 간주할 수 있다[5]. 식 (2.7), (2.8)은 각각 다음과 같이 선형화된다.

$$(J_r + m_p L_r^2) \ddot{\theta} - \frac{1}{2} m_p L_r L_p \ddot{\alpha} = \tau - B_r \dot{\theta}$$
(2.13)

$$-\frac{1}{2}m_{p}L_{r}L_{p}\ddot{\theta} + (J_{p} + \frac{1}{4}m_{p}L_{p}^{2})\ddot{\alpha} - \frac{1}{2}m_{p}L_{p}g\alpha = -B_{p}\dot{\alpha}$$
(2.14)

식 (2.13), (2.14)을 행렬 형태로 정리하면 다음과 같다.

$$\begin{bmatrix} J_r + m_p L_r^2 & -\frac{1}{2} m_p L_r L_p \\ -\frac{1}{2} m_p L_r L_p & J_p + \frac{1}{4} m_p L_p^2 \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\alpha} \end{bmatrix} = \begin{bmatrix} \tau - B_r \dot{\theta} \\ \frac{1}{2} m_p L_p g \alpha - B_p \dot{\alpha} \end{bmatrix}$$
(2.15)

$$\begin{bmatrix} J_r + m_p L_r^2 & -\frac{1}{2} m_p L_r L_p \\ -\frac{1}{2} m_p L_r L_p & J_p + \frac{1}{4} m_p L_p^2 \end{bmatrix}^{-1} = \frac{1}{J_T} \begin{bmatrix} J_p + \frac{1}{4} m_p L_p^2 & \frac{1}{2} m_p L_r L_p \\ \frac{1}{2} m_p L_r L_p & J_r + m_p L_r^2 \end{bmatrix}$$
(2.16)

여기서,

Collection @ kmou

$$J_T = (J_r + m_p L_r^2) (J_p + \frac{1}{4} m_p L_p^2) - (\frac{1}{2} m_p L_r L_p)^2$$
(2.17)

이제 식 (2.15)로부터 다음 식을 구할 수 있다.

$$\begin{bmatrix} \ddot{\theta} \\ \ddot{\alpha} \end{bmatrix} = \frac{1}{J_T} \begin{bmatrix} J_p + \frac{1}{4} m_p L_p^2 & \frac{1}{2} m_p L_r L_p \\ \frac{1}{2} m_p L_r L_p & J_r + m_p L_r^2 \end{bmatrix} \begin{bmatrix} \tau - B_r \dot{\theta} \\ \frac{1}{2} m_p L_p g \alpha - B_p \dot{\alpha} \end{bmatrix}$$
(2.18)

이를 전개하여 θ와 α̈에 대하여 정리하면 다음과 같다.

$$\ddot{\theta} = \frac{1}{J_T} \left\{ \frac{1}{4} m_p^2 L_r L_p^2 g \alpha - (J_P + \frac{1}{4} m_p L_p^2) B_r \dot{\theta} - \frac{1}{2} m_p L_r L_p B_p \dot{\alpha} + (J_p + \frac{1}{4} m_p L_p^2) \tau \right\}$$
(2.19)

$$\ddot{\alpha} = \frac{1}{J_T} \left\{ \frac{1}{2} m_p L_p g \left(J_r + m_p L_r^2 \right) \alpha - \frac{1}{4} m_p L_r L_p B_r \dot{\theta} - (J_r + m_p L_r^2) B_p \dot{\alpha} + \frac{1}{2} m_p L_r L_p \tau \right\}$$
(2.20)

- 10 -

2.3 역진자 시스템의 상태 및 출력 방정식

역진자 시스템의 상태 x와 출력 y를 다음과 같이 정의한다.

$$x = \begin{bmatrix} \theta & \alpha & \dot{\theta} & \dot{\alpha} \end{bmatrix}^T \tag{2.21}$$

 $y = [\theta \alpha]^T = [x_1 x_2]^T$ (2.22)

역진자 시스템의 암과 진자의 각도를 출력신호로 계측한다. 지금까지의 내용을 선형 상태방정식의 형식으로 표현하면 다음과 같다.

$$\dot{x} = Ax + Bu$$
(2.23)
 $y = Cx + Du$
 $\theta = x_1, \ \alpha = x_2, \ \dot{\theta} = x_3, \ \dot{\alpha} = x_4$ 이라 하면, 식 (2.19)와 (2.20)으로부터 다
음을 유도할 수 있다.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & M_g M_{rp} / 4J_T & -\overline{J_p} B_r / J_T & M_{rp} B_p / 2J_T \\ 0 & \overline{J_r} M_g / 2J_T & -M_{rp} B_r / 2J_T & -\overline{J_r} B_p / J_T \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \overline{J_p} / J_T \\ M_{rp} / 2J_T \end{bmatrix} u$$
(2.24)

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$
 (2.25)

여기서,

$$M_g = m_p L_p g, \ M_{rp} = m_p L_r L_p$$
 (2.26)

$$\overline{J}_{p} = J_{p} + \frac{1}{4}m_{p}L_{p}^{2}, \ \overline{J}_{r} = J_{r} + m_{p}L_{r}^{2}$$
(2.27)

식 (2.24)의 제어입력 u에 식 (2.12)의 τ를 대입하게 되면 구동모터에 가해지는 입력전압 V_m과 역진자 시스템의 상태 및 출력 방정식을 얻게 된다. 본 진자 시스템과 관련된 사양은 Table 2.1과 같다.

최종적으로 시스템행렬 A, 입력행렬 B, 출력행렬 C, 전송행렬 D는 다 음과 같다.

