工學碩士學位論文

•

A Study on Course Stability of Towing and Towed Vessels System under Wind Pressure

指導教授 孫景浩

2000年 2月

韓國海洋大學校 大學院

造船工學科

金龍起

Abstract	1
Nomenclature	2
List of Figures	7
List of Tables	7
1.	8
2	9
2.1	9
2.2	12
2.2.1	12
2.2.2	12
2.2.3	13
2.2.4	14
2.2.5	15

3	17
4.	24
5.	43
6.	44

A Study on Course Stability of Towing and Towed Vessels System under Wind Pressure

by

Yong KiKim

Department of Naval Architecture Graduate School of Korea Maritime University

Abstract

The author discusses the problem on course stability of towed ship under severe wind pressure. The characteristic equation to assess the stability on course, is derived from sway and yaw coupled motions of towing and towed vessels with wind effect. Through the numerical calculation on course stability of towing and towed vessels system, the relationship between the course stability of a towed ship and wind direction or towrope length, is clarified with the parameter of wind speed in terms of Beaufort number. Two types of towed vessel, such as a bulk carrier and a passenger liner, are applied and examined. The major results are as follows. The course stability of towed vessel under wind pressure depends on the inherent course stability of the vessel herself. The towed vessel will be much unstable for the range from beam to quarter wind in relatively high wind speed. The length of towrope has also great infulence upon the stability. Long towrope will be able to stabilize for all range of wind direction in relatively low wind speed or for the head wind in relatively high wind speed.

Nomenclature

a_0	Distance from midship to towing point
<i>a</i> _{<i>H</i>}	Ratio of lateral force induced on hull by rudder to rudder normal force
$A_{R}/L d$	Area ratio of rudder
A _L	Lateral projected area of ship
A_{R}	Projected area of rudder
A ss	Lateral projected area of superstructure
A _T	Transverse projected area of ship
В	Moulded breadth of ship
С	Rudder chord length
C_{b}	Block coefficient
C_F	Coefficient of rudder force
C_N	Yawing wind moment coefficient
С _т	Total resistance coefficient
C_X	Fore and aft wind force coefficient
С _Y	Lateral wind force coefficient
D	Diameter of propeller
d	Draft of ship
f_{1}	Distance from midship to towed point
F_N	Rudder nomal force

<i>K</i> ₂	Autopilot constant
H_R	Height of Rudder
Izz	Moment of inertia about z axis
J_{zz}	Added moment of inertia about z axis
<i>K</i> ₁	Autopilot constant
l	Length of towrope
l_d	Course stability lever
L _{OA}	Length overall of ship
L	Length between perpendiculars
М	Number of distant groups of masts of kingposts seen in lateral projection
m	Mass of a ship
m_x	Added mass in x direction
<i>m</i> _y	Added mass in y direction
n	Number of propeller revolution per second
Ν	Yaw moment
N_{β}	Linear derivative of hydrodynamic yaw moment with respect to sway angle
N_{H}	Yaw moment induced by hull
N _R	Yaw moment induced by rudder
N _r	Linear derivative of hydrodynamic yaw moment with respect to yaw rate
N _T	Yaw moment induced by towrope

N_{W}	Yaw moment due to wind
R	Resistance of ship
r	Yaw rate
r	Time derivative of r
S	Length of perimeter of lateral projection of vessel, excluding waterline and slender bodies such as masts and ventilators
S	Propeller slip ratio
S _A	Wetted surface area of a hull
Т	Tension force of towrope
и	Longitudinal component of ship speed V
ù	Time derivative of u
v	Sway velocity of a ship
· v	Time derivative of v
V	Ship's resultant speed
V_w	Absolute wind speed
V_A	Relative wind speed
X	Surge force
X_{W}	Longitudinal force due to wind
X _H	Longitudinal force induced by hull
X _P	Longitudinal force acting on hull induced by propeller
X_{R}	Longitudinal force acting on hull induced by rudder

Longitudinal force induced by a towlrope X_T Sway force Y Y_{β} Linear derivative of lateral hydrodynamic force with respect to sway angle Lateral force induced by hull Y_H Lateral force induced by rudder Y_R Linear derivative of lateral hydrodynamic force with respect to yaw rate Y_r Lateral force induced by towrope Y_T Y_{W} Lateral force due to wind