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 81.4973 - 28.9763 - 0.9317 \\ 0 & 122.0674 - 27.8698 - 1.3955 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 51.9622 \\ 49.9778 \end{bmatrix}$$
(2.28)
$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(2.29)

Symbol	Description	Value	Unit
m_p	Mass of the pendulum	0.127	kg
L_p	Total length of the pendulum	0.337	m
J_p	Pendulum moment of inertia about center of mass	0.156	kg∙m²
B_p	Pendulum viscous damping coeffici- ent at the pivot axis	0.0012	N·m·s/rad
L_r	Rotary arm length from pivot to tip	0.216	m
J_r	Rotary arm moment of inertia about center of mass	0.000998	kg·m²
B_r	Rotary arm viscous damping coeffi- cient at the pivot	0.0024	N•m•s/rad
g	Acceleration of gravity	9.81	m/s²
R_m	Motor armature resistance	2.6	Ω
k_t	Motor current-torque constant	0.00768	N•m/A
k_m	Motor back-emf constant	0.00768	V·s/rad
k_g	Gear ratio	70	

Table 2.1 Rotary Pendulum system Specifications

2.4 질량 추가시 역진자 시스템의 상태 및 출력 방정식

진자의 말단부에 질량체 m_a 를 추가로 설치했을 시, 시스템의 상태와 출 력을 유도한다. Figure 2.2로부터 진자 말단의 좌표를 구하면 다음과 같 다.

$$\begin{bmatrix} x_a \\ y_a \\ z_a \end{bmatrix} = \begin{bmatrix} L_r \cos\theta + L_p (\sin\alpha)(\sin\theta) \\ L_r \sin\theta + L_p (\sin\alpha)(\sin\theta) \\ L_p \cos\alpha \end{bmatrix}$$
(2.30)

진자 말단부의 속도 v_a 를 좌표축 별로 구하면 다음과 같다.

$$\begin{bmatrix} \dot{x}_{G} \\ \dot{y}_{G} \\ \dot{z}_{G} \end{bmatrix} = \begin{bmatrix} -L_{r} (\sin\theta)\dot{\theta} + L_{p} (\cos\alpha)(\sin\theta)\dot{\alpha} + L_{p} (\sin\alpha)(\cos\theta)\dot{\theta} \\ L_{r} (\cos\theta)\dot{\theta} - L_{p} (\cos\alpha)(\cos\theta)\dot{\alpha} + L_{p} (\sin\alpha)(\sin\theta)\dot{\theta} \\ -L_{p} (\sin\theta)\dot{\theta} \end{bmatrix}$$
(2.31)

진자 말단부만의 운동에너지와 위치에너지를 구하면 다음과 같다.

$$E_{ka} = \frac{1}{2} m_a v_a^2 + \frac{1}{2} J_a \overset{\cdot}{\alpha}^2 \qquad 1945 \qquad (2.32)$$

$$E_{pa} = m_a g L_p \cos\alpha \qquad (2.33)$$

질량 추가시의 라그랑지안은 식 (2.6)에 $E_{ka} - E_{pa}$ 를 더한 것과 같다. 이 를 통해 라그랑지안 방정식을 구하여 선형화하면 다음과 같다.

$$(J_r + m_p L_r^2 + m_a L_r^2)\ddot{\theta} - (\frac{1}{2} m_p L_r L_p + m_a L_r L_p)\ddot{\alpha} = \tau - B_r \dot{\theta}$$
(2.34)

$$\left(-\frac{1}{2}m_{p}L_{r}L_{p}-m_{a}L_{r}L_{p}\right)\ddot{\theta}+\left(J_{p}+\frac{1}{4}m_{p}L_{p}^{2}+2J_{a}\right)\ddot{\alpha}$$

$$-\frac{1}{2}m_{p}L_{p}g\alpha-m_{a}L_{p}\alpha g=-B_{p}\dot{\alpha}$$
(2.35)

이상으로부터 질량 추가 시 역진자 시스템의 상태 및 출력 방정식을 구 해보면 다음과 같다.

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & M_{rpa}M_{ga}/\overline{J_{T}} & -\overline{J_{pa}}B_{r}/\overline{J_{T}} & -M_{rpa}B_{p}/\overline{J_{T}} \\ 0 & \overline{J_{ra}}M_{ga}/\overline{J_{T}} & -M_{rpa}B_{r}/\overline{J_{T}} & -\overline{J_{ra}}B_{p}/\overline{J_{T}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \overline{J_{pa}}/\overline{J_{T}} \\ M_{rpa}/\overline{J_{T}} \end{bmatrix} u$$

$$(2.36)$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

$$(2.37)$$

$$[7] \ \lambda],$$

여기서,

$$\overline{J_T} = (J_r + m_p L_r^2 + m_a L_r^2)(J_p + \frac{1}{4}m_p L_p^2 + 2J_a) - (\frac{1}{2}m_p L_r L_p + m_a L_r L_p)^2$$
(2.38)

$$M_{ga} = \left(\frac{1}{2}m_p + m_a\right)L_p g, \ M_{rpa} = \left(\frac{1}{2}m_p + m_a\right)L_r L_p$$
(2.39)

$$\overline{J_{pa}} = J_p + 2J_a + \frac{1}{4}m_p L_p^2, \quad \overline{J_{ra}} = J_r + J_a + m_p L_r^2$$
(2.40)

제 3 장 상태공간에서의 제어시스템 설계 이론

3.1 극점배치

고전 제어 이론은 입출력 사이의 관계를 나타내는 전달함수를 이용하여 제어기를 설계하기 때문에 제어 시스템의 내부 상태를 이용할 수 없는 단 점이 있다. 이에 반해 현대제어이론은 *n* 개의 1차 미분방정식으로 표현되 는 시스템 상태방정식에 기본을 두고 있어서 제어기를 설계하는 과정에 시스템 내부 상태를 이용할 수 있는 장점을 가진다. 고전 제어 기법인 근 궤적 설계법에서는 주요 폐루프극점만을 원하는 곳에 위치시키지만, 현대 제어 이론에 바탕을 둔 극점배치 설계방법에서는 모든 폐루프극점을 원하 는 곳에 위치시킬 수 있다[6].

3.1.1 극점배치에 의한 설계

Collection @ kmou

상태 피드백 제어기 K를 갖는 Figure 3.1과 같은 시스템을 가정해보자.

Figure 3.1 Closed-loop control system with u = -Kx

Figure 3.1로부터 다음 식을 얻는다.

$$\dot{x} = Ax + Bu \tag{3.1}$$

y = Cx + Du

여기서 u는 m차원의 입력벡터, y는 p차원의 출력 벡터이다. A 행렬은 n×n차원, B 행렬은 n×m차원, C 행렬은 p×n차원, D 행렬은 p×m차원 으로 주어지며, 실제 제어기 설계가 가능하게 하기 위해 계수 행렬의 모 든 성분은 실수이다. 제어 신호는 다음과 같다.

$$u = -Kx \tag{3.2}$$

이것은 제어신호 u가 그 순간 상태에 의해 결정된다는 것을 의미한다.

3.1.2 극점배치를 위한 조건

Collection @ kmou

국점배치기법에서는 모든 페루프국점을 지정한다. 그러나 모든 페루프 국점을 원하는 곳에 배치하기 위해서는 전체 상태변수를 측정할 수 있어 야 한다. 상태측정이 곤란한 경우에는 상태관측기를 시스템에 포함시켜야 한다. 즉, 페루프국점들을 임의로 배치하기 위한 필요충분조건은 완전 상 태 가제어성이다.

시스템이 완전 상태 가제어하지 않으면, 행렬 A - BK의 고유값들을 피 드백에 의해 제어할 수 없다. 식 (3.1)이 완전 상태 가제어가 아니라고 가 정하자. 그러면 가제어성행렬 M의 계수(*rank*)가 *n*보다 작게 된다. 즉, 다음과 같은 값이 된다.

$$rank[M] = rank[B : AB : \cdots : A^{n-1}B] = q < n$$
(3.3)

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} \\ 0 \end{bmatrix}, K = \begin{bmatrix} k_1 & \vdots & k_2 \end{bmatrix}$$
로 나타내면 폐루프 시스템의 특

성다항식은

$$|sI - A + BK| = |sI_q - A_{11} + B_{11}k_1| |sI_{n-q} - A_{22}|$$
(3.4)

가 된다. 식 (3.4)로부터 q개의 고유값은 상태피드백에 의해 임의로 배치 할 수 있지만, 불가제어 모드인 A₂₂의 (n-q)개의 고유값은 피드백행렬 K에 의해 변경불가하다. 따라서 식 (3.1)이 가지는 n개의 고유값을 임의 로 배치하기 위해서는 시스템이 완전 상태 가제어가 되어야한다.

3.1.3 폐루프극점의 위치 선정

정착시간, 최대오버슈트 등의 요구 성능을 만족할 수 있도록 주요 폐루 프극점(dominant pole)을 배치한다. 그리고 나머지 극점들은 주요 폐루프 극점으로부터 충분히 떨어진 위치에 배치한다. 그러나 나머지 극점들이 너무 멀리 떨어져 있으면 큰 제어량이 요구되며 잡음신호가 증폭될 수 있 다. 또한 너무 가깝게 놓이면 기대한 성능을 얻기 힘들다. 경험적으로 나 머지 극점들의 고유진동수가 주요 폐루프극점의 고유진동수의 5배 이상 되도록 나머지 극점을 배치하고 있다.

3.1.4 변환행렬 N을 이용한 행렬 K의 결정

시스템이 완전 상태 가제어이면 행렬 A의 특성다항식

$$|sI - A| = s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n}$$
(3.5)

에서 a_1, a_2, \dots, a_n 의 값을 결정한다.

🕖 Collection @ kmou

다음으로 시스템의 상태방정식을 가제어 정준형으로 변환시키는 변환행 렬 *N*을 결정한다.

$$N = MW \tag{3.6}$$

- 18 -

M은 가제어성행렬이다.

Collection @ kmou

$$M = \begin{bmatrix} B \vdots AB \vdots \cdots \vdots A^{n-1}B \end{bmatrix}$$
(3.7)

$$W = \begin{bmatrix} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$
(3.8)

새로운 상태벡터 \hat{x} 를 다음과 같이 정의한다.

$$x = N\hat{x}, \quad \dot{x} = N\dot{\hat{x}} \tag{3.9}$$

가제어성행렬 M의 계수가 n이면 행렬 N의 역행렬이 존재하고 이를 이용하여 상태벡터 x를 상태벡터 \hat{x} 으로 변환하면, 상태방정식 (3.1)을 가 제어 정준형으로 변환할 수 있다.

$$\dot{\hat{x}} = N^{-1}AN\hat{x} + N^{-1}Bu$$
(3.10)

$$N^{-1}AN = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$
(3.11)

$$N^{-1}B = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix}$$
(3.12)

원하는 고유값들을 $\mu_1, \mu_2, ..., \mu_n$ 이라고 하면, 원하는 특성방정식은

$$(s - \mu_1)(s - \mu_2) \cdots (s - \mu_n) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_{n-1} s + \alpha_n = 0$$
(3.13)

이 된다. 다음과 같이 표시하자.

$$KN = \left[\delta_n \ \delta_{n-1} \cdots \ \delta_1\right] \tag{3.14}$$

u =-KNx̂을 식 (3.10)의 시스템에 제어하는 데 사용하면, 시스템의 방정 식은

$$\dot{\hat{x}} = N^{-1}AN\,\hat{x} - N^{-1}B\,KN\,\hat{x} \tag{3.15}$$

이 되고, 특성방정식은 다음과 같다.

Collection @ kmou

$$\begin{vmatrix} sI - N^{-1}AN + N^{-1}BKN \end{vmatrix}$$
(3.16)
=
$$\begin{vmatrix} sI - \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} - a_{n-2} & \cdots & -a_1 \end{vmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} \delta_n & \delta_{n-1} & \cdots & \delta_1 \end{bmatrix} \end{vmatrix}$$

=
$$\begin{vmatrix} s & -1 & \cdots & 0 \\ 0 & s & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_n + \delta_n & a_{n-1} + \delta_{n-1} & \cdots & s + a_1 + \delta_1 \end{vmatrix}$$

=
$$s^n + (a_1 + \delta_1)s^{n-1} + \cdots + (a_{n-1} + \delta_{n-1})s + (a + \delta) = 0$$

이것이 상태피드백을 갖는 시스템의 특성방정식이다. 이는 식 (3.13)과 같 아야 한다. 이를 δ_i에 대하여 풀어서 식 (3.14)에 대입하면 다음의 식을 얻 는다.

$$K = \begin{bmatrix} \delta_n & \delta_{n-1} & \cdots & \delta_1 \end{bmatrix} N^{-1}$$

$$= \begin{bmatrix} \alpha_n - a_n & \vdots & \alpha_{n-1} - a_{n-1} & \vdots & \cdots & \vdots & \alpha_1 - a_1 \end{bmatrix}$$
(3.17)

또 다른 상태공간 제어시스템 설계법인 2차 최적제어에서는 바람직한 응답과 요구되는 제어 에너지의 양이 적절히 균형을 이루도록 극점의 위 치를 선정한다. 일반적으로 빠른 응답을 위해서는 많은 양의 제어 에너지 를 요구하므로, 응답속도를 증가시키는 것은 더 많은 비용을 필요로 한다 [6].