Greek

α_R	Effective inflow velocity to rudder
β	Drift angle
γ	Flow staraightening effect coefficient
δ	Rudder angle
η	D/H_R
λ	A spect ratio of rudder ($\lambda = H_R / C$)
ρ	Density of sea water
ρ_A	Density of air
ϕ	Heading angle
$\psi_{\scriptscriptstyle A}$	Angle of relative wind off bow
$\psi_{\scriptscriptstyle W}$	Angle of absolute wind direction

List of Figures

Fig. 1 Coordinate systems	8
Fig. 2 Projected plans of tug boat	22
Fig. 3 Projected plans of bulk carrie	23
Fig. 4 Projected plans of passenger liner	23
Fig. 5 Wind force and moment coefficients estimated	
by Isherwood's empirical equations(tug boat)	25
Fig. 6 Wind force and moment coefficients estimated	
by Isherwood's empirical equations (bulk carrier)	26
Fig. 7 Wind force and moment coefficients estimated	
by Isherwood's empirical equations(passenger liner)	27
Fig. 8 Course Stability of towed vessel as function of	
length of tow line and wind direction(bulk carrier)	30
Fig. 9 Course Stability of towed vessel as function of	
length of tow line and wind direction(passenger liner)	34

List of Tables

Table 1 Principal dimensions of tow and towed vessels	24
Table 2 WMO code 1100	28
Table 3 Inherent course stability lever of towed vessels	28

1.

가 [1].

,

가 Benford [2], Inoue [3], Kijima [4]

.

IMO(

)

가

, , , , , , , , , , , , , , (4]. (bulk carrier) (passenger liner) フト

,

・ アト , ・ ,

2.1

Fig. 1 Coordinate systems

Fig. 1

 $\overline{O} - \overline{X} \overline{Y}$ G - xy (5), (6).

$$(m_{i} + m_{xi}) \dot{u_{i}} \cdot (m_{i} + m_{yi}) v_{i}r_{i} = X_{i}$$

$$(m_{i} + m_{yi}) \dot{v_{i}} + (m_{i} + m_{xi}) u_{i}r_{i} = Y_{i}$$

$$(1)$$

$$(I_{ii} + J_{ii}) \dot{r_{i}} = N_{i}$$

$$i \quad , \qquad , i = 0 \quad , i = 1$$

$$. \qquad m \qquad , m_{x}, m_{y} \qquad x, y \qquad 7^{1} \quad , I_{z} \quad J_{z}$$

$$z \qquad 7^{1} \quad , u, v \qquad x, y \qquad , r$$

$$, X, Y, N \qquad x, y \qquad z$$

$$. \qquad , V \qquad , V_{A} \qquad , V_{w}$$

$$. \qquad , \phi_{w} \qquad , \phi_{A} \qquad , \beta, r$$

$$.$$

$$(1) \qquad u, v \qquad () \beta$$

$$.$$

$$(m_{i}' + m_{xi}') (\frac{L_{i}}{V_{i}}) (\frac{\dot{V_{i}}}{V_{i}} \cos \beta_{i} - \beta_{i} \sin \beta_{i}) + (m_{i}' + m_{yi}') r_{i}' \sin \beta_{i} = X_{i}'$$

$$(m_{i}' + m_{yi}') (\frac{L_{i}}{V_{i}}) (\frac{\dot{V_{i}}}{V_{i}} r_{i}' + \dot{r_{i}'}) = N_{i}'$$

$$W \qquad , \qquad , \qquad , \qquad .$$

$$m_{i}', m_{xi}', m_{yi}' = m_{i}, m_{xi}, m_{yi}' (\frac{1}{2} \rho L_{i}^{2} d_{i})$$

- 10 -

$$\overline{X}_{1} = \overline{X}_{0} - \{a_{0}\cos\psi_{0} + l\cos(\psi_{1} + \alpha) + f_{1}\cos\psi_{1}\}$$

$$\overline{Y}_{1} = \overline{Y}_{0} - \{a_{0}\sin\psi_{0} + l\sin(\psi_{1} + \alpha) + f_{1}\sin\psi_{1}\}$$
(5)

[7].

2.2.1

2.2

X_{P0} · 7 7

$$X_{P0} = (R_0 + R_1) - (X_{W0S} + X_{W1S})$$
(6)

 $\begin{array}{cccc}
R_0, R_1 & , & & 7 \\
Schoenherr & X_{W0S}, X_{W1S} & , \\
x & . & . & \end{array}$

2.2.2

$$X_{H}' = -R'(1 + 13\beta^{2})$$

$$Y_{H}' = Y_{\beta}'\beta + Y_{r}'r'$$

$$N_{H}' = N_{\beta}'\beta + N_{r}'r'$$

$$, \qquad 0, 1 \qquad Y_{H}, N_{H}$$
(7)

,
$$0, 1$$
 Y_H, N_H
, Inoue [8] .