3.2.1 2차 최적조정기문제

2차 최적조정문제는 시스템방정식이 다음과 같을 때

 $\dot{x} = Ax + Bu$

에 대한 최적제어벡터를

🕖 Collection @ kmou

$$u = -Kx(t)$$

라 할 때, 성능지수(performance index)

$$J = \int_{0}^{\infty} (x^{*}Qx + u^{*}Ru) dt$$
(3.20)

(3.18)

(3.19)

를 최소화하는 이득 K를 구하는 설계법이다. 여기서 Q는 양의 한정 또 는 양의 반한정인 Hermite 행렬 또는 실대칭행렬이고, R은 양의 한정인 Hermite 행렬 또는 실대칭행렬이다. 상태 x의 0으로의 수렴 속도를 중시 할 경우, x²의 적분을 작게 하기 위해 가중치 Q를 큰 값으로 정한다. 입 력 u의 에너지를 억제할 경우, u²의 적분을 작게 하기 위해 가중치 R을 큰 값으로 정한다. 성능 지수 J가 최소가 되도록 행렬 K의 성분들을 구 하면 초기 상태에 관계없이 u = −Kx(t) 가 최적이 된다. 식 (3.19)를 식 (3.18)에 대입하면 다음 식을 얻을 수 있다.

$$\dot{x} = Ax + BKx = (A - BK)x \tag{3.21}$$

다음의 유도과정에서 행렬 A - BK가 안정행렬, 즉 A - BK의 모든 고유 값이 음의 실수부를 가진다고 가정한다.

식 (3.19)를 식 (3.20)에 대입하면 다음과 같다.

$$J = \int_{0}^{\infty} (x^{*}Qx + x^{*}K^{*}RKx) dt$$
(3.22)
$$= \int_{0}^{\infty} x^{*}(Q + K^{*}RK) x dt$$

여기서 $x^{*}(Q + K^{*}RK) x = -\frac{d}{dt}(x^{*}Px)$ 라 할 때, P는 양의 한정인
Hermite 행렬 또는 실대칭행렬이다. 그러면 다음과 같은 식을 얻을 수 있
다.

$$x^{*}(Q + K^{*}RK)x = -\dot{x}^{*}Px - x^{*}P\dot{x}$$

$$= -x^{*}\{(A - BK)^{*}P + P(A - BK)\}$$
(3.23)

여기서 모든 x에 대하여 성립해야 하므로 다음 식이 성립한다.

$$Q + K^* R K = -\{ (A - BK)^* P + P(A - BK) \}$$
(3.24)

성능지수 J는 다음과 같이 정리된다.

$$J = \int_{0}^{\infty} x^{*} (Q + K^{*} R K) x \, dt = -x^{*} P x |_{0}^{\infty}$$

$$= -x^{*} (\infty) P x (\infty) + x^{*} (0) P x (0)$$
(3.25)

A-BK의 모든 고유값이 음의 실수부를 가진다고 가정했기 때문에, x(∞)는 0으로 수렴한다. 그러므로

$$J = x^*(0)Px(0) \tag{3.26}$$

이다. 따라서 성능지수 J는 초기조건 x(0)과 P로부터 구해진다.

R이 양의 한정인 Hermite 행렬 또는 실대칭행렬이라고 가정했기 때문에, 다음과 같이 쓸 수 있다.

$$R = N^* N \tag{3.27}$$

식 (3.27)을 식 (3.24)에 대입하면 다음과 같다.

ANE NO AME

를 K에 대하여 최소화시켜야 한다. 식 (3.29)가 0일 때, 즉 NK=(N^{*})⁻¹B^{*}P

일 때 최소가 되고, 최적행렬 *K*는 다음과 같다.

$$K = N^{-1} (N^*)^{-1} B^* P = R^{-1} B^* P$$
(3.31)

(3.30)

행렬 P는 다음과 같은 방정식을 만족해야 한다.

Collection @ kmou

$$A^*P + PA - PBR^{-1}B^*P + Q = 0 (3.32)$$

식 (3.32)를 축소행렬 리카티 방정식(reduced-matrix Riccati equation)이라 고 한다.

제 4 장 제어기 설계 및 실험

본 장에서는 회전형 역진자를 제어하는 극배치 제어기와 2차 최적제어 기를 설계한 후, 실험을 통해 이들 제어기의 성능 특성을 검증한다.

4.1 극점배치 제어기 설계

역진자의 시스템 행렬 식 (2.28)으로부터 개루프 극점을 찾아보면 0, -32.48, -5.27, 7.39이다. 복소평면 우반면에 극점이 있으므로 시스템이 불 안정함을 알 수 있다. 주어진 개루프극점을 이용하여 개루프 다항식을 구 해보면 다음과 같다.

$$s(s+32.48)(s+5.27)(s-7.39) = s^4 + 30.39s^3 - 107.8s^2 - 1264.94s$$
(4.1)

식의 계수값을 가제어 표준형(controllable canonical form)에 대입하면 다 음과 같다.

$$\widetilde{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1265.84 & 107.6 & -30.36 \end{bmatrix}, \quad \widetilde{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
(4.2)

비감쇠 고유진동수(undampered natural frequency) $\omega_n = 4$ [rad/s], 감 쇠비 (damping ratio) $\zeta = 0.6으로$ 하는 제어기를 설계한다. 설계 사양에 따라 주요 폐루프극점(dominant pole), 즉 p_1, p_2 는 다음과 같다.