 $Y_{\beta}' = \left\{ \frac{1}{2} \pi A + 1.4 c_B (B / L) \right\} (1 + \frac{2}{3} \tau / dm)$

$$Y_{r}' = \frac{1}{4} \pi \Lambda (1 + 0.8 \tau / dm)$$

$$N_{\beta}' = \Lambda (1 - \frac{0.27}{l_{\beta}} \tau / dm)$$

$$N_{r}' = - (0.54 \Lambda - \Lambda^{2}) (1 + 0.3 \tau / dm)$$

$$, \Lambda = 2 d / L , \tau = da - df , dm = (da + df) / 2$$

$$l_{\beta} = \Lambda / (\frac{1}{2} \pi \Lambda + 1.4 c_{B} B / L)$$
(8)

•

$$, X_{H}'$$
 $(1 + 13\beta^{2})$ 7

2.2.3

$$X_{R}' = -F_{N}' \sin \delta$$

$$Y_{R}' = -(1 + a_{H})F_{N}' \cos \delta$$
(9)
$$N_{R}' = \frac{1}{2}(1 + a_{H})F_{N}' \cos \delta$$

$$F_{N}, \delta . F_{N}', a_{H}$$
.
$$F_{N}' = \frac{6.13A}{(A + 2.25)}(\frac{A_{R}}{Ld})(1 - w)^{2} \{1 + g(s)\} \sin a_{R}$$

$$a_{H} = 0.63 C_{B} - 0.15$$

$$g(s) = 0.6 \eta (2 - 1.4 s) s / (1 - s)^{2}$$

$$\eta = D / H_{R}$$
(10)
$$s = 1 - V(1 - w) / nP$$

$$w = 0.6329 - 1.552 C_{B} + 1.5034 C_{B}^{2}$$

$$n = 1.744 \left(\frac{V}{D}\right) \left\{ \frac{C_{T 0} S_{A 0} + C_{T 1} S_{A 1}}{D^{2}} \right\}^{1/3}$$

$$\alpha_{R} = \delta - \gamma (\beta + r')$$

$$, \qquad n = 0, \ \delta = 0 \qquad C_{B} \qquad , D \qquad , P$$

$$, \ \lambda \qquad , H_{R} \qquad (), \ A_{R} \qquad , \ C_{T} \qquad S_{A} \qquad$$

$$r \qquad \gamma \qquad (\gamma \approx 0.45) \qquad w$$

$$T \qquad y \qquad (\gamma \approx 0.45) \qquad w$$

$$T \qquad y \qquad (\gamma \approx 0.025 \qquad 7! \qquad$$

$$\psi_{0} (), \ r_{0} ' () \qquad$$

$$\delta_{0}$$

$$\delta_0 = -K_1 \phi_0 - K_2 r_0' \tag{11}$$

 K_1, K_2 , Koyama [9] $K_1 = 1.0$, $K_2 = 0.05$ 7.

2.2.4

Fig. 1 ("0"),
$$V_{A0}$$
, ψ_{A0}
 $V_{A0} = \sqrt{V_w^2 + V_0^2 - 2V_w V_0 \cos \{\pi - (\beta_0 + \psi_w - \psi_0)\}}$
 $\psi_{A0} = \tan^{-1} \left\{ \frac{-\sin \beta_0 + (V_w / V_0) \sin (\psi_w - \psi_0)}{\cos \beta_0 + (V_w / V_0) \cos (\psi_w - \psi_0)} \right\}$
(12)

$$X_{W0}' = - (\rho_A / \rho) (A_{T0} / L_0 d_0) \cdot C_{X 0} \cdot (V_{A0} / V_0)^2$$

$$Y_{W0}' = - (\rho_A / \rho) (A_{L0} / L_0 d_0) \cdot C_{Y 0} \cdot (V_{A0} / V_0)^2$$

$$N_{W0}' = - (\rho_A / \rho) (A_{L0} / L_0 d_0) \cdot C_{N 0} \cdot (V_{A0} / V_0)^2$$
(13)

$ ho_A$, A_{T0} , A_{L0}			•
	$C_{X\ 0}$, $C_{Y\ 0}$, $C_{N\ 0}$	$\psi_{A\ 0}$	Isherwood	[10]
	(12), (13)	"()" "1"	