 $p_1, p_2 = -\sigma \pm j\omega_d = -2.4 \pm j3.2 \tag{4.3}$

여기서, $\sigma = \zeta \omega_n = 0.6 \times 4 = 2.4$

Collection @ kmou

- 24 -

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 5 \sqrt{1 - 0.6^2} = 3.2$$

나머지 극점 $p_3, p_4 = -30, -40 \circ z$ 두면 폐루프시스템의 특성방정식은 다음과 같다.

$$(s+2.4-j3.2)(s+2.4+j3.2)(s+30)(s+40)$$

$$= s^{4} + 75s^{3} + 1552s^{2} + 6880s + 19200$$

$$(4.4)$$

상태피드백 이득행렬 \widetilde{K} 를

$$\widetilde{K} = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix}$$

$$(4.5)$$

로 정의하고, 제어입력 $u = -\tilde{K}x$ 를 상태방정식에 대입하면 다음과 같은 상태방정식의 형태로 바뀌게 된다.

$$\dot{x} = \tilde{A}x + \tilde{B}u = \tilde{A}x + \tilde{B}(-\tilde{K}x) = (\tilde{A} - \tilde{B}\tilde{K})x$$
(4.6)

$$\widetilde{A} - \widetilde{B} \widetilde{K} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k_1 & 126494 - k_2 & 107.8 - k_3 & -30.36 - k_4 \end{array} \right]$$

이 시스템에 대한 특성방정식을 구해보면 다음과 같다.

$$\left| sI - \tilde{A} + \tilde{B}\tilde{K} \right|$$

$$= s^{4} + (30.36 + k_{4})s^{3} + (k_{3} - 107.8)s^{2} + (k_{2} - 1264.94)s + k_{1}$$

$$(4.7)$$

식 (4.4)와 식 (4.7)을 비교하면

$$30.36 + k_4 = 75 \tag{4.8}$$

$$k_3 - 107.8 = 1552$$

$$k_2 - 1264.94 = 6880$$

 $k_1 = 19200$

이므로, 상태피드백 이득행렬 \widetilde{K} 는 다음과 같이 된다.

$$\widetilde{K}=$$
 [19200 8144.94 1659.8 44.64] (4.9)
역진자 시스템의 상태방정식에서 사용될 상태피드백 이득행렬 K_a 를 구하
면

 $K_a = \tilde{K}N^{-1} = [-8.4588 \ 43.9149 \ -3.6854 \ 4.7207]$ (4.10)

이며, 제어기를 포함한 시스템행렬은 다음과 같다.

$$A - BK_a = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 439.5 - 2200.4 & 162.5 - 246.2 \\ 422.8 - 2072.7 & 156.3 - 237.3 \end{bmatrix}$$
(4.11)

4.2 극점배치 제어기 실험

4.2.1 공칭 모델에 대한 극점배치 제어기의 응답특성

4.1절의 극점배치 제어기 설계법으로 다음의 여러 설계 사양에 따른 이 득행렬을 구하면 다음과 같다.

$$\begin{split} & \omega_n = 2.5 [\text{rad/s}], \ \zeta = 0.5, \ K_1 = [-3.3042 \ 34.3210 \ -2.1099 \ 3.0366 \] \\ & \omega_n = 2.5 [\text{rad/s}], \ \zeta = 0.6, \ K_2 = [-3.3042 \ 35.1586 \ -2.3742 \ 3.3214 \] \\ & \omega_n = 2.5 [\text{rad/s}], \ \zeta = 0.7, \ K_3 = [-3.3042 \ 35.9962 \ -2.6385 \ 3.6062 \] \\ & \omega_n = 4 [\text{rad/s}], \ \zeta = 0.5, \ K_4 = [-8.4588 \ 42.5748 \ -3.2625 \ 4.2650 \] \\ & \omega_n = 4 [\text{rad/s}], \ \zeta = 0.6, \ K_5 = [-8.4588 \ 43.9149 \ -3.6854 \ 4.7207 \] \\ & \omega_n = 4 [\text{rad/s}], \ \zeta = 0.6, \ K_5 = [-8.4588 \ 45.2550 \ -4.1084 \ 5.1764 \] \\ & \omega_n = 5 [\text{rad/s}], \ \zeta = 0.5, \ K_7 = [-13.2169 \ 49.5493 \ -4.1231 \ 5.1798 \] \\ & \omega_n = 5 [\text{rad/s}], \ \zeta = 0.6, \ K_8 = [-13.2169 \ 51.2244 \ -4.6518 \ 5.7494 \] \\ & \omega_n = 5 [\text{rad/s}], \ \zeta = 0.7, \ K_9 = [-13.2169 \ 52.8995 \ -5.1805 \ 6.3191 \] \end{split}$$

Figure 3.1에서 초기 상태 $x = [0 \ 0.2618 \ 0 \ 0]^T$ 로 두고, 상태피드백 이 득행렬 $K_1 \sim K_9$ 를 이용한 실험 결과를 Figure 4.1 ~ Figure 4.3에 나타내 고 있다. 여기서 역진자의 수직각도 $x_2 = \alpha = 0.2618$ [rad] 은 약 15°에 해 당하는 수치이다. 각 그림에 있어서 진자의 각도 (α , alpha)와 암의 각도 (θ , theta)는 각도 [deg] 단위로 표시되고, 구동모터의 제어 입력(V_m)은 전압 [V] 단위이다.

ω_n = 2.5[rad/s] 로 유지하면서 감쇠비를 증가시켰을 때인 Figure 4.1을
 분석해보면, 암과 진자의 정정 시간이 짧아졌으며 정상 상태로 가까워질
 수록 진폭이 줄어든다. 전압 크기의 최대치와 평균치도 증가한다.

 $\omega_n = 4 [rad/s]$ 로 유지하면서 감쇠비를 증가시켰을 때인 Figure 4.2를 고

찰해보면, $\omega_n = 2.5 [rad/s] 로 유지하면서 감쇠비를 증가시켰을 때보다 암$ 과 진자의 정정 시간이 짧아진다. 초기 반응시 진자의 각도는 더 크게 기울어지며, 정상 상태로 가까워질수록 진폭이 더 줄어든다. 전압 크기의최대치와 평균치도 더 큰 수치를 나타낸다.

ω_n = 5[rad/s] 로 유지하면서 감쇠비를 증가시켰을 때인 Figure 4.3을 살 펴해보면, ω_n = 4[rad/s] 로 유지하면서 감쇠비를 증가시켰을 때보다도 암과 진자의 정정 시간이 짧아진다. 초기 반응시 진자의 각도는 더 크게 기 울어지며, 정상 상태로 가까워질수록 진폭이 줄어든다. 전압 크기의 최대 치와 평균치도 더 큰 수치를 나타낸다.

우선, 고유주파수를 일정하게 유지하면서 감쇠비만 증가시켰을 때를 분 석해보면, 정정 시간(Settling time)이 짧아지는 등 시간 응답 속도는 향상 되었으나 상대적으로 큰 에너지가 소요되었다.

다음으로 감쇠비는 일정하고 고유주파수만 증가시켰을 때를 분석해보 면, 고유주파수 증가에 따라 응답속도가 향상되나, 마찬가지로 큰 에너지 가 소요됨을 알 수 있었다.

전압 크기의 최대치와 평균치가 커지는 경향은 감쇠비 또는 고유주파수 가 증가할수록 암의 반응 속도를 빨리 하기 위한 것으로 보인다. 이는 전 압 크기의 평균치가 커지게 하는 데, 에너지 소모의 증가로 이어진다.

Figure 4.1 Pole-Placement Controller response when $x(0) = \begin{bmatrix} 0 & 0.2618 & 0 & 0 \end{bmatrix}^T$, at $\omega_n = 2.5 \text{ [rad/s]}$

Figure 4.2 Pole-Placement Controller response when $x(0) = \begin{bmatrix} 0 & 0.2618 & 0 & 0 \end{bmatrix}^T$, at $\omega_n = 4$ [rad/s]

Figure 4.3 Pole-Placement Controller response when $x(0) = \begin{bmatrix} 0 & 0.2618 & 0 & 0 \end{bmatrix}^T$, at $\omega_n = 5 \text{ [rad/s]}$

Figure 4.1 ~ Figure 4.3의 제어 입력의 최대치, 최소치와 크기의 평균을 비교하기 위해 표로 정리하면 Table 4.1과 같다.

V_m (ω_n,ζ)	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$
(2.5,0.5)	2.4419	-9.8438	0.02418
(2.5,0.6)	1.0390	-10.3981	0.02546
(2.5,0.7)	1.3082	-10.5469	0.02622
(4,0.5)	3.7024	-13.0597	0.03564
(4,0.6)	3.7094	-12.9405	0.03658
(4,0.7)	5.1059	-14.0580	0.03997
(5,0.5)	7.3041	-14.9281	0.04958
(5,0.6)	7.9997	-16.5369	0.04683
(5,0.7)	9.5420	-18.2178	0.04844

 Table 4.1 Control input of Pole-Placement Controller response

Figure 4.4 ~ Figure 4.6에 나타내고 있다. 다음으로 특정 암의 기준 각 도 변화에 대하여 상태피드백 이득행렬 *K*₁ ~ *K*₉를 적용한 실험 결과를 Figure 4.4의 *ω_n* = 2.5 [rad/s]에서는 적은 에너지로 진자의 각도 변화를 아 주 작은 범위에서 유지하지만, 암의 각도 제어는 느린 응답을 보이며 기 준 입력이 변경되기 전까지도 진폭을 줄이지 못 했다. Figure 4.4의 *ω_n* = 5 [rad/s]에서는 에너지가 많이 소요되면서 진자의 각도도 비교적 크 게 변하지만, 암의 각도 제어에도 빠른 응답을 보이며 좋은 입력 추적 성 능을 나타내었다.

Figure 4.4 Pole-Placement Controller response with reference input, at $\omega_n = 2.5$ [rad/s]

Figure 4.5 Pole-Placement Controller response with reference input, at $\omega_n = 4 \text{[rad/s]}$

Figure 4.6 Pole-Placement Controller response with reference input, at $\omega_n = 5 \text{[rad/s]}$

Figure 4.4 ~ Figure 4.6의 제어 입력의 최대치, 최소치와 크기의 평균을 비교하기 위해 표로 정리하면 Table 4.2와 같다.

V_m (ω_n,ζ)	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$		
(2.5,0.5)	2.416	-2.269	0.0062		
(2.5,0.6)	2.452	-2.350	0.0059		
(2.5,0.7)	2.446	-2.616	0.0057		
(4,0.5)	6.799	-6.925	0.0104		
(4,0.6)	6.893	-7.131	0.0101		
(4,0.7)	7.203	-7.271	0.0101		
(5,0.5)	10.591	-11.801	0.0170		
(5,0.6)	11.253	-11.288	0.0184		
(5,0.7)	10.647	-10.340	0.0160		
HOF CH OF					

 Table 4.2 Control input of Pole-Placement Controller response

4.2.2 진자 말단부 질량 증가 시 극점 배치 제어기의 응답특성

이번 절에서는 극점배치 제어기의 강인 성능을 평가하기 위하여 진자의 말단부에 여분의 질량을 부가하는 실험을 진행한다. 상태피드백 제어기 $K_1 \sim K_9$ 가 어느 정도의 부가 질량까지 제어할 수 있는지를 실험하였다. Figure 4.7 ~ Figure 4.15에 각 제어기의 최대 수용치와 응답특성을 도시 하였다. 역진자의 질량을 고려하여 자의 말단부에 부가하는 질량을 150g 까지로 제한하였다.

4.2.1절로부터 감쇠비와 고유주파수를 증가시키면, 응답속도가 향상되 며, 빨리 응답하기 위해 진자의 각도 변화가 큰 것을 알 수 있다. 이는 전 압의 최대치와 크기의 평균치가 커지게 되는 데, 결국 에너지 소모의 증 가로 이어진다는 것을 알 수 있었다. 제어모터가 낼 수 있는 양보다 더 큰 제어 에너지가 요구되면, 역진자 시스템은 제어할 수 없게 된다.

Figure 4.7 ~ Figure 4.15에서 보이는 실험 결과를 통해 감쇠비 또는 고 유주파수가 큰 상태일수록 추가할 수 있는 질량의 최대 수용치가 낮아지 는 것을 확인하였다. 이는 감쇠비 또는 고유주파수가 큰 상태일수록 강인 성능이 떨어진다는 것을 의미한다. 반대로 감쇠비나 고유주파수가 작은 상태일수록 강인 성능이 증가함을 알 수 있었다. 이는 낮은 주파수일수록 제어 에너지를 적게 할 수 있기 때문에, 더 많은 질량이 추가되더라도 역 진자 시스템을 제어할 수 있는 것으로 보인다.