2.2.5

$$T_{0S} = R_1 - X_{W1S}$$

$$, X_{W1S} = -\frac{1}{2} \rho_A V_{A1S}^2 A_{T1} \cdot C_{X1} (\psi_{A1S})$$

$$V_{A1S}^2 = V_1^2 \{ 1 + (V_w / V_1)^2 + 2 (V_w / V_1) \cos \psi_w \}$$

$$\psi_{A \ 1S} = \tan^{-1} \left[\frac{(V_w / V_1) \sin \varphi_w}{1 + (V_w / V_1) \cos \varphi_w} \right]$$
(())
$$T_0$$

$$T_{0} = T_{0S} \left\{ 1 + 13 \left(\beta_{1} + \alpha_{1} \right)^{2} \right\}$$
(14)

$$eta_1$$
 , $lpha_1$.

$$X_{T0} = -T_{0} \cos (\psi_{0} - \psi_{1} - \alpha)$$

$$Y_{T0} = T_{0} \sin (\psi_{0} - \psi_{1} - \alpha)$$

$$N_{T0} = -T_{0} a_{0} \sin (\psi_{0} - \psi_{1} - \alpha)$$
(15)

$$X_{T1} = T_{1} \cos \alpha$$

$$Y_{T1} = T_{1} \sin \alpha$$
(16)

$$N_{T1} = T_{1}f_{1}\sin \alpha$$
 , $T_{1} = T_{0}$

.

$$a_0' = a_0 / L_0 \qquad a_0$$

3

$$- (m_{0}' + m_{y0}') (L_{0}/V) \dot{\beta}_{0} + (m_{0}' + m_{x0}') (L_{0}/V) \dot{\psi}_{0}$$

$$= Y_{\beta 0}' \beta_{0} + Y_{r0}' (L_{0}/V) \dot{\psi}_{0} + C_{F0} [K_{1}\psi_{0} + K_{2}(L_{0}/V) \dot{\psi}_{0}$$

$$+ \gamma_{0} \{\beta_{0} + (L_{0}/V) \dot{\psi}_{0}\}] + Y_{W0}' + T_{0}' (\psi_{0} - \psi_{1} - \alpha)$$

$$(I_{z0}' + J_{z0}') (L_0 / V)^2 \dot{\psi}_0$$

$$= N_{\beta 0}' \beta_0 + N_{r0}' (L_0 / V) \dot{\psi}_0 - \frac{1}{2} C_{F0} [K_1 \psi_0 + K_2 (L_0 / V) \dot{\psi}_0$$

$$+ \gamma_0 \{\beta_0 + (L_0 / V) \dot{\psi}_0\}] + N_{W0}' - T_0' a_0' (\psi_0 - \psi_1 - \alpha)$$

$$- (m_1' + m_{y1}') (L_1 / V) \dot{\beta}_1 + (m_1' + m_{x1}') (L_1 / V) \dot{\psi}_1$$

$$= Y_{\beta 1}'\beta_{1} + Y_{r1}'(L_{1}/V)\dot{\phi}_{1} + (m_{1} + m_{x1})(L_{1}/V)\dot{\phi}_{1}$$

$$= Y_{\beta 1}'\beta_{1} + Y_{r1}'(L_{1}/V)\dot{\phi}_{1} + C_{F1}\gamma_{1}\{\beta_{1} + (L_{1}/V)\dot{\phi}_{1}\}$$

$$+ Y_{W1}' + T_{1}'\alpha$$

$$(I_{z1}' + J_{z1}')(L_{1}/V)^{2} \dot{\psi}_{1}$$

$$= N_{\beta 1}'\beta_{1} + N_{r1}'(L_{1}/V) \dot{\psi}_{1} - \frac{1}{2} C_{F1}\gamma_{1} \{\beta_{1} + (L_{1}/V) \dot{\psi}_{1} \}$$

$$+ N_{W1}' + T_{1}'f_{1}'\alpha$$
(17)