Figure 4.7 Adding 150[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 2.5$ [rad/s], $\zeta = 0.5$)

Figure 4.8 Adding 150[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 2.5$ [rad/s], $\zeta = 0.6$)

Figure 4.9 Adding 150[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 2.5$ [rad/s], $\zeta = 0.7$)

Figure 4.10 Adding 110[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 4$ [rad/s], $\zeta = 0.5$)

Figure 4.11 Adding 90[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 4$ [rad/s], $\zeta = 0.6$)

Figure 4.12 Adding 80[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 4$ [rad/s], $\zeta = 0.7$)

Figure 4.13 Adding 60[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 5$ [rad/s], $\zeta = 0.5$)

Figure 4.14 Adding 53[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 5$ [rad/s], $\zeta = 0.6$)

Figure 4.15 Adding 50[g] to edge of pendulum, Pole-Placement Controller response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($\omega_n = 5$ [rad/s], $\zeta = 0.7$)

Figure 4.7 ~ Figure 4.15의 제어 입력의 최대치, 최소치와 크기의 평균 을 비교하기 위해 표로 정리하면 Table 4.3과 같다.

V_m (ω_n,ζ)	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$			
(2.5,0.5)	1.6490	-9.2828	0.0263			
(2.5,0.6)	3.1710	-9.9607	0.0311			
(2.5,0.7)	3.7489	-10.1594	0.0263			
(4,0.5)	5.5732	-12.2798	0.0331			
(4,0.6)	3.0455	-12.8989	0.0402			
(4,0.7)	8.2853	-12.8628	0.0567			
(5,0.5)	8.4701	-12.2659	0.0684			
(5,0.6)	6.7930	-13.3831	0.0447			
(5,0.7)	8.3794	-12.9691	0.0502			
THE OF CH						

Table 4.3 Control input when adding mass to edge of pendulum

역진자 시스템에 대한 2차 최적제어기를 구하기 위하여, 3.2절의 내용 에 따라 성능지수(performance index) J를 최소화하는 이득 K를 구하고 이것을 입력에 피드백하도록 설계한다. 성능지수 J가 다음 식으로 주어 질 때

$$J = \int_{0}^{\infty} (x^{*}Qx + u^{*}Ru) dt$$
 (4.12)

Q,R을 각각 다음과 같이 설정한다.

$$Q = \begin{bmatrix} q_1 & 0 & 0 & 0 \\ 0 & q_2 & 0 & 0 \\ 0 & 0 & q_3 & 0 \\ 0 & 0 & 0 & q_4 \end{bmatrix}, \quad R = [r_1]$$
(4.13)

역진자 제어에서는 암의 각도 x_1 과 진자의 각도 x_2 의 수렴이 중요하며, 상대적으로 암의 각속도 x_3 과 진자의 각속도 x_4 는 중요하지 않다. 특히 진자의 각도 x_2 의 수렴을 최우선으로 고려하여 가중치를 가장 높게 부여 한다[7]. 각 상태에 해당하는 가중치 $q_1 \sim q_4$ 및 r_1 을 선정하고 J를 최소화 하는 이득 K_q 를 구하면

$$K_q = \begin{bmatrix} -3.1623 & 31.9784 & -2.8866 & 4.2746 \end{bmatrix}$$
 (4.14)

로 얻어진다. 제어기를 포함한 시스템행렬은 다음과 같다.

 $A - BK_q$ 로 정리된다.

4.4 2차 최적제어기 실험

Collection @ kmou

4.4.1 공칭 모델에 대한 2차 최적제어기의 응답특성

4.3절에서 2차 최적제어기를 설계했던 동일한 방법으로 다음의 여러 설 계 사양에 따른 이득행렬을 구하면 다음과 같다.

$$Q_{1} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 \\ 0 & 0 & 01 \end{bmatrix}, R = [1], K_{11} = [-3.1623 \ 29.7162 \ -2.8180 \ 4.1794]$$

$$(4.15)$$

$$Q_{2} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 100 & 0 & 0 \\ 0 & 0 & 10 \\ 0 & 0 & 01 \end{bmatrix}, R = [1], K_{12} = [-3.1623 \ 31.9784 \ -2.8866 \ 4.2746]$$

$$(4.16)$$

$$Q_{3} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 1000 & 0 & 0 \\ 0 & 1000 & 0 & 0 \\ 0 & 0 & 01 \end{bmatrix}, R = [1], K_{13} = [-3.1623 \ 47.6498 \ -3.3156 \ 4.8783]$$

$$(4.17)$$

Figure 4.16은 초기 상태 $x = [0 \ 0.2618 \ 0 \ 0]^T$ 로 두고, 2차 최적제어기 이득행렬 $Q_1 \sim Q_3$ 를 적용한 실험 결과이다. 이득의 크기를 비교하면 알 수 있듯이 가중치가 커질수록 반응이 빨라지는 것을 알 수 있다.

귀환 이득행렬의 q_1 값이 비슷한 극점배치 제어기 $K_1 \sim K_3$ 와 2차 최적제 어기 $Q_1 \sim Q_3$ 를 비교 분석해보면, 암의 수렴 속도가 빨라졌으며 진폭은 줄었다. 초기 반응시 진자의 각도 또한 적게 기울어지면서 $Q_1, Q_2 는$ $K_1 \sim K_3$ 에 비해 적은 에너지로 제어 가능하였다.

Figure 4.16 LQR response when $x(0) = \begin{bmatrix} 0 & 0.2618 & 0 & 0 \end{bmatrix}^T$

Figure 4.16의 특징을 나타내기 위해, 제어 입력의 최대치, 최소치와 크 기의 평균을 표로 정리하면 Table 4.4와 같다.

Q V_m	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$
Q ₁	1.2126	-8.8173	0.0210
Q 2	1.3182	-10.0655	0.0240
Q 3	2.2463	-13.0588	0.0305

Table 4.4 Control input of LQR response

Figure 4.17은 특정 암의 기준 각도 변화에 대하여 상태피드백 이득행 렬 $Q_1 \sim Q_3$ 를 적용한 실험 결과이다. 극점배치 제어기에 비해 굉장히 작 은 전압으로도 역진자 시스템을 안정하면서 적당한 암의 응답을 보이고 있다. 그 중에서 Q_3 는 적은 에너지로 진자의 각도 변화를 아주 작은 범위 에서 유지하지면서 암의 각도까지도 빠른 응답을 보이며 좋은 입력 추적 성능을 나타내었다.

Figure 4.17의 특징을 나타내기 위해, 제어 입력의 최대치, 최소치와 크 기의 평균을 표로 정리하면 Table 4.5와 같다.