, $a_0' = a_0 / L_0$, $f_1' = f_1 / L_1$

$$C_{F0} = (1 + a_{H0}) \left\{ \frac{6.13\lambda_0}{\lambda_0 + 2.25} \right\} (\frac{A_{R0}}{L_0 d_0}) \times (1 - w_0)^2 \cdot \left\{ 1 + \frac{0.6\eta_0 (2 - 1.4s)s}{(1 - s)^2} \right\}$$

$$C_{F1} = (1 + a_{H1}) \left\{ \frac{6.13\lambda_1}{\lambda_1 + 2.25} \right\} (\frac{A_{R1}}{L_1 d_1}) \cdot (1 - w_1)^2 \times \left\{ 1 + a_{H1} \right\} \left\{ \frac{6.13\lambda_1}{\lambda_1 + 2.25} \right\} (\frac{A_{R1}}{L_1 d_1}) \cdot (1 - w_1)^2 \times \left\{ \lambda_0, \lambda_1, \dots, \lambda_{R0}, A_{R1}, \dots, M_0, w_1 \right\} \right\}$$

$$(5) , , A_{R0}, A_{R1} , w_0, w_1 + f_1 \cdot (L_1 / V) \dot{\phi}_1 + a_0 \cdot (L_0 / V) \dot{\phi}_0 + l' (L_1 / V) (\dot{\phi}_1 + a) + f_1 \cdot (L_1 / V) \dot{\phi}_1 , l' = l/L_1$$

$$(18) (17) , \dot{\phi}_0 = \phi_1, \dot{\phi}_1 = \phi_2, \dot{a} = \phi_3 + f_1 \cdot (L_1 / V) \dot{\phi}_1 + A_2 \phi_0 + A_3 \phi_0 + A_6 \phi_1 + A_7 \phi + A_8 + f_7 \phi_1 + B_8 + f_7 \phi_1 + B_2 \phi_2 + B_3 \phi_3 + B_4 \beta_0 + B_5 \phi_0 + B_6 \phi_1 + B_7 \phi_1 + C_2 \phi_2 + C_3 \phi_3 + C_4 \phi_0 + C_5 \phi_0 + C_6 \phi_1 + C_7 \phi + C_8 + C_9 \phi_1 + C_{10} \phi_2 + C_{11} \phi_0 + D_8 + A_6 \phi_1 + D_7 \phi + D_8 + A_6 + D_8 + A_6 \phi_1 + D_7 \phi + D_8 + A_6 + D_8 + A_6 + D_7 \phi + D_8 + D_8 + A_6 + D_8 + D_8 + A_6 + D_7 \phi + D_8 +$$

$$A_{0} = (I_{z0}' + J_{z0}') (L_{0} / V)^{2}$$

$$A_{1} = N_{r0}' (L_{0} / V) - \frac{1}{2} C_{F0} K_{2} (L_{0} / V) - \frac{1}{2} C_{F0} \gamma_{0} (L_{0} / V)$$

$$A_{4} = N_{\beta0}' - \frac{1}{2} C_{F0} \gamma_{0}$$

$$+ (\rho_{A} / \rho) (A_{L0} / L_{0} d_{0}) C_{N0} (2 V_{w} / V) \sin \phi_{w}$$

$$A_{5} = -0.5 C_{F0} K_{1}$$

$$- (\rho_{A} / \rho) (A_{L0} / L_{0} d_{0}) C_{N0} (2 V_{w} / V) \sin \phi_{w} - T_{0}' a_{0}'$$

$$A_{6} = T_{0}' a_{0}'$$

$$A_{7} = T_{0}' a_{0}'$$

$$A_{8} = - (\rho_{A} / \rho) (A_{L0} / L_{0} d_{0}) C_{N0}$$

$$\times \{1 + (V_{w} / V)^{2} + (2 V_{w} / V) \cos \phi_{w}\}$$

$$B_{0} = (I_{z1}' + J_{z1}') (L_{1} / V)^{2}$$

$$B_{1} = a_{0}' (L_{0} / V) \{N_{\beta1}' - 0.5 C_{F1} \gamma_{1}$$

$$+ (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1} (2 V_{w} / V) \sin \phi_{w}\}$$

$$B_{2} = (L_{1} / V) [N_{r1}' - 0.5 C_{F1} \gamma_{1} + (l_{1}' + f_{1}') \{N_{\beta 1}' - 0.5 C_{F1} \gamma_{1} + (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1} (2 V_{w} / V) \sin \phi_{w} \}]$$

$$B_{3} = l'(L_{1} / V) \{ N_{\beta 1}' - 0.5 C_{F1} \gamma_{1} + (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1} (2 V_{w} / V) \sin \phi_{w} \}$$

$$B_{4} = N_{\beta 1}' - 0.5 C_{F1} \gamma_{1}$$

+ $(\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1} (2 V_{w} / V) \sin \phi_{w}$

$$B_{5} = -N_{\beta 1}' + 0.5 C_{F1} \gamma_{1}$$

- $(\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1} (2 V_{w} / V) \sin \psi_{w}$

$$B_{6} = N_{\beta 1}' - 0.5 C_{F1} \gamma_{1}$$

 $B_7 = T_1 ' f_1 '$

$$B_{8} = - (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{N1}$$

$$\times \{ 1 + (V_{w} / V)^{2} + 2(V_{w} / V) \cos \psi_{w} \}$$

$$C_0 = - (m_1' + m_{y1}') (L_1/V)^2 l'$$

$$C_{1} = - (m_{1}' + m_{y1}') (L_{1}/V)^{2}$$

+ (Y_{\beta1}' + C_{F1}\beta_{1}) a_{0}' (L_{0}/V) + (\lambda_{A}/\rho) (A_{L1}/L_{1}d_{1})
\times C_{Y1} { 2 (V_{w}/V) a_{0}' (L_{0}/V) \sin \varphi_{w} }

$$C_{2} = (L_{1}/V) [(m_{1}' + m_{y1}') - (m_{1}' + m_{x1}') + Y_{r1}' + C_{F1}\gamma_{1} + (l' + f_{1}') \{Y_{\beta 1}' + C_{F1}\gamma_{1} + (\rho_{A}/\rho) (A_{L1}/L_{1}d_{1}) C_{Y1} \{2(V_{w}/V) \sin \phi_{w} \}]$$

$$C_{3} = l' (L_{1} / V) \{ Y_{\beta 1}' + C_{F1} \gamma_{1} + (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{Y1} \{ 2 (V_{w} / V) \sin \phi_{w} \}$$

$$C_{4} = Y_{\beta 1}' + C_{F1}\gamma_{1} + (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{Y1} (2 V_{w} / V) \sin \phi_{w}$$

$$C_{5} = -Y_{\beta 1}' - C_{F1}\gamma_{1}$$

$$- (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{Y1} (2 V_{w} / V) \sin \phi_{w}$$

$$C_{6} = Y_{\beta 1}' + C_{F1}\gamma_{1}$$

$$C_{7} = T_{1}'$$

$$C_{8} = - (\rho_{A} / \rho) (A_{L1} / L_{1} d_{1}) C_{Y1}$$

$$\times \{1 + (V_{w} / V)^{2} + 2 (V_{w} / V) \cos \phi_{w} \}$$

$$C_{9} = - (m_{1}' + m_{y1}') (L_{0} L_{1} / V^{2}) a_{0}'$$

$$C_{10} = (m_{1}' + m_{y1}') (L_{1} / V)^{2} (l' + f_{1}')$$

$$C_{11} = - (m_{1}' + m_{y1}') (L_{1} / V)$$

$$D_{0} = - (L_{0} / V) (m_{0}' + m_{y0}')$$

$$D_{1} = (L_{0} / V) \{ - (m_{0}' + m_{x0}') + Y_{r0}' + C_{F0} K_{2} + \gamma_{0} C_{F0} \}$$

$$D_{4} = Y_{\beta 0}' + \gamma_{0} C_{F0}$$

$$+ (\rho_{A} / \rho) (A_{L0} / L_{0} d_{0}) C_{Y0} (2 V_{w} / V) \sin \phi_{w}$$

$$D_{5} = C_{F0} K_{1} - (\rho_{A} / \rho) (A_{L0} / L_{0} d_{0}) C_{Y0} (2 V_{w} / V) \sin \phi_{w}$$
$$+ T_{0}'$$