Table 4.5	Control	input	of	LQR
-----------	---------	-------	----	-----

Q V_m	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$
Q1	2.6812	-2.6838	0.0142
Q 2	2.4903	-2.2865	0.0140
Q 3	2.8562	-2.6957	0.0139

Figure 4.17 LQR response with reference input

4.4.2 진자 말단부 질량 증가 시 2차 최적제어기의 응답특성

이번 절에서는 2차 최적제어기의 강인 성능을 평가하기 위하여 진자의 말단부에 여분의 질량을 부가하는 실험을 진행한다. 상태피드백 제어기 $K_{11} \sim K_{13}$ 이 어느 정도의 부가 질량까지를 할 수 있는지를 실험하였다.

Figure 4.18 ~ Figure 4.21에 각 제어기의 최대 수용치와 응답특성을 도 시하였다. 역진자의 질량을 고려하여 자의 말단부에 부가하는 질량을 150g까지로 제한하였다.

세 가지 이득행렬의 실험 결과를 고찰해 보면, 진자의 각도 x_2 의 수렴 속도는 가중치 q_2 크기에 의해 결정되는 것을 확인할 수 있다. 이뿐만 아 니라 진자의 각도 x_2 의 수렴과 관련된 가중치만을 다르게 부여하였다 할 지라도 암의 각도 x_1 의 수렴 속도에도 영향을 미쳐, 가중치 q_2 크기에 의 해 결정되는 것을 확인할 수 있었다.

상기 세 가지의 2차 최적제어기와 가장 유사한 결과를 보인 상태피드백 이득행렬 K_1 과 비교를 해보면, 제어입력의 크기는 비슷하였으나 암의 각 도 x_1 의 수렴 속도와 진자의 각도 x_2 의 수렴 속도는 2차 최적제어기가 월등함을 알 수 있다.

- 53 -

Figure 4.18 Adding 150[g] to edge of pendulum, LQR response at $x(0) = \begin{bmatrix} 0 & 0.2618 & 0 & 0 \end{bmatrix}^T (Q_1, R = \begin{bmatrix} 1 \end{bmatrix})$

Figure 4.19 Adding 150[g] to edge of pendulum, LQR response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($Q_2, R = [1]$)

Figure 4.20 Adding 150[g] to edge of pendulum, LQR response at $x(0) = [0 \ 0.2618 \ 0 \ 0]^T$ ($Q_3, R = [1]$)

Figure 4.18 ~ Figure 4.20의 특징을 나타내기 위해, 제어 입력의 최대 치, 최소치와 크기의 평균을 표로 정리하면 Table 4.6와 같다.

Q V_m	Maximum of V_m	Minimum of V_m	Average of $\mid V_m \mid$
Q1	2.4208	-8.4379	0.0231
Q 2	1.8228	-8.3404	0.0259
Q 3	2.2737	-12.7162	0.0354

Table 4.6 Control input of LQR

제 7 장 결 론

본 연구에서는 회전형 역진자의 제어를 위하여 극점배치 이론과 최적제 어 이론을 적용한 제어기를 설계하고, 이들 제어기의 성능특성을 분석하 여 다음과 같은 결론을 얻었다.

역진자 시스템의 수학적 모델은 비선형으로 나타나므로, 동작점 부근에 서의 선형화가 필요하다.

국점배치 이론과 2차 최적제어 이론 모두 상태공간에서의 제어기 설계 법에 따라 얻어진 귀환 이득에 의해 제어 시스템의 응답 특성이 결정되는 데, 원하는 응답을 얻기 위해서는 여러 번의 시행착오를 거쳐 적절한 귀 환 이득을 찾아야 한다.

빠른 응답을 얻기 위해 제어 시스템의 고유진동수나 감쇠비를 높이는 방식은 제어 에너지를 많이 소모함을 확인하였다. 제어 전압의 제한으로 인해, 제어 에너지를 많이 소모하는 제어 시스템의 강인 안정성은 크게 낮아지는 것을 확인하였다.

2차 최적제어이론은 주어진 성능지수가 최소가 되도록 상태를 원하는 상태공간의 영역으로 이동시킴과 동시에, 제어 에너지를 적게 소모함으로 써 적절한 강인 성능을 확보함을 알 수 있었다.

향후 시스템 파라미터가 정확하지 않은 상황이나 외란 영향에도 강인 성능을 유지할 수 있는 제어기 설계를 목표로 한다.

참고문헌

- [1] V. Sirisha & Dr.A. S. Junghare, 2014, A comparative study of controllers for stabilizing a rotary inverted pendulum, *International Journal of Chaos, Control, Modelling and Simulation*, 3(1).
- [2] P. Jekan & C. Subramani, 2016, Robust control design for rotary inverted pendulum balance, *Indian Journal of Science and Technology*, 9(28).
- [3] K. Ogata, 1978, System Dynamics, Prentice Hall, pp. 576~586.
- [4] Quanser Inc, 2011, Rotary pendulum Experiment Workbook
- [5] 한수희 등, 2013, 실감나게 배우는 제어공학, 한빛아카데미, pp.
 194~195.
- [6] K. Ogata, 2010, Modern Control Engineering 5th Ed, Pearson, pp. 723~732.
- [7] 川田昌克, 2015, MATLAB / Simulink と実機で学ぶ制御工学, Techshare, pp. 202~203.
- [8] V. Sukontanakarn & M. Parnichkun, 2009, Real-time optimal control for rotary inverted pendulum, *American Journal of Applied Sciences*, 6(6).
- [9] N. Tyson, 2006, An investigation of a robust swing-up control design for a rotary inverted pendulum, *Proceedings of The National Conference On Undergraduate Research.*
- [10] 김종필, 2013, 도립진자 시스템의 안정화를 위한 상태변수 조합 퍼지 제어기 설계,한국해양대학교 석사학위논문.

- [11] 김원배, 2001, 도립 진자의 퍼지-PID 제어에 관한 연구, 전남대 학교 석사학위논문.
- [12] 박민호, 한완상, 2014, 라그랑지 보간과 근의 인동범위를 이용한 회전형 도립진자의 적응 최적 제어, Journal of the Korea Academia-Industrial cooperation Society, 15(2), pp1006-1073.
- [13] 임지연, 2006,회전형 역진자 스윙업·LQR제어기의 설계,한국산업 기술대학교 지식기반기술 에너지대학원 석사학위논문.