 $D_6 = - T_0'$

$$D_{7} = -T_{0}'$$

$$D_{8} = -(\rho_{A}/\rho)(A_{10}/L_{0}d_{0})C_{Y0} \times \{1+(V_{w}/V)^{2}+(2V_{w}/V)\cos\phi_{w}\}$$
(20)
$$\phi_{1},\phi_{2},\cdots,\alpha ?P (()) \qquad A\phi_{1}, \Delta\phi_{2}, \cdots, \Delta\alpha ?P (19) \qquad A\phi_{1}, \Delta\phi_{2}, \cdots, \Delta\alpha ?P (10) \qquad A\phi_{1} + a_{4}\Delta\beta_{0} + a_{5}\Delta\phi_{0} + a_{6}\Delta\phi_{1} + a_{7}\Delta\alpha \\\frac{d}{dt}(\Delta\phi_{2}) = b_{1}\Delta\phi_{1} + b_{2}\Delta\phi_{2} + b_{3}\Delta\phi_{3} + b_{4}\Delta\beta_{0} + b_{5}\Delta\phi_{0} \\+ b_{6}\Delta\phi_{1} + b_{7}\Delta\alpha \\\frac{d}{dt}(\Delta\phi_{3}) = c_{1}\Delta\phi_{1} + c_{2}\Delta\phi_{2} + c_{3}\Delta\phi_{3} + c_{4}\Delta\beta_{0} + c_{5}\Delta\phi_{0} \\+ c_{6}\Delta\phi_{1} + c_{7}\Delta\alpha \\\frac{d}{dt}(\Delta\phi_{0}) = d_{1}\Delta\phi_{1} + d_{4}\Delta\beta_{0} + d_{5}\Delta\phi_{0} + d_{6}\Delta\phi_{1} + d_{7}\Delta\alpha \\\frac{d}{dt}(\Delta\phi_{0}) = \Delta\phi_{1}, \frac{d}{dt}(\Delta\phi_{1}) = \Delta\phi_{2}, \frac{d}{dt}(\Delta\alpha) = \Delta\phi_{3} \qquad (21) \\a_{1}, \cdots, a_{7}, b_{1}, \cdots, b_{7}, c_{1}, \cdots, c_{7}, d_{1}, \cdots, d_{7} \\a_{1} = A_{1}/A_{0}, b_{1} = B_{1}/B_{0}, d_{1} = D_{1}/D_{0}(-, i = 1 \sim 7) \\c_{1} = C_{1}/C_{0} + a_{1}C_{9}/C_{0} + b_{1}C_{10}/C_{0} + d_{1}C_{11}/C_{0}$$

$$c_{2} = C_{2} / C_{0} + b_{2} C_{10} / C_{0}$$

$$c_{3} = C_{3} / C_{0} + b_{3} C_{10} / C_{0}$$

$$c_{i} = C_{i} / C_{0} + a_{i} C_{9} / C_{0} + b_{i} C_{10} / C_{0} + d_{i} C_{11} / C_{0} (, i = 4 \sim 7)$$
(22)

(21)
$$\lambda$$
 .

$$\begin{vmatrix} a_{1} - \lambda & 0 & 0 & a_{4} & a_{5} & a_{6} & a_{7} \\ b_{1} & b_{2} - \lambda & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} \\ c_{1} & c_{2} & c_{3} - \lambda & c_{4} & c_{5} & c_{6} & c_{7} \\ d_{1} & 0 & 0 & d_{4} - \lambda & d_{5} & d_{6} & d_{7} \\ 1 & 0 & 0 & 0 & -\lambda & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -\lambda & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -\lambda \end{vmatrix} = 0$$
(23)

$$\lambda^{7} + P_{1}\lambda^{6} + P_{2}\lambda^{5} + P_{3}\lambda^{4} + P_{4}\lambda^{3} + P_{5}\lambda^{2} + P_{6}\lambda + P_{7} = 0$$
(24)

4.

2

.

.

.

.

.

Table 1 Fig. 2, 3, 4 .

.

.

(bollard pull) 35		,	
(bulk carrier)	(passenger liner)		• ,
WMO code 1100 Table	. , Fig. 5, 6, 7	Isherwood	. Table 3

.

 .
 ,
 ,

 9(a) (i)
 .
 .

 $f_1' = 0.5$,
 Beaufort

		,					
Fig. 8	Fig. 9		$\psi_{\scriptscriptstyle w}$,	l	,	

, アト , アト .

.

Beaufort No. 1 . · ψ_w 7

가 . 가 (Beaufort No. 7) . . , (bare hull) . , 2.2 Y_{β}', N_{β}')가 ((rudder) $(\qquad Y_{\beta HR}', N_{\beta HR}' \qquad)$ •

가

.

(Stability lever) l_d

[12].

.

,

$$l_{d} = \frac{N_{r'HR}}{Y_{r'HR} - (m' + m_{x}')} - \frac{N_{\beta'HR}}{Y_{\beta'HR}}$$
(25)

$$Y_{\beta'HR} = Y_{\beta'} + C_F \gamma$$

$$Y_{r'HR} = Y_{r'} + C_F \gamma$$

$$N_{\beta'HR} = N_{\beta'} - \frac{1}{2} C_F \gamma$$

$$N_{r'HR} = N_{r'} - \frac{1}{2} C_F \gamma$$

$$\gamma \quad C_F \qquad (9) \quad (16) \qquad . \quad (25), (26)$$

$$I_d \qquad 0.5 \qquad .$$

$$T \text{ able 3} \qquad . \qquad Fig. 8, 9$$

$$7^{\dagger} \qquad . \qquad . \qquad . \qquad .$$

Fig. 2 Projected plans of tug boat

Fig. 3 Projected plans of bulk carrier

Fig. 4 Projected plans of passenger liner

It em s	Tug boat	Bulk carrier	Passenger liner
Hull			
Length overall L_{OA}	30.3	175.0	133.5
Length bet. perpen. L (m) 26.0	167.0	118
Breath B (m) 8.3	22.6	19.9
Mean draft d (m) 2.6	8.0	5.0
fore df (m)	7.50	5.0
aft da (m)	8.50	5.0
Block coefficient C_B	0.6	0.76	0.55
Rudder			
Area ratio $A_R / L d$	0.020 (1/49.7)	0.0154 (1/64.85)	0.0296 (1/33.75)
Aspect ratio λ	1.4	1.57	1.5
Propeller			
Diameter D (m	1.10	4.60	3.54
Pitch ratio P/D (m	²) 0.86	0.77	0.93

Table 1 Principal dimensions of tow and towed vessels

(a) Fore and aft wind force coefficient

(c) Yawing wind moment coefficient

Fig. 5 Wind force and moment coefficients estimated by Isherwood's empirical equations(tug boat)

(a) Fore and aft wind force coefficient

(c) Yawing wind moment coefficient

Fig. 6 Wind force and moment coefficients estimated by Isherwood's empirical equations(bulk carrier)

- (c) Yawing wind moment coefficient
- Fig. 7 Wind force and moment coefficients estimated by Isherwood's empirical equations(passenger liner)

Beaufort U_T	(m/sec)
1	0.95
2	2.50
3	4.45
4	6.75
5	9.40
6	12.35
7	15.55
8	19.00
9	22.65
10	26.50
11	30.60
12	34.85

Table 2. WMO code 1100

Table 3 Inherent course stability lever of towed vessels

	Bulk carrier	Passenger liner
Course stability lever	0.165	- 0.017

Fig. 8(a) Course stability of towed vessel(bulk carrier) as function of towrope length and wind direction

Fig. 8(b) continued

Fig. 8(c) continued

Fig. 8(d) continued

Fig. 8(e) continued

Fig. 8(f) continued

Fig. 8(g) continued

Fig. 8(h) continued

Fig. 8(i) continued

Fig. 9(a) Course stability of towed vessel(passenger liner) as function of towrope and wind direction

Fig. 9(b) continued

Fig. 9(c) continued

Fig. 9(d) continued

Fig. 9(e) continued

Fig. 9(f) continued

Fig. 9(g) continued

Fig. 9(h) continued

Fig. 9(i) continued

•

,

,

가

•

- [1] Kijima, K., "Chapter 1 of Ship Manoeuvrability and Operational Safety", 2nd Marine Dynamics Symposium Text, The Society of Naval Architects of Japan, 1985(in Japanese).
- [2] Benford, H., "The Control of Yaw in Towed Barges", International Shipbuilding Progress, Vol. 2, No. 11, 1955.
- [3] Inoue, S., et al., "The Course Stability of Towed Boats", Transaction of the West-Japan Society of Naval Architects, No. 43, 1972(in Japanese).
- [4] Kijima, K., et al., "Course Stability of Towed Vessel with Wind Effect", Journal of the Society of Naval Architects of Japan, Vol. 153, 1983 (in Japanese).
- [5] , "··",
 - 29 , 3 , 1992.

36 , 2 , 1999.

 [8] Inoue, S., et al., "Hydrodynamic Derivatives on Ship Manoeuvring", International Shipbuilding Progress, Vol. 28, No. 321, 1981.

",

- [9] Koyama, T., "On the Optimum Automatic Steering Systems of Ships at Sea", Journal of the Society of Naval Architects of Japan, Vol. 122, 1967(in Japanese).
- [10] Isherwood, R. M., "Wind Resistance of Merchant Ships", Transaction of the Royal Institution of Naval Architects, Vol. 115, 1973.
- [11] Lewis, E. V., "Principles of Naval Architecture", 2nd Revision, Vol. I, Published by SNAME, pp. 159 170, 1988.
- [12] , " 7 ", , 33 , 4 , 1996.